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Abstract

We present a simple and effective semi-
supervised method for training dependency
parsers. We focus on the problem of lex-
ical representation, introducing features that
incorporate word clusters derived from a large
unannotated corpus. We demonstrate the ef-
fectiveness of the approach in a series of de-
pendency parsing experiments on the Penn
Treebank and Prague Dependency Treebank,
and we show that the cluster-based features
yield substantial gains in performance across
a wide range of conditions. For example, in
the case of English unlabeled second-order
parsing, we improve from a baseline accu-
racy of 92.02% to 93.16%, and in the case
of Czech unlabeled second-order parsing, we
improve from a baseline accuracy of 86.13%
to 87.13%. In addition, we demonstrate that
our method also improves performance when
small amounts of training data are available,
and can roughly halve the amount of super-
vised data required to reach a desired level of
performance.

1 Introduction

In natural language parsing, lexical information is
seen as crucial to resolving ambiguous relationships,
yet lexicalized statistics are sparse and difficult to es-
timate directly. It is therefore attractive to consider
intermediate entities which exist at a coarser level
than the words themselves, yet capture the informa-
tion necessary to resolve the relevant ambiguities.

In this paper, we introduce lexical intermediaries
via a simple two-stage semi-supervised approach.
First, we use a large unannotated corpus to define
word clusters, and then we use that clustering to
construct a new cluster-based feature mapping for
a discriminative learner. We are thus relying on the
ability of discriminative learning methods to identify

and exploit informative features while remaining ag-
nostic as to the origin of such features. To demon-
strate the effectiveness of our approach, we conduct
experiments in dependency parsing, which has been
the focus of much recent research—e.g., see work
in the CoNLL shared tasks on dependency parsing
(Buchholz and Marsi, 2006; Nivre et al., 2007).

The idea of combining word clusters with dis-
criminative learning has been previously explored
by Miller et al. (2004), in the context of named-
entity recognition, and their work directly inspired
our research. However, our target task of depen-
dency parsing involves more complex structured re-
lationships than named-entity tagging; moreover, it
is not at all clear that word clusters should have any
relevance to syntactic structure. Nevertheless, our
experiments demonstrate that word clusters can be
quite effective in dependency parsing applications.

In general, semi-supervised learning can be mo-
tivated by two concerns: first, given a fixed amount
of supervised data, we might wish to leverage ad-
ditional unlabeled data to facilitate the utilization of
the supervised corpus, increasing the performance of
the model in absolute terms. Second, given a fixed
target performance level, we might wish to use un-
labeled data to reduce the amount of annotated data
necessary to reach this target.

We show that our semi-supervised approach
yields improvements for fixed datasets by perform-
ing parsing experiments on the Penn Treebank (Mar-
cus et al., 1993) and Prague Dependency Treebank
(Hajič, 1998; Hajič et al., 2001) (see Sections 4.1
and 4.3). By conducting experiments on datasets of
varying sizes, we demonstrate that for fixed levels of
performance, the cluster-based approach can reduce
the need for supervised data by roughly half, which
is a substantial savings in data-annotation costs (see
Sections 4.2 and 4.4).

The remainder of this paper is divided as follows:
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Ms. Haag plays Elianti .*

obj
proot

nmod sbj

Figure 1: An example of a labeled dependency tree. The
tree contains a special token “*” which is always the root
of the tree. Each arc is directed from head to modifier and
has a label describing the function of the attachment.

Section 2 gives background on dependency parsing
and clustering, Section 3 describes the cluster-based
features, Section 4 presents our experimental results,
Section 5 discusses related work, and Section 6 con-
cludes with ideas for future research.

2 Background
2.1 Dependency parsing
Recent work (Buchholz and Marsi, 2006; Nivre
et al., 2007) has focused on dependency parsing.
Dependency syntax represents syntactic informa-
tion as a network of head-modifier dependency arcs,
typically restricted to be a directed tree (see Fig-
ure 1 for an example). Dependency parsing depends
critically on predicting head-modifier relationships,
which can be difficult due to the statistical sparsity
of these word-to-word interactions. Bilexical depen-
dencies are thus ideal candidates for the application
of coarse word proxies such as word clusters.

In this paper, we take a part-factored structured
classification approach to dependency parsing. For a
given sentence x, let Y(x) denote the set of possible
dependency structures spanning x, where each y ∈
Y(x) decomposes into a set of “parts” r ∈ y. In the
simplest case, these parts are the dependency arcs
themselves, yielding a first-order or “edge-factored”
dependency parsing model. In higher-order parsing
models, the parts can consist of interactions between
more than two words. For example, the parser of
McDonald and Pereira (2006) defines parts for sib-
ling interactions, such as the trio “plays”, “Elianti”,
and “.” in Figure 1. The Carreras (2007) parser
has parts for both sibling interactions and grandpar-
ent interactions, such as the trio “*”, “plays”, and
“Haag” in Figure 1. These kinds of higher-order
factorizations allow dependency parsers to obtain a
limited form of context-sensitivity.

Given a factorization of dependency structures
into parts, we restate dependency parsing as the fol-
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Figure 2: An example of a Brown word-cluster hierarchy.
Each node in the tree is labeled with a bit-string indicat-
ing the path from the root node to that node, where 0
indicates a left branch and 1 indicates a right branch.

lowing maximization:

PARSE(x; w) = argmax
y∈Y(x)

∑
r∈y

w · f(x, r)

Above, we have assumed that each part is scored
by a linear model with parameters w and feature-
mapping f(·). For many different part factoriza-
tions and structure domains Y(·), it is possible to
solve the above maximization efficiently, and several
recent efforts have concentrated on designing new
maximization algorithms with increased context-
sensitivity (Eisner, 2000; McDonald et al., 2005b;
McDonald and Pereira, 2006; Carreras, 2007).

2.2 Brown clustering algorithm
In order to provide word clusters for our exper-
iments, we used the Brown clustering algorithm
(Brown et al., 1992). We chose to work with the
Brown algorithm due to its simplicity and prior suc-
cess in other NLP applications (Miller et al., 2004;
Liang, 2005). However, we expect that our approach
can function with other clustering algorithms (as in,
e.g., Li and McCallum (2005)). We briefly describe
the Brown algorithm below.

The input to the algorithm is a vocabulary of
words to be clustered and a corpus of text containing
these words. Initially, each word in the vocabulary
is considered to be in its own distinct cluster. The al-
gorithm then repeatedly merges the pair of clusters
which causes the smallest decrease in the likelihood
of the text corpus, according to a class-based bigram
language model defined on the word clusters. By
tracing the pairwise merge operations, one obtains
a hierarchical clustering of the words, which can be
represented as a binary tree as in Figure 2.

Within this tree, each word is uniquely identified
by its path from the root, and this path can be com-
pactly represented with a bit string, as in Figure 2.
In order to obtain a clustering of the words, we se-
lect all nodes at a certain depth from the root of the
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hierarchy. For example, in Figure 2 we might select
the four nodes at depth 2 from the root, yielding the
clusters {apple,pear}, {Apple,IBM}, {bought,run},
and {of,in}. Note that the same clustering can be ob-
tained by truncating each word’s bit-string to a 2-bit
prefix. By using prefixes of various lengths, we can
produce clusterings of different granularities (Miller
et al., 2004).

For all of the experiments in this paper, we used
the Liang (2005) implementation of the Brown algo-
rithm to obtain the necessary word clusters.

3 Feature design

Key to the success of our approach is the use of fea-
tures which allow word-cluster-based information to
assist the parser. The feature sets we used are simi-
lar to other feature sets in the literature (McDonald
et al., 2005a; Carreras, 2007), so we will not attempt
to give a exhaustive description of the features in
this section. Rather, we describe our features at a
high level and concentrate on our methodology and
motivations. In our experiments, we employed two
different feature sets: a baseline feature set which
draws upon “normal” information sources such as
word forms and parts of speech, and a cluster-based
feature set that also uses information derived from
the Brown cluster hierarchy.

3.1 Baseline features

Our first-order baseline feature set is similar to the
feature set of McDonald et al. (2005a), and consists
of indicator functions for combinations of words and
parts of speech for the head and modifier of each
dependency, as well as certain contextual tokens.1

Our second-order baseline features are the same as
those of Carreras (2007) and include indicators for
triples of part of speech tags for sibling interactions
and grandparent interactions, as well as additional
bigram features based on pairs of words involved
these higher-order interactions. Examples of base-
line features are provided in Table 1.

1We augment the McDonald et al. (2005a) feature set with
backed-off versions of the “Surrounding Word POS Features”
that include only one neighboring POS tag. We also add binned
distance features which indicate whether the number of tokens
between the head and modifier of a dependency is greater than
2, 5, 10, 20, 30, or 40 tokens.

Baseline Cluster-based
ht,mt hc4,mc4
hw,mw hc6,mc6
hw,ht,mt hc*,mc*
hw,ht,mw hc4,mt
ht,mw,mt ht,mc4
hw,mw,mt hc6,mt
hw,ht,mw,mt ht,mc6
· · · hc4,mw

hw,mc4
· · ·

ht,mt,st hc4,mc4,sc4
ht,mt,gt hc6,mc6,sc6
· · · ht,mc4,sc4

hc4,mc4,gc4
· · ·

Table 1: Examples of baseline and cluster-based feature
templates. Each entry represents a class of indicators for
tuples of information. For example, “ht,mt” represents
a class of indicator features with one feature for each pos-
sible combination of head POS-tag and modifier POS-
tag. Abbreviations: ht = head POS, hw = head word,
hc4 = 4-bit prefix of head, hc6 = 6-bit prefix of head,
hc* = full bit string of head; mt,mw,mc4,mc6,mc* =
likewise for modifier; st,gt,sc4,gc4,. . . = likewise
for sibling and grandchild.

3.2 Cluster-based features
The first- and second-order cluster-based feature sets
are supersets of the baseline feature sets: they in-
clude all of the baseline feature templates, and add
an additional layer of features that incorporate word
clusters. Following Miller et al. (2004), we use pre-
fixes of the Brown cluster hierarchy to produce clus-
terings of varying granularity. We found that it was
nontrivial to select the proper prefix lengths for the
dependency parsing task; in particular, the prefix
lengths used in the Miller et al. (2004) work (be-
tween 12 and 20 bits) performed poorly in depen-
dency parsing.2 After experimenting with many dif-
ferent feature configurations, we eventually settled
on a simple but effective methodology.

First, we found that it was helpful to employ two
different types of word clusters:

1. Short bit-string prefixes (e.g., 4–6 bits), which
we used as replacements for parts of speech.

2One possible explanation is that the kinds of distinctions
required in a named-entity recognition task (e.g., “Alice” versus
“Intel”) are much finer-grained than the kinds of distinctions
relevant to syntax (e.g., “apple” versus “eat”).
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2. Full bit strings,3 which we used as substitutes
for word forms.

Using these two types of clusters, we generated new
features by mimicking the template structure of the
original baseline features. For example, the baseline
feature set includes indicators for word-to-word and
tag-to-tag interactions between the head and mod-
ifier of a dependency. In the cluster-based feature
set, we correspondingly introduce new indicators for
interactions between pairs of short bit-string pre-
fixes and pairs of full bit strings. Some examples
of cluster-based features are given in Table 1.

Second, we found it useful to concentrate on
“hybrid” features involving, e.g., one bit-string and
one part of speech. In our initial attempts, we fo-
cused on features that used cluster information ex-
clusively. While these cluster-only features provided
some benefit, we found that adding hybrid features
resulted in even greater improvements. One possible
explanation is that the clusterings generated by the
Brown algorithm can be noisy or only weakly rele-
vant to syntax; thus, the clusters are best exploited
when “anchored” to words or parts of speech.

Finally, we found it useful to impose a form of
vocabulary restriction on the cluster-based features.
Specifically, for any feature that is predicated on a
word form, we eliminate this feature if the word
in question is not one of the top-N most frequent
words in the corpus. When N is between roughly
100 and 1,000, there is little effect on the perfor-
mance of the cluster-based feature sets.4 In addition,
the vocabulary restriction reduces the size of the fea-
ture sets to managable proportions.

4 Experiments

In order to evaluate the effectiveness of the cluster-
based feature sets, we conducted dependency pars-
ing experiments in English and Czech. We test the
features in a wide range of parsing configurations,
including first-order and second-order parsers, and
labeled and unlabeled parsers.5

3As in Brown et al. (1992), we limit the clustering algorithm
so that it recovers at most 1,000 distinct bit-strings; thus full bit
strings are not equivalent to word forms.

4We used N = 800 for all experiments in this paper.
5In an “unlabeled” parser, we simply ignore dependency la-

bel information, which is a common simplification.

The English experiments were performed on the
Penn Treebank (Marcus et al., 1993), using a stan-
dard set of head-selection rules (Yamada and Mat-
sumoto, 2003) to convert the phrase structure syn-
tax of the Treebank to a dependency tree represen-
tation.6 We split the Treebank into a training set
(Sections 2–21), a development set (Section 22), and
several test sets (Sections 0,7 1, 23, and 24). The
data partition and head rules were chosen to match
previous work (Yamada and Matsumoto, 2003; Mc-
Donald et al., 2005a; McDonald and Pereira, 2006).
The part of speech tags for the development and test
data were automatically assigned by MXPOST (Rat-
naparkhi, 1996), where the tagger was trained on
the entire training corpus; to generate part of speech
tags for the training data, we used 10-way jackknif-
ing.8 English word clusters were derived from the
BLLIP corpus (Charniak et al., 2000), which con-
tains roughly 43 million words of Wall Street Jour-
nal text.9

The Czech experiments were performed on the
Prague Dependency Treebank 1.0 (Hajič, 1998;
Hajič et al., 2001), which is directly annotated
with dependency structures. To facilitate compar-
isons with previous work (McDonald et al., 2005b;
McDonald and Pereira, 2006), we used the train-
ing/development/test partition defined in the corpus
and we also used the automatically-assigned part of
speech tags provided in the corpus.10 Czech word
clusters were derived from the raw text section of
the PDT 1.0, which contains about 39 million words
of newswire text.11

We trained the parsers using the averaged percep-
tron (Freund and Schapire, 1999; Collins, 2002),
which represents a balance between strong perfor-
mance and fast training times. To select the number

6We used Joakim Nivre’s “Penn2Malt” conversion tool
(http://w3.msi.vxu.se/ nivre/research/Penn2Malt.html). Depen-
dency labels were obtained via the “Malt” hard-coded setting.

7For computational reasons, we removed a single 249-word
sentence from Section 0.

8That is, we tagged each fold with the tagger trained on the
other 9 folds.

9We ensured that the sentences of the Penn Treebank were
excluded from the text used for the clustering.

10Following Collins et al. (1999), we used a coarsened ver-
sion of the Czech part of speech tags; this choice also matches
the conditions of previous work (McDonald et al., 2005b; Mc-
Donald and Pereira, 2006).

11This text was disjoint from the training and test corpora.
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Sec dep1 dep1c MD1 dep2 dep2c MD2 dep1-L dep1c-L dep2-L dep2c-L
00 90.48 91.57 (+1.09) — 91.76 92.77 (+1.01) — 90.29 91.03 (+0.74) 91.33 92.09 (+0.76)
01 91.31 92.43 (+1.12) — 92.46 93.34 (+0.88) — 90.84 91.73 (+0.89) 91.94 92.65 (+0.71)
23 90.84 92.23 (+1.39) 90.9 92.02 93.16 (+1.14) 91.5 90.32 91.24 (+0.92) 91.38 92.14 (+0.76)
24 89.67 91.30 (+1.63) — 90.92 91.85 (+0.93) — 89.55 90.06 (+0.51) 90.42 91.18 (+0.76)

Table 2: Parent-prediction accuracies on Sections 0, 1, 23, and 24. Abbreviations: dep1/dep1c = first-order parser with
baseline/cluster-based features; dep2/dep2c = second-order parser with baseline/cluster-based features; MD1 = Mc-
Donald et al. (2005a); MD2 = McDonald and Pereira (2006); suffix -L = labeled parser. Unlabeled parsers are scored
using unlabeled parent predictions, and labeled parsers are scored using labeled parent predictions. Improvements of
cluster-based features over baseline features are shown in parentheses.

of iterations of perceptron training, we performed up
to 30 iterations and chose the iteration which opti-
mized accuracy on the development set. Our feature
mappings are quite high-dimensional, so we elimi-
nated all features which occur only once in the train-
ing data. The resulting models still had very high
dimensionality, ranging from tens of millions to as
many as a billion features.12

All results presented in this section are given
in terms of parent-prediction accuracy, which mea-
sures the percentage of tokens that are attached to
the correct head token. For labeled dependency
structures, both the head token and dependency label
must be correctly predicted. In addition, in English
parsing we ignore the parent-predictions of punc-
tuation tokens,13 and in Czech parsing we retain
the punctuation tokens; this matches previous work
(Yamada and Matsumoto, 2003; McDonald et al.,
2005a; McDonald and Pereira, 2006).

4.1 English main results

In our English experiments, we tested eight differ-
ent parsing configurations, representing all possi-
ble choices between baseline or cluster-based fea-
ture sets, first-order (Eisner, 2000) or second-order
(Carreras, 2007) factorizations, and labeled or unla-
beled parsing.

Table 2 compiles our final test results and also
includes two results from previous work by Mc-
Donald et al. (2005a) and McDonald and Pereira
(2006), for the purposes of comparison. We note
a few small differences between our parsers and the

12Due to the sparsity of the perceptron updates, however,
only a small fraction of the possible features were active in our
trained models.

13A punctuation token is any token whose gold-standard part
of speech tag is one of {‘‘ ’’ : , .}.

parsers evaluated in this previous work. First, the
MD1 and MD2 parsers were trained via the MIRA
algorithm (Crammer and Singer, 2003; Crammer et
al., 2004), while we use the averaged perceptron. In
addition, the MD2 model uses only sibling interac-
tions, whereas the dep2/dep2c parsers include both
sibling and grandparent interactions.

There are some clear trends in the results of Ta-
ble 2. First, performance increases with the order of
the parser: edge-factored models (dep1 and MD1)
have the lowest performance, adding sibling rela-
tionships (MD2) increases performance, and adding
grandparent relationships (dep2) yields even better
accuracies. Similar observations regarding the ef-
fect of model order have also been made by Carreras
(2007).

Second, note that the parsers using cluster-based
feature sets consistently outperform the models us-
ing the baseline features, regardless of model order
or label usage. Some of these improvements can be
quite large; for example, a first-order model using
cluster-based features generally performs as well as
a second-order model using baseline features. More-
over, the benefits of cluster-based feature sets com-
bine additively with the gains of increasing model
order. For example, consider the unlabeled parsers
in Table 2: on Section 23, increasing the model or-
der from dep1 to dep2 results in a relative reduction
in error of roughly 13%, while introducing cluster-
based features from dep2 to dep2c yields an addi-
tional relative error reduction of roughly 14%. As a
final note, all 16 comparisons between cluster-based
features and baseline features shown in Table 2 are
statistically significant.14

14We used the sign test at the sentence level. The comparison
between dep1-L and dep1c-L is significant at p < 0.05, and all
other comparisons are significant at p < 0.0005.
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Tagger always trained on full Treebank Tagger trained on reduced dataset
Size dep1 dep1c ∆ dep2 dep2c ∆
1k 84.54 85.90 1.36 86.29 87.47 1.18
2k 86.20 87.65 1.45 87.67 88.88 1.21
4k 87.79 89.15 1.36 89.22 90.46 1.24
8k 88.92 90.22 1.30 90.62 91.55 0.93
16k 90.00 91.27 1.27 91.27 92.39 1.12
32k 90.74 92.18 1.44 92.05 93.36 1.31
All 90.89 92.33 1.44 92.42 93.30 0.88

Size dep1 dep1c ∆ dep2 dep2c ∆
1k 80.49 84.06 3.57 81.95 85.33 3.38
2k 83.47 86.04 2.57 85.02 87.54 2.52
4k 86.53 88.39 1.86 87.88 89.67 1.79
8k 88.25 89.94 1.69 89.71 91.37 1.66
16k 89.66 91.03 1.37 91.14 92.22 1.08
32k 90.78 92.12 1.34 92.09 93.21 1.12
All 90.89 92.33 1.44 92.42 93.30 0.88

Table 3: Parent-prediction accuracies of unlabeled English parsers on Section 22. Abbreviations: Size = #sentences in
training corpus; ∆ = difference between cluster-based and baseline features; other abbreviations are as in Table 2.

4.2 English learning curves
We performed additional experiments to evaluate the
effect of the cluster-based features as the amount
of training data is varied. Note that the depen-
dency parsers we use require the input to be tagged
with parts of speech; thus the quality of the part-of-
speech tagger can have a strong effect on the per-
formance of the parser. In these experiments, we
consider two possible scenarios:

1. The tagger has a large training corpus, while
the parser has a smaller training corpus. This
scenario can arise when tagged data is cheaper
to obtain than syntactically-annotated data.

2. The same amount of labeled data is available
for training both tagger and parser.

Table 3 displays the accuracy of first- and second-
order models when trained on smaller portions of
the Treebank, in both scenarios described above.
Note that the cluster-based features obtain consistent
gains regardless of the size of the training set. When
the tagger is trained on the reduced-size datasets,
the gains of cluster-based features are more pro-
nounced, but substantial improvements are obtained
even when the tagger is accurate.

It is interesting to consider the amount by which
cluster-based features reduce the need for supervised
data, given a desired level of accuracy. Based on
Table 3, we can extrapolate that cluster-based fea-
tures reduce the need for supervised data by roughly
a factor of 2. For example, the performance of the
dep1c and dep2c models trained on 1k sentences is
roughly the same as the performance of the dep1
and dep2 models, respectively, trained on 2k sen-
tences. This approximate data-halving effect can be

observed throughout the results in Table 3.
When combining the effects of model order and

cluster-based features, the reductions in the amount
of supervised data required are even larger. For ex-
ample, in scenario 1 the dep2c model trained on 1k
sentences is close in performance to the dep1 model
trained on 4k sentences, and the dep2c model trained
on 4k sentences is close to the dep1 model trained on
the entire training set (roughly 40k sentences).

4.3 Czech main results

In our Czech experiments, we considered only unla-
beled parsing,15 leaving four different parsing con-
figurations: baseline or cluster-based features and
first-order or second-order parsing. Note that our
feature sets were originally tuned for English pars-
ing, and except for the use of Czech clusters, we
made no attempt to retune our features for Czech.

Czech dependency structures may contain non-
projective edges, so we employ a maximum directed
spanning tree algorithm (Chu and Liu, 1965; Ed-
monds, 1967; McDonald et al., 2005b) as our first-
order parser for Czech. For the second-order pars-
ing experiments, we used the Carreras (2007) parser.
Since this parser only considers projective depen-
dency structures, we “projectivized” the PDT 1.0
training set by finding, for each sentence, the pro-
jective tree which retains the most correct dependen-
cies; our second-order parsers were then trained with
respect to these projective trees. The development
and test sets were not projectivized, so our second-
order parser is guaranteed to make errors in test sen-
tences containing non-projective dependencies. To
overcome this, McDonald and Pereira (2006) use a

15We leave labeled parsing experiments to future work.

600



dep1 dep1c dep2 dep2c
84.49 86.07 (+1.58) 86.13 87.13 (+1.00)

Table 4: Parent-prediction accuracies of unlabeled Czech
parsers on the PDT 1.0 test set, for baseline features and
cluster-based features. Abbreviations are as in Table 2.

Parser Accuracy
Nivre and Nilsson (2005) 80.1
McDonald et al. (2005b) 84.4
Hall and Novák (2005) 85.1
McDonald and Pereira (2006) 85.2
dep1c 86.07
dep2c 87.13

Table 5: Unlabeled parent-prediction accuracies of Czech
parsers on the PDT 1.0 test set, for our models and for
previous work.

Size dep1 dep1c ∆ dep2 dep2c ∆
1k 72.79 73.66 0.87 74.35 74.63 0.28
2k 74.92 76.23 1.31 76.63 77.60 0.97
4k 76.87 78.14 1.27 78.34 79.34 1.00
8k 78.17 79.83 1.66 79.82 80.98 1.16
16k 80.60 82.44 1.84 82.53 83.69 1.16
32k 82.85 84.65 1.80 84.66 85.81 1.15
64k 84.20 85.98 1.78 86.01 87.11 1.10
All 84.36 86.09 1.73 86.09 87.26 1.17

Table 6: Parent-prediction accuracies of unlabeled Czech
parsers on the PDT 1.0 development set. Abbreviations
are as in Table 3.

two-stage approximate decoding process in which
the output of their second-order parser is “deprojec-
tivized” via greedy search. For simplicity, we did
not implement a deprojectivization stage on top of
our second-order parser, but we conjecture that such
techniques may yield some additional performance
gains; we leave this to future work.

Table 4 gives accuracy results on the PDT 1.0
test set for our unlabeled parsers. As in the En-
glish experiments, there are clear trends in the re-
sults: parsers using cluster-based features outper-
form parsers using baseline features, and second-
order parsers outperform first-order parsers. Both of
the comparisons between cluster-based and baseline
features in Table 4 are statistically significant.16 Ta-
ble 5 compares accuracy results on the PDT 1.0 test
set for our parsers and several other recent papers.

16We used the sign test at the sentence level; both compar-
isons are significant at p < 0.0005.

N dep1 dep1c dep2 dep2c
100 89.19 92.25 90.61 93.14
200 90.03 92.26 91.35 93.18
400 90.31 92.32 91.72 93.20
800 90.62 92.33 91.89 93.30
1600 90.87 — 92.20 —
All 90.89 — 92.42 —

Table 7: Parent-prediction accuracies of unlabeled En-
glish parsers on Section 22. Abbreviations: N = thresh-
old value; other abbreviations are as in Table 2. We
did not train cluster-based parsers using threshold values
larger than 800 due to computational limitations.

dep1-P dep1c-P dep1 dep2-P dep2c-P dep2
77.19 90.69 90.89 86.73 91.84 92.42

Table 8: Parent-prediction accuracies of unlabeled En-
glish parsers on Section 22. Abbreviations: suffix -P =
model without POS; other abbreviations are as in Table 2.

4.4 Czech learning curves

As in our English experiments, we performed addi-
tional experiments on reduced sections of the PDT;
the results are shown in Table 6. For simplicity, we
did not retrain a tagger for each reduced dataset,
so we always use the (automatically-assigned) part
of speech tags provided in the corpus. Note that
the cluster-based features obtain improvements at all
training set sizes, with data-reduction factors simi-
lar to those observed in English. For example, the
dep1c model trained on 4k sentences is roughly as
good as the dep1 model trained on 8k sentences.

4.5 Additional results

Here, we present two additional results which fur-
ther explore the behavior of the cluster-based fea-
ture sets. In Table 7, we show the development-set
performance of second-order parsers as the thresh-
old for lexical feature elimination (see Section 3.2)
is varied. Note that the performance of cluster-based
features is fairly insensitive to the threshold value,
whereas the performance of baseline features clearly
degrades as the vocabulary size is reduced.

In Table 8, we show the development-set perfor-
mance of the first- and second-order parsers when
features containing part-of-speech-based informa-
tion are eliminated. Note that the performance ob-
tained by using clusters without parts of speech is
close to the performance of the baseline features.

601



5 Related Work

As mentioned earlier, our approach was inspired by
the success of Miller et al. (2004), who demon-
strated the effectiveness of using word clusters as
features in a discriminative learning approach. Our
research, however, applies this technique to depen-
dency parsing rather than named-entity recognition.

In this paper, we have focused on developing new
representations for lexical information. Previous re-
search in this area includes several models which in-
corporate hidden variables (Matsuzaki et al., 2005;
Koo and Collins, 2005; Petrov et al., 2006; Titov
and Henderson, 2007). These approaches have the
advantage that the model is able to learn different
usages for the hidden variables, depending on the
target problem at hand. Crucially, however, these
methods do not exploit unlabeled data when learn-
ing their representations.

Wang et al. (2005) used distributional similarity
scores to smooth a generative probability model for
dependency parsing and obtained improvements in
a Chinese parsing task. Our approach is similar to
theirs in that the Brown algorithm produces clusters
based on distributional similarity, and the cluster-
based features can be viewed as being a kind of
“backed-off” version of the baseline features. How-
ever, our work is focused on discriminative learning
as opposed to generative models.

Semi-supervised phrase structure parsing has
been previously explored by McClosky et al. (2006),
who applied a reranked parser to a large unsuper-
vised corpus in order to obtain additional train-
ing data for the parser; this self-training appraoch
was shown to be quite effective in practice. How-
ever, their approach depends on the usage of a
high-quality parse reranker, whereas the method de-
scribed here simply augments the features of an ex-
isting parser. Note that our two approaches are com-
patible in that we could also design a reranker and
apply self-training techniques on top of the cluster-
based features.

6 Conclusions

In this paper, we have presented a simple but effec-
tive semi-supervised learning approach and demon-
strated that it achieves substantial improvement over
a competitive baseline in two broad-coverage depen-

dency parsing tasks. Despite this success, there are
several ways in which our approach might be im-
proved.

To begin, recall that the Brown clustering algo-
rithm is based on a bigram language model. Intu-
itively, there is a “mismatch” between the kind of
lexical information that is captured by the Brown
clusters and the kind of lexical information that is
modeled in dependency parsing. A natural avenue
for further research would be the development of
clustering algorithms that reflect the syntactic be-
havior of words; e.g., an algorithm that attempts to
maximize the likelihood of a treebank, according to
a probabilistic dependency model. Alternately, one
could design clustering algorithms that cluster entire
head-modifier arcs rather than individual words.

Another idea would be to integrate the cluster-
ing algorithm into the training algorithm in a limited
fashion. For example, after training an initial parser,
one could parse a large amount of unlabeled text and
use those parses to improve the quality of the clus-
ters. These improved clusters can then be used to
retrain an improved parser, resulting in an overall
algorithm similar to that of McClosky et al. (2006).

Setting aside the development of new clustering
algorithms, a final area for future work is the exten-
sion of our method to new domains, such as con-
versational text or other languages, and new NLP
problems, such as machine translation.
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J. Hajič. 1998. Building a Syntactically Annotated
Corpus: The Prague Dependency Treebank. In
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