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Abstract

Traditional wisdom holds that once docu-

ments are turned into bag-of-words (unigram

count) vectors, word orders are completely

lost. We introduce an approach that, perhaps

surprisingly, is able to learn a bigram lan-

guage model from a set of bag-of-words docu-

ments. At its heart, our approach is an EM al-

gorithm that seeks a model which maximizes

the regularized marginal likelihood of the bag-

of-words documents. In experiments on seven

corpora, we observed that our learned bigram

language models: i) achieve better test set per-

plexity than unigram models trained on the

same bag-of-words documents, and are not far

behind “oracle bigram models” trained on the

corresponding ordered documents; ii) assign

higher probabilities to sensible bigram word

pairs; iii) improve the accuracy of ordered-

document recovery from a bag-of-words. Our

approach opens the door to novel phenomena,

for example, privacy leakage from index files.

1 Introduction

A bag-of-words (BOW) is a basic document repre-

sentation in natural language processing. In this pa-

per, we consider a BOW in its simplest form, i.e.,

a unigram count vector or word histogram over the

vocabulary. When performing the counting, word

order is ignored. For example, the phrases “really

neat” and “neat really” contribute equally to a BOW.

Obviously, once a set of documents is turned into

a set of BOWs, the word order information within

them is completely lost—or is it?

In this paper, we show that one can in fact partly

recover the order information. Specifically, given a

set of documents in unigram-count BOW representa-

tion, one can recover a non-trivial bigram language

model (LM)1, which has part of the power of a bi-

gram LM trained on ordered documents. At first

glance this seems impossible: How can one learn

bigram information from unigram counts? However,

we will demonstrate that multiple BOW documents

enable us to recover some higher-order information.

Our results have implications in a wide range of

natural language problems, in particular document

privacy. With the wide adoption of natural language

applications like desktop search engines, software

programs are increasingly indexing computer users’

personal files for fast processing. Most index files

include some variant of the BOW. As we demon-

strate in this paper, if a malicious party gains access

to BOW index files, it can recover more than just

unigram frequencies: (i) the malicious party can re-

cover a higher-order LM; (ii) with the LM it may at-

tempt to recover the original ordered document from

a BOW by finding the most-likely word permuta-

tion2. Future research will quantify the extent to

which such a privacy breach is possible in theory,

and will find solutions to prevent it.

There is a vast literature on language modeling;

see, e.g., (Rosenfeld, 2000; Chen and Goodman,

1999; Brants et al., 2007; Roark et al., 2007). How-

1A trivial bigram LM is a unigram LM which ignores his-

tory: P (v|u) = P (v).
2It is possible to use a generic higher-order LM, e.g., a tri-

gram LM trained on standard English corpora, for this purpose.

However, incorporating a user-specific LM helps.
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ever, to the best of our knowledge, none addresses

this reverse direction of learning higher-order LMs

from lower-order data. This work is inspired by re-

cent advances in inferring network structure from

co-occurrence data, for example, for computer net-

works and biological pathways (Rabbat et al., 2007).

2 Problem Formulation and Identifiability

We assume that a vocabulary of size W is given.

For notational convenience, we include in the vo-

cabulary a special “begin-of-document” symbol 〈d〉
which appears only at the beginning of each docu-

ment. The training corpus consists of a collection of

n BOW documents {x1, . . . ,xn}. Each BOW xi is

a vector (xi1, . . . , xiW ) where xiu is the number of

times word u occurs in document i. Our goal is to

learn a bigram LM θ, represented as a W×W transi-

tion matrix with θuv = P (v|u), from the BOW cor-

pus. Note P (v|〈d〉) corresponds to the initial state

probability for word v, and P (〈d〉|u) = 0,∀u.

It is worth noting that traditionally one needs or-

dered documents to learn a bigram LM. A natural

question that arises in our problem is whether or not

a bigram LM can be recovered from the BOW cor-

pus with any guarantee. Let X denote the space

of all possible BOWs. As a toy example, consider

W = 3 with the vocabulary {〈d〉, A, B}. Assuming

all documents have equal length |x| = 4 (including

〈d〉), then X = {(〈d〉:1, A:3, B:0), (〈d〉:1, A:2, B:1),

(〈d〉:1, A:1, B:2), (〈d〉:1, A:0, B:3)}. Our training

BOW corpus, when sufficiently large, provides the

marginal distribution p̂(x) for x ∈ X . Can we re-

cover a bigram LM from p̂(x)?
To answer this question, we first need to introduce

a generative model for the BOWs. We assume that

the BOW corpus is generated from a bigram LM θ

in two steps: (i) An ordered document is generated

from the bigram LM θ; (ii) The document’s unigram

counts are collected to produce the BOW x. There-

fore, the probability of a BOW x being generated

by θ can be computed by marginalizing over unique

orderings z of x:

P (x|θ) =
∑

z∈σ(x)

P (z|θ) =
∑

z∈σ(x)

|x|
∏

j=2

θzj−1,zj
,

where σ(x) is the set of unique orderings, and |x| is

the document length. For example, if x =(〈d〉:1,

A:2, B:1) then σ(x) = {z1, z2, z3} with z1 =
“〈d〉 A A B”, z2 = “〈d〉 A B A”, z3 = “〈d〉 B A A”.

Bigram LM recovery then amounts to finding a θ

that satisfies the system of marginal-matching equa-

tions

P (x|θ) = p̂(x) , ∀x ∈ X . (1)

As a concrete example where one can exactly re-

cover a bigram LM from BOWs, consider our toy

example again. We know there are only three free

variables in our 3×3 bigram LM θ: r = θ〈d〉A, p =

θAA, q = θBB , since the rest are determined by

normalization. Suppose the documents are gener-

ated from a bigram LM with true parameters r =
0.25, p = 0.9, q = 0.5. If our BOW corpus is very

large, we will observe that 20.25% of the BOWs are

(〈d〉:1, A:3, B:0), 37.25% are (〈d〉:1, A:2, B:1), and

18.75% are (〈d〉:1, A:0, B:3). These numbers are

computed using the definition of P (x|θ). We solve

the reverse problem of finding r, p, q from the sys-

tem of equations (1), now explicitly written as















rp2 = 0.2025
rp(1− p) + r(1− p)(1− q)

+(1− r)(1− q)p = 0.3725
(1− r)q2 = 0.1875.

The above system has only one valid solution,

which is the correct set of bigram LM parameters

(r, p, q) = (0.25, 0.9, 0.5).
However, if the true parameters were (r, p, q) =

(0.1, 0.2, 0.3) with proportions of BOWs being

0.4%, 19.8%, 8.1%, respectively, it is easy to ver-

ify that the system would have multiple valid solu-

tions: (0.1, 0.2, 0.3), (0.8819, 0.0673, 0.8283), and

(0.1180, 0.1841, 0.3030). In general, if p̂(x) is

known from the training BOW corpus, when can

we guarantee to uniquely recover the bigram LM

θ? This is the question of identifiability, which

means the transition matrix θ satisfying (1) exists

and is unique. Identifiability is related to finding

unique solutions of a system of polynomial equa-

tions since (1) is such a system in the elements of θ.

The details are beyond the scope of this paper, but

applying the technique in (Basu and Boston, 2000),

it is possible to show that for W = 3 (including 〈d〉)
we need longer documents (|x| ≥ 5) to ensure iden-

tifiability. The identifiability of more general cases

is still an open research question.
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3 Bigram Recovery Algorithm

In practice, the documents are not truly generated

from a bigram LM, and the BOW corpus may be

small. We therefore seek a maximum likelihood es-

timate of θ or a regularized version of it. Equiva-

lently, we no longer require equality in (1), but in-

stead find θ that makes the distribution P (x|θ) as

close to p̂(x) as possible. We formalize this notion

below.

3.1 The Objective Function

Given a BOW corpus {x1, . . . ,xn}, its nor-

malized log likelihood under θ is ℓ(θ) ≡
1
C

∑n
i=1 log P (xi|θ), where C =

∑n
i=1(|xi| − 1)

is the corpus length excluding 〈d〉’s. The idea is to

find θ that maximizes ℓ(θ). This also brings P (x|θ)
closest to p̂(x) in the KL-divergence sense. How-

ever, to prevent overfitting, we regularize the prob-

lem so that θ prefers to be close to a “prior” bi-

gram LM φ. The prior φ is also estimated from the

BOW corpus, and is discussed in Section 3.4. We

define the regularizer to be an asymmetric dissimi-

larity D(φ, θ) between the prior φ and the learned

model θ. The dissimilarity is 0 if θ = φ, and

increases as they diverge. Specifically, the KL-

divergence between two word distributions condi-

tioned on the same history u is KL(φu·‖θu·) =
∑W

v=1 φuv log φuv

θuv
. We define D(φ, θ) to be

the average KL-divergence over all histories:

D(φ, θ) ≡ 1
W

∑W
u=1 KL(φu·‖θu·), which is con-

vex in θ (Cover and Thomas, 1991). We will use

the following derivative later: ∂D(φ, θ)/∂θuv =
−φuv/(Wθuv).

We are now ready to define the regularized op-

timization problem for recovering a bigram LM θ
from the BOW corpus:

max
θ

ℓ(θ)− λD(φ, θ)

subject to θ1 = 1, θ ≥ 0. (2)

The weight λ controls the strength of the prior. The

constraints ensure that θ is a valid bigram matrix,

where 1 is an all-one vector, and the non-negativity

constraint is element-wise. Equivalently, (2) can be

viewed as the maximum a posteriori (MAP) estimate

of θ, with independent Dirichlet priors for each row

of θ: p(θu·) = Dir(θu·|αu·) and hyperparameters

αuv = λC
W

φuv + 1.

The summation over hidden ordered documents

z in P (x|θ) couples the variables and makes (2) a

non-concave problem. We optimize θ using an EM

algorithm.

3.2 The EM Algorithm

We derive the EM algorithm for the optimization

problem (2). Let O(θ) ≡ ℓ(θ) − λD(φ, θ) be the

objective function. Let θ(t−1) be the bigram LM at

iteration t− 1. We can lower-bound O as follows:

O(θ)

=
1

C

n
∑

i=1

log
∑

z∈σ(xi)

P (z|θ(t−1),x)
P (z|θ)

P (z|θ(t−1),x)

−λD(φ, θ)

≥
1

C

n
∑

i=1

∑

z∈σ(xi)

P (z|θ(t−1),x) log
P (z|θ)

P (z|θ(t−1),x)

−λD(φ, θ)

≡ L(θ, θ(t−1)).

We used Jensen’s inequality above since log()
is concave. The lower bound L involves

P (z|θ(t−1),x), the probability of hidden orderings

of the BOW under the previous iteration’s model.

In the E-step of EM we compute P (z|θ(t−1),x),
which will be discussed in Section 3.3. One

can verify that L(θ, θ(t−1)) is concave in θ, un-

like the original objective O(θ). In addition, the

lower bound “touches” the objective at θ(t−1), i.e.,

L(θ(t−1), θ(t−1)) = O(θ(t−1)).
The EM algorithm iteratively maximizes the

lower bound, which is now a concave optimization

problem: maxθ L(θ, θ(t−1)), subject to θ1 = 1.

The non-negativity constraints turn out to be auto-

matically satisfied. Introducing Lagrange multipli-

ers βu for each history u = 1 . . .W , we form the

Lagrangian ∆:

∆ ≡ L(θ, θ(t−1))−

W
∑

u=1

βu

(

W
∑

v=1

θuv − 1

)

.

Taking the partial derivative with respect to θuv and

setting it to zero: ∂∆/∂θuv = 0, we arrive at the

following update:

θuv ∝
n
∑

i=1

∑

z∈σ(xi)

P (z|θ(t−1),x)cuv(z) +
λC

W
φuv.

(3)
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Input: BOW documents {x1, . . . ,xn}, a prior bi-

gram LM φ, weight λ.

1. t = 1. Initialize θ(0) = φ.

2. Repeat until the objective O(θ) converges:

(a) (E-step) Compute P (z|θ(t−1),x) for z ∈
σ(xi), i = 1, . . . , n.

(b) (M-step) Compute θ(t) using (3). Let t =
t + 1.

Output: The recovered bigram LM θ.

Table 1: The EM algorithm

The normalization is over v = 1 . . .W . We use

cuv(z) to denote the number of times the bigram

“uv” appears in the ordered document z. This is the

M-step of EM. Intuitively, the first term counts how

often the bigram “uv” occurs, weighing each order-

ing by its probability under the previous model; the

second term pulls the parameter towards the prior.

If the weight of the prior λ → ∞, we would have

θuv = φuv. The update is related to the MAP esti-

mate for a multinomial distribution with a Dirichlet

prior, where we use the expected counts.

We initialize the EM algorithm with θ(0) = φ.

The EM algorithm is summarized in Table 1.

3.3 Approximate E-step

The E-step needs to compute the expected bigram

counts of the form

∑

z∈σ(x)

P (z|θ,x)cuv(z). (4)

However, this poses a computational problem. The

summation is over unique ordered documents. The

number of unique ordered documents can be on the

order of |x|!, i.e., all permutations of the BOW. For a

short document of length 15, this number is already

1012. Clearly, brute-force enumeration is only fea-

sible for very short documents. Approximation is

necessary to handle longer ones.

A simple Monte Carlo approximation to (4)

would involve sampling ordered documents

z1, z2, . . . , zL according to zi ∼ P (z|θ,x), and

replacing (4) with
∑L

i=1 cuv(zi)/L. This estimate

is unbiased, and the variance decreases linearly

with the number of samples, L. However, sampling

directly from P is difficult.

Instead, we sample ordered documents zi ∼
R(zi|θ,x) from a distribution R which is easy

to generate, and construct an approximation us-

ing importance sampling (see, e.g., (Liu, 2001)).

With each sample, zi, we associate a weight

wi ∝ P (zi|θ,x)/R(zi|θ,x). The importance

sampling approximation to (4) is then given by

(
∑L

i=1 wicuv(zi))/(
∑L

i=1 wi). Re-weighting the

samples in this fashion accounts for the fact that we

are using a sampling distribution R which is differ-

ent the target distribution P , and guarantees that our

approximation is asymptotically unbiased.

The quality of an importance sampling approxi-

mation is closely related to how closely R resembles

P ; the more similar they are, the better the approxi-

mation, in general. Given a BOW x and our current

bigram model estimate, θ, we generate one sample

(an ordered document zi) by sequentially drawing

words from the bag, with probabilities proportional

to θ, but properly normalized to form a distribution

based on which words remain in the bag. For exam-

ple, suppose x = (〈d〉:1, A:2, B:1, C:1). Then we

set zi1 = 〈d〉, and sample zi2 = A with probabil-

ity 2θ〈d〉A/(2θ〈d〉A + θ〈d〉B + θ〈d〉C). Similarly,

if zi(j−1) = u and if v is in the original BOW that

hasn’t been sampled yet, then we set the next word in

the ordered document zij equal to v with probability

proportional to cvθuv, where cv is the count of v in

the remaining BOW. For this scheme, one can ver-

ify (Rabbat et al., 2007) that the importance weight

corresponding to a sampled ordered document zi =

(zi1, . . . , zi|x|) is given by wi =
∏|x|

t=2

∑|x|
i=t θzt−1zi

.

In our implementation, the number of importance

samples used for a document x is 10|x|2 if the length

of the document |x| > 8; otherwise we enumerate

σ(x) without importance sampling.

3.4 Prior Bigram LM φ

The quality of the EM solution θ can depend on the

prior bigram LM φ. To assess bigram recoverabil-

ity from a BOW corpus alone, we consider only pri-

ors estimated from the corpus itself3. Like θ, φ is a

W×W transition matrix with φuv = P (v|u). When

3Priors based on general English text or domain-specific

knowledge could be used in specific applications.
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appropriate, we set the initial probability φ〈d〉v pro-

portional to the number of times word v appears in

the BOW corpus. We consider three prior models:

Prior 1: Unigram φunigram. The most naı̈ve

φ is a unigram LM which ignores word history.

The probability for word v is estimated from the

BOW corpus frequency of v, with add-1 smoothing:

φunigram
uv ∝ 1 +

∑n
i=1 xiv. We should point out

that the unigram prior is an asymmetric bigram, i.e.,

φunigram
uv 6= φunigram

vu .

Prior 2: Frequency of Document Co-

occurrence (FDC) φfdc. Let δ(u, v|x) = 1 if

words u 6= v co-occur (regardless of their counts)

in BOW x, and 0 otherwise. In the case u = v,

δ(u, u|x) = 1 only if u appears at least twice in

x. Let cfdc
uv =

∑n
i=1 δ(u, v|xi) be the number of

BOWs in which u, v co-occur. The FDC prior is

φfdc
uv ∝ cfdc

uv + 1. The co-occurrence counts cfdc

are symmetric, but φfdc is asymmetric because

of normalization. FDC captures some notion of

potential transitions from u to v. FDC is in spirit

similar to Kneser-Ney smoothing (Kneser and Ney,

1995) and other methods that accumulate indicators

of document membership.

Prior 3: Permutation-Based (Perm) φperm. Re-

call that cuv(z) is the number of times the bigram

“uv” appears in an ordered document z. We define

cperm
uv =

∑n
i=1 E

z∈σ(xi)[cuv(z)], where the expecta-

tion is with respect to all unique orderings of each

BOW. We make the zero-knowledge assumption of

uniform probability over these orderings, rather than

P (z|θ) as in the EM algorithm described above. EM

will refine these estimates, though, so this is a natu-

ral starting point. Space precludes a full discussion,

but it can be proven that cperm
uv =

∑n
i=1 xiuxiv/|xi|

if u 6= v, and cperm
uu =

∑n
i=1 xiu(xiu − 1)/|xi|. Fi-

nally, φperm
uv ∝ cperm

uv + 1.

3.5 Decoding Ordered Documents from BOWs

Given a BOW x and a bigram LM θ, we for-

mulate document recovery as the problem z
∗ =

argmax
z∈σ(x)P (z|θ). In fact, we can generate

the top N candidate ordered documents in terms

of P (z|θ). We use A∗ search to construct such

an N-best list (Russell and Norvig, 2003). Each

state is an ordered, partial document. Its succes-

sor states append one more unused word in x to

the partial document. The actual cost g from the

start (empty document) to a state is the log proba-

bility of the partial document under bigram θ. We

design a heuristic cost h from the state to the goal

(complete document) that is admissible: the idea is

to over-use the best bigram history for the remain-

ing words in x. Let the partial document end with

word we. Let the count vector for the remaining

BOW be (c1, . . . , cW ). One admissible heuristic

is h = log
∏W

u=1 P (u|bh(u); θ)cu , where the “best

history” for word type u is bh(u) = argmaxvθvu,

and v ranges over the word types with non-zero

counts in (c1, . . . , cW ), plus we. It is easy to see that

h is an upper bound on the bigram log probability

that the remaining words in x can achieve.

We use a memory-bounded A∗ search similar

to (Russell, 1992), because long BOWs would oth-

erwise quickly exhaust memory. When the priority

queue grows larger than the bound, the worst states

(in terms of g + h) in the queue are purged. This

necessitates a double-ended priority queue that can

pop either the maximum or minimum item. We use

an efficient implementation with Splay trees (Chong

and Sahni, 2000). We continue running A∗ after

popping the goal state from its priority queue. Re-

peating this N times gives the N-best list.

4 Experiments

We show experimentally that the proposed algo-

rithm is indeed able to recover reasonable bigram

LMs from BOW corpora. We observe:

1. Good test set perplexity: Using test (held-

out) set perplexity (PP) as an objective measure of

LM quality, we demonstrate that our recovered bi-

gram LMs are much better than naı̈ve unigram LMs

trained on the same BOW corpus. Furthermore, they

are not far behind the “oracle” bigram LMs trained

on ordered documents that correspond to the BOWs.

2. Sensible bigram pairs: We inspect the recov-

ered bigram LMs and find that they assign higher

probabilities to sensible bigram pairs (e.g., “i mean”,

“oh boy”, “that’s funny”), and lower probabilities to

nonsense pairs (e.g., “i yep”, “you let’s”, “right lot”).

3. Document recovery from BOW: With the bi-

gram LMs, we show improved accuracy in recover-

ing ordered documents from BOWs.

We describe these experiments in detail below.
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Corpus |V | # Docs # Tokens |x|

SV10 10 6775 7792 1.2

SV25 25 9778 13324 1.4

SV50 50 12442 20914 1.7

SV100 100 14602 28611 2.0

SV250 250 18933 51950 2.7

SV500 500 23669 89413 3.8

SumTime 882 3341 68815 20.6

Table 2: Corpora statistics: vocabulary size, document

count, total token count, and mean document length.

4.1 Corpora and Protocols

We note that although in principle our algorithm

works on large corpora, the current implementa-

tion does not scale well (Table 3 last column). We

therefore experimented on seven corpora with rel-

atively small vocabulary sizes, and with short doc-

uments (mostly one sentence per document). Ta-

ble 2 lists statistics describing the corpora. The first

six contain text transcripts of conversational tele-

phone speech from the small vocabulary “SVitch-

board 1” data set. King et al. constructed each cor-

pus from the full Switchboard corpus, with the re-

striction that the sentences use only words in the cor-

responding vocabulary (King et al., 2005). We re-

fer to these corpora as SV10, SV25, SV50, SV100,

SV250, and SV500. The seventh corpus comes from

the SumTime-Meteo data set (Sripada et al., 2003),

which contains real weather forecasts for offshore

oil rigs in the North Sea. For the SumTime cor-

pus, we performed sentence segmentation to pro-

duce documents, removed punctuation, and replaced

numeric digits with a special token.

For each of the seven corpora, we perform 5-fold

cross validation. We use four folds other than the

k-th fold as the training set to train (recover) bigram

LMs, and the k-th fold as the test set for evaluation.

This is repeated for k = 1 . . . 5, and we report the

average cross validation results. We distinguish the

original ordered documents (training set z1, . . . zn,

test set zn+1, . . . , zm) and the corresponding BOWs

(training set x1 . . .xn, test set xn+1 . . .xm). In all

experiments, we simply set the weight λ = 1 in (2).

Given a training set and a test set, we perform the

following steps:

1. Build prior LMs φX from the training BOW

corpus x1, . . .xn, for X = unigram, fdc, perm.

2. Recover the bigram LMs θX with the EM al-

gorithm in Table 1, from the training BOW corpus

x1, . . .xn and using the prior from step 1.

3. Compute the MAP bigram LM from the or-

dered training documents z1, . . . zn. We call this the

“oracle” bigram LM because it uses order informa-

tion (not available to our algorithm), and we use it

as a lower-bound on perplexity.

4. Test all LMs on zn+1, . . . , zm by perplexity.

4.2 Good Test Set Perplexity

Table 3 reports the 5-fold cross validation mean-test-

set-PP values for all corpora, and the run time per

EM iteration. Because of the long running time, we

adopt the rule-of-thumb stopping criterion of “two

EM iterations”. First, we observe that all bigram

LMs perform better than unigram LMs φunigram

even though they are trained on the same BOW cor-

pus. Second, all recovered bigram LMs θX im-

proved upon their corresponding baselines φX . The

difference across every row is statistically significant

according to a two-tailed paired t-test with p < 0.05.

The differences among PP(θX ) for the same corpus

are also significant (except between θunigram and

θperm for SV500). Finally, we observe that θperm

tends to be best for the smaller vocabulary corpora,

whereas θfdc dominates as the vocabulary grows.

To see how much better we could do if we had or-

dered training documents z1, . . . , zn, we present the

mean-test-set-PP of “oracle” bigram LMs in Table 4.

We used three smoothing methods to obtain oracle

LMs: absolute discounting using a constant of 0.5

(we experimented with other values, but 0.5 worked

best), Good-Turing, and interpolated Witten-Bell as

implemented in the SRILM toolkit (Stolcke, 2002).

We see that our recovered LMs (trained on un-

ordered BOW documents), especially for small vo-

cabulary corpora, are close to the oracles (trained on

ordered documents). For the larger datasets, the re-

covery task is more difficult, and the gap between

the oracle LMs and the θ LMs widens. Note that the

oracle LMs do much better than the recovered LMs

on the SumTime corpus; we suspect the difference is

due to the larger vocabulary and significantly higher

average sentence length (see Table 2).

4.3 Sensible Bigram Pairs

The next set of experiments compares the recov-

ered bigram LMs to their corresponding prior LMs
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Corpus X PP(φX ) PP(θX )
Time/

Iter

SV10

unigram 7.48 6.95 < 1s

fdc 6.52 6.47 < 1s

perm 6.50 6.45 < 1s

SV25

unigram 16.4 12.8 0.1s

fdc 12.3 11.8 0.1s

perm 12.2 11.7 0.1s

SV50

unigram 29.1 19.7 2s

fdc 19.6 17.8 4s

perm 19.5 17.7 5s

SV100

unigram 45.4 27.8 7s

fdc 29.5 25.3 11s

perm 30.0 25.6 11s

SV250

unigram 91.8 51.2 5m

fdc 60.0 47.3 8m

perm 65.4 49.7 8m

SV500

unigram 149.1 87.2 3h

fdc 104.8 80.1 3h

perm 123.9 87.4 3h

SumTime

unigram 129.7 81.8 4h

fdc 103.2 77.7 4h

perm 187.9 85.4 3h

Table 3: Mean test set perplexities of prior LMs and bi-

gram LMs recovered after 2 EM iterations.

in terms of how they assign probabilities to word

pairs. One naturally expects probabilities for fre-

quently occurring bigrams to increase, while rare

or nonsensical bigrams’ probabilities should de-

crease. For a prior-bigram pair (φ, θ), we evaluate

the change in probabilities by computing the ratio

ρhw = P (w|h,θ)

P (w|h,φ)
= θhw

φhw
. For a given history h, we

sort words w by this ratio rather than by actual bi-

gram probability because the bigrams with the high-

est and lowest probabilities tend to stay the same,

while the changes accounting for differences in PP

scores are more noticeable by considering the ratio.

Due to space limitation, we present one specific

result (FDC prior, fold 1) for the SV500 corpus in

Table 5. Other results are similar. The table lists

a few most frequent unigrams as history words h
(left), and the words w with the smallest (center)

and largest (right) ρhw ratio. Overall we see that our

EM algorithm is forcing meaningless bigrams (e.g.,

“i goodness”, “oh thing”) to have lower probabil-

ities, while assigning higher probabilities to sensi-

ble bigram pairs (e.g., “really good”, “that’s funny”).

Note that the reverse of some common expressions

(e.g., “right that’s”) also rise in probability, suggest-

ing the algorithm detects that the two words are of-

Corpus
Absolute

Discount

Good-

Turing
Witten-

Bell
θ∗

SV10 6.27 6.28 6.27 6.45

SV25 10.5 10.6 10.5 11.7

SV50 14.8 14.9 14.8 17.7

SV100 20.0 20.1 20.0 25.3

SV250 33.7 33.7 33.8 47.3

SV500 50.9 50.9 51.3 80.1

SumTime 10.8 10.5 10.6 77.7

Table 4: Mean test set perplexities for oracle bigram LMs

trained on z1, . . . , zn and tested on zn+1, . . . , zm. For

reference, the rightmost column lists the best result using

a recovered bigram LM (θperm for the first three corpora,

θfdc for the latter four).

ten adjacent, but lacks sufficient information to nail

down the exact order.

4.4 Document Recovery from BOW

We now play the role of the malicious party men-

tioned in the introduction. We show that, com-

pared to their corresponding prior LMs, our recov-

ered bigram LMs are better able to reconstruct or-

dered documents out of test BOWs xn+1, . . . ,xm.

We perform document recovery using 1-best A∗ de-

coding. We use “document accuracy” and “n-gram

accuracy” (for n = 2, 3) as our evaluation criteria.

We define document accuracy (Accdoc) as the frac-

tion of documents4 for which the decoded document

matches the true ordered document exactly. Simi-

larly, n-gram accuracy (Accn) measures the fraction

of all n-grams in test documents (with n or more

words) that are recovered correctly.

For this evaluation, we compare models built for

the SV500 corpus. Table 6 presents 5-fold cross val-

idation average test-set accuracies. For each accu-

racy measure, we compare the prior LM with the

recovered bigram LM. It is interesting to note that

the FDC and Perm priors reconstruct documents sur-

prisingly well, but we can always improve them by

running our EM algorithm. The accuracies obtained

by θ are statistically significantly better (via two-

tailed paired t-tests with p < 0.05) than their cor-

responding priors φ in all cases except Accdoc for

θperm versus φperm. Furthermore, θfdc and θperm

are significantly better than all other models in terms

of all three reconstruction accuracy measures.

4We omit single-word documents from these computations.
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h w (smallest ρhw) w (largest ρhw)

i yep, bye-bye, ah, goodness, ahead mean, guess, think, bet, agree

you let’s, us, fact, such, deal thank, bet, know, can, do

right as, lot, going, years, were that’s, all, right, now, you’re

oh thing, here, could, were, doing boy, really, absolutely, gosh, great

that’s talking, home, haven’t, than, care funny, wonderful, true, interesting, amazing

really now, more, yep, work, you’re sad, neat, not, good, it’s

Table 5: The recovered bigram LM θfdc decreases nonsense bigram probabilities (center column) and increases

sensible ones (right column) compared to the prior φfdc on the SV500 corpus.

φperm reconstructions of test BOWs θperm reconstructions of test BOWs

just it’s it’s it’s just going it’s just it’s just it’s going

it’s probably out there else something it’s probably something else out there

the the have but it doesn’t but it doesn’t have the the

you to talking nice was it yes yes it was nice talking to you

that’s well that’s what i’m saying well that’s that’s what i’m saying

a little more here home take a little more take home here

and they can very be nice too and they can be very nice too

i think well that’s great i’m well i think that’s great i’m

but was he because only always but only because he was always

that’s think i don’t i no no i don’t i think that’s

that in and it it’s interesting and it it’s interesting that in

that’s right that’s right that’s difficult right that’s that’s right that’s difficult

so just not quite a year so just not a quite year

well it is a big dog well it is big a dog

so do you have a car so you do have a car

Table 7: Subset of SV500 documents that only φperm or θperm (but not both) reconstructs correctly. The correct

reconstructions are in bold.

Accdoc Acc2 Acc3

X φX θX φX θX φX θX

unigram 11.1 26.8 17.7 32.8 2.7 11.8

fdc 30.2 31.0 33.0 35.1 11.4 13.3

perm 30.9 31.5 32.7 34.8 11.5 13.1

Table 6: Percentage of correctly reconstructed docu-

ments, 2-grams and 3-grams from test BOWs in SV500,

5-fold cross validation. The same trends continue for 4-

grams and 5-grams (not shown).

We conclude our experiments with a closer look

at some BOWs for which φ and θ reconstruct dif-

ferently. As a representative example, we compare

θperm to φperm on one test set of the SV500 cor-

pus. There are 92 documents that are correctly re-

constructed by θperm but not by φperm. In con-

trast, only 65 documents are accurately reordered by

φperm but not by θperm. Table 7 presents a subset

of these documents with six or more words. Over-

all, we conclude that the recovered bigram LMs do

a better job at reconstructing BOW documents.

5 Conclusions and Future Work

We presented an algorithm that learns bigram lan-

guage models from BOWs. We plan to: i) inves-

tigate ways to speed up our algorithm; ii) extend

it to trigram and higher-order models; iii) handle

the mixture of BOW documents and some ordered

documents (or phrases) when available; iv) adapt a

general English LM to a special domain using only

BOWs from that domain; and v) explore novel ap-

plications of our algorithm.
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