Forest Reranking: Discriminative Parsing with Non-L ocal Features

Liang Huang
University of Pennsylvania
Philadelphia, PA 19104
| huang3@i s. upenn. edu

Abstract local non-local
conventional reranking only at the root
DP-based discrim. parsingexact N/A

this work forest-reranking exact on-the-fly

Conventionaln-best reranking techniques of-
ten suffer from the limited scope of the-
best list, which rules out many potentially

good alternatives. We instead propdeeest Table 1: Comparison of various approaches for in-

reranking a method that reranks a packed for- corporating local and non-local features.
est of exponentially many parses. Since ex-

act inference is intractable with non-local fea-
tures, we present an approximate algorithmin- sentence length. As a result, we often see very few
spired by forest rescoring that makes discrim- variations among the-best trees, for example, 50-

inative training practical over the whole Tree- best trees typically just represent a combination of 5
bank. Our final result, an F-score of 91.7, out- to 6 binary ambiguities (sinc® < 50 < 29).
performs both 50-best and 100-best reranking Alternatively, discriminative parsing is tractable

baselines, and is better than any previously re-

) with exact and efficient search based on dynamic
ported systems trained on the Treebank.

programming (DP) if all features are restricted to be

local, that is, only looking at a local window within

1 Introduction the factored search space (Taskar et al., 2004; Mc-
aPonald et al., 2005). However, we miss the benefits

Discriminative reranking has become a popul
technique for many NLP problems, in particularOf non-local features that are not representable here.

parsing (Collins, 2000) and machine translation deally, we would wish to combine the merits of
(Shen et al., 2005). Typically, this method first genboth approaches, where an efficient inference algo-
erates a list of top: candidates from a baseline sysfithm could integrate both local and non-local fea-
tem, and then reranks thisbest list with arbitrary tures. Unfortunately, exact search is intractable (at
features that are not computable or intractable #§ast in theory) for features with unbounded scope.
compute within the baseline system. But despite it§0 We proposéorest rerankinga technique inspired
apparent success, there remains a major drawba®l: forest rescoring (Huang and Chiang, 2007) that
this method suffers from the limited scope of the approximately reranks the packed forest of expo-
best list, which rules out many potentially good alnentially many parses. The key idea is to compute
ternatives. For example 41% of the correct parsé¥n-local features incrementally from bottom up, so
were not in the candidates e§30-best parses in that we can rerank the-best subtrees at all internal
(Collins, 2000). This situation becomes worse witfodes, instead of only at the root node as in conven-
longer sentences because the number of possible fignal reranking (see Table 1). This method can thus
terpretations usually grows exponentially with the®® viewed as a step towards the integration of dis-
T+ Part of this work was done while | was visiting Institute criminative reranking with traditional chart parsing.
of Computing Technology, Beijing, and | thank Prof. Qun Liu Although previous work on discriminative pars-
and his lab for host_ing me. I am also grateful tq Dan Gildea anqqg has mainly focused on short sentencgsl(s
Mark Johnson for inspirations, Eugene Charniak for help with ords) (Taskar et al., 2004: Turian and Melamed,

his parser, and Wenbin Jiang for guidance on perceptron avel
aging. This project was supported by NSF ITR EIA-0205456. 2007), our work scales to the whole Treebank, where

586

Proceedings of ACL-08: HLT, pages 586—594,
Columbus, Ohio, USA, June 2008. (©)2008 Association for Computational Linguistics

head(e) € V is the consequent node in the deduc-
tive step, andails(e) € V* is the list of antecedent
nodes. For example, the hyperedge for deduction (*)
is notated:

e1 = ((VBD12, NP3, PRg), VPig)

NP3 PP We also denote/N (v) to be the set ofncom-

ing hyperedges of nodewv, which represent the dif-
Figure 1: A partial forest of the example sentencesgrent ways of deriving. For example, in the for-
est in Figure 1,IN (VP) is {e1, ez}, with eg =
we achieved an F-score of 91.7, which is a 19% ef{VBD1 2, NPys), VP;¢). We call|e| thearity of
ror reduction from the 1-best baseline, and outpehyperedges, which counts the number of tail nodes
forms both 50-best and 100-best reranking. This réa e. The arity of a hypergraph is the maximum ar-
sult is also better than any previously reported systy over all hyperedges. A CKY forest has an arity

tems trained on the Treebank. of 2, since the input grammar is required to be bi-
nary branching (cf. Chomsky Normal Form) to en-
2 Packed Forestsas Hypergraphs sure cubic time parsing complexity. However, in this

Informally, a packed parse forest, farestin short, vv_ork, we use forests from a Tr_eebank parser (Char-
is a compact representation of all the derivation8i2k, 2000) whose grammar is often flat in many
(i.e., parse trees) for a given sentence under rgoductlops. For example, the arity of the for_est in
context-free grammar (Billot and Lang, 1989). Fof i9ure 1 is 3. Such a Treebank-style forest is eas-

example, consider the following sentence ier to work with for reranking, since many features
can be directly expressed in it. There is also a distin-
o I, saw, him , with , a; mirror ; guishedroot node TOP in each forest, denoting the

gc_)al item in parsing, which is simply,owhere S is

where the numbers between words denote string p .
art symbol antlis the sentence length.

sitions. Shown in Figure 1, this sentence has (é?e st
least) two derivations depgnding_on thg attachme@t Forest Reranking
of the prep. phrase BR “with a mirror”: it can ei-

ther be attached to the verb “saw”, 3.1 Generic Reranking with the Perceptron
VBD;> NPy3 PRg We first establish a unified framework for parse
VP, ¢ ’ *) reranking with both-best lists and packed forests.

For a given sentence a generic reranker selects
or be attached to “him”, which will be further com- the best parsg among the set of candidatesnd(s)
bined with the verb to form the same VP as aboveaccording to some scoring function:

These two derivations can be represented as a sin-

gle forest by sharing common sub-derivations. Such § = argmax score(y) 1)

a forest has a structure of a hypergraph (Klein and y€cand(s)

Manning, 2001; Huang and Chiang, 2005), wherg, ,,_pest reranking,cand(s) is simply a set of

items like PB¢ are callednodes and deductive ,,_pest parses from the baseline parser, that is,

steps like (*) correspond toyperedges cand(s) = {y1,92,-..,yn}. Whereas in forest
More formally, aforest is a pair(V, £), whereV' reranking,cand(s) is a forest implicitly represent-

is the set ohodes, andE the set ohyperedges. For jng the set of exponentially many parses.

a given sentence,,; = w; ... w;, éach node € V As usual, we define the score of a pagsto be

is in the form of X; ;, which denotes the recogni- the dot product between a high dimensional feature
tion of nonterminalX' spanning the substring from representation and a weight vector

positionsi throughy (that is,w;11 ... w;). Each hy-
peredges € E is a pair(tails(e), head(e)), where score(y) = w - £(y) (2)

587

where the feature extractéris a vector ofd func- Pseudocode 1 Perceptron for Generic Reranking

tionsf = (fi,..., fs), and each featur¢; maps 1: Input: Training exampleg cand(s;), y; }iL, >y} isthe
a parsey to a real numberf;(y). Following (Char- oracle tree fos; amongcand(s:) o
. . 22w—0 > initial weights
niak and Johnson, 2005), the first featufi€¢y) = 3 fort— 1. . Tdo b T iterations
log Pr(y) is the log probability of a parse from the 4: fori«—1...Ndo
baseline generative parser, while the remaining fea® g = argmax,c ona(s;) W - ()
if § # ;" then

tures are all integer valued, and each of them count$ N X
, . . T w—w+f(y") —£(9)

the number of times that a particular conflguratlons_ Feturn w

occurs in parse,. For example, one such feature

f2000 Might be a question

In n-best reranking, since all parses are explicitly
enumerated, it is trivial to compute the oracle tfee.
However, it remains widely open how to identify the
which is an instance of thé/or dEdges feature (see forest oracle We will present a dynamic program-
Figure 2(c) and Section 3.2 for details). ming algorithm for this problem in Sec. 4.1.

Using a machine learning algorithm, the weight \ye also use a refinement called “averaged param-
vectorw can be estimated from the training datgyers” where the final weight vector is the average of
where each sentence is labelled with its cor- \yeight vectors after each sentence in each iteration
rect ("gold-standard”) parsey;’. As for the learner, qyer the training data. This averaging effect has been

Collins (2000) uses the boosting algorithm andnown to reduce overfitting and produce much more
Charniak and Johnson (2005) use the maximum eB8gaple results (Collins, 2002).

tropy estimator. In this work we use the averaged
perceptron algorithm (Collins, 2002) since it is ar3.2 Factorizing Local and Non-L ocal Features

online algorithm much'simpler and orders of magnin key difference between-best and forest rerank-
tude faster than Boosting and MaxEnt methods. g is the handling of features. t-best reranking,
_Shown in Pseudocode 1, the perceptron algey) features are treated equivalently by the decoder,
_rlthm makes _several passes over the whole traigghich simply computes the value of each one on
ing data, and in each iteration, for each sentence each candidate parse. However, for forest reranking,
it tries to predict a best pargg among the candi- gince the trees are not explicitly enumerated, many
datescand(s;) using the current weight setting. In- foatres can not be directly computed. So we first
tuitively, we want the gold parsg' to be picked, but |assify features into local and non-local, which the
in general itimotguaranteed to be withieund(s:), gecoder will process in very different fashions.
because the grammar may fail to cover the gold \yu gefine a featurg to belocal if and only if
parse, and because the gold parse may be prungdan, pe factored among the local productions in a
away due to the IlmlteoJIrscope ofind(s;). SO We ree andnon-local if otherwise. For example, the
define anoracle parse y;” to be the candidate that g e feature in Fig. 2(a) is local, while thearen-

has the highest Parseval F-score with respect to thg e feature in Fig. 2(b) is non-local. It is worth

“how many times is &P of length 5 surrounded
by the wordhas’ and the period? ”

.1
gold treey;: noting that some features which seem complicated
yj £ argmax F(y,y}) (3) at the first sight are indeed local. For example, the
yEcand(s;) WordEdges feature in Fig. 2(c), which classifies

where function returns the F-score. Now we train@ node by its label, span length, and surrounding
the reranker to pick the oracle parses as often as pd¥ords, is still local since all these information are
sible, and in case an error is made (line 6), perforrﬂncoded either in the node itself or in the input sen-
an update on the weight vector (line 7), by addindence. In contrast, it would become non-local if we
the difference between two feature representationgeplace the surrounding words by surrounding POS

!If one uses the golg; for oracley;", the perceptron will 2In case multiple candidates get the same highest F-score,
continue to make updates towards something unreachable ewga choose the parse with the highest log probability from the
when the decoder has picked the best possible candidate. baseline parser to be the oracle parse (Collins, 2000).

588

VP S VP VP

VBD NP

VBD NP PP VP VBZ NP . | o~
T~ | | saw DT
VBD NP PP has |~ 5 words—| !
the
(@) Rule(local) (b)ParentRule (non-local) (c)WordEdges (local) (d)NGramTree (non-local)
(VP — VBD NP PP) (VP — VBD NP PP| S) (NP5 has) (VP (VBD saw) (NP (DT the))

Figure 2: lllustration of some example features. Shaded nodes denataation included in the feature.

tags, which are generated dynamically. Ak
More formally, we split the feature extractbr= —
(f1,..., fa) into f = (f1; fx) wheref; andfy are B, Cjk
the local and non-local features, respectively. For the
former, we extend their domains from parses to hy- wi. . Wimy Wy .. W

peredges, wherg(e) returns the value of alocal fea-
ture f € f;, on hyperedge, and its value on a parge Figure 3: Example of the unKlGramTree feature
factors across the hyperedges (local productions), at node A: (A(B ... w;_1) (C...w;)).

fr(y) = Y frle) (4)

ecy unit NGramTree instance is for the paifw;_1, w;)
on the boundary between the two subtrees, whose
and we can pre-compufg(e) for eache in a forest. smallest common ancestor is the current node. Other
Non-local features, however, can not be pregnit NGramTreeinstances within this span have al-
computed, but we still prefer to compute the® ready been computed in the subtrees, except those
early as possiblewhich we call “on-the-fly” com- for the boundary words of the whole node; and

putation, so that our decoder can be sensitive to theg), _,, which will be computed when this node is fur-
atinternal nodes. For instance, tN&ramTreefea- ther combined with other nodes in the future.

ture in Fig. 2 (d) returns the minimum tree fragement

spanning a bigram, in this case “saw” and “the”, an@.3 Approximate Decoding via Cube Pruning

should thus be computed at thimallest common an-) i) .
cestorof the two, which is the VP node in this ex- Before moving on to approximate decoding with

ample. Similarly, theParentRule feature in Fig. 2 non-local features, we first describe the algorithm

(b) can be computed when the S subtree is formefpr €xact decoding when only local feqtures are
In doing so, we essentially factor non-local featureBresent, where many concepts and notations will be
acrosssubtreeswhere for each subtrag in a parse €-used later. We wil us®(v) to denote the top
y, we define aunit feature]S(y/) to be the part of der!vat!ons of nodev, where Dl(y) Lf, its 1-best
f(y) that are computable withip/, but not com- derivation. We also use the notatién j) to denote

putable in any (proper) subtree gf Then we have: the derivation along hyperedgeusing thej;th sub-
derivation for tailu;, so (e, 1) is the best deriva-

_ & tion alonge. The exact decoding algorithm, shown
fy(y) Z fn(y') (5) in Pseudocode 2, is an instance of the bottom-up
Viterbi algorithm, which traverses the hypergraph in

Intuitively, we compute the unit non-local fea-a topological order, and at each nodecalculates
tures at each subtree from bottom-up. For examplés 1-best derivation using each incoming hyperedge
for the binary-branching node ;A in Fig. 3, the e € IN(v). The cost ofe, c(e), is the score of its

y'ey

589

Pseudocode 2 Exact Decoding with Local Features derivations along a hyperedgeo form a new sub-
1: function VITERBI((V, E)) treey’ = (e, j), we also compute its unit non-local
2: for v € V in topological orderlo feature valuegy ((e,j)) (line 25). A priority queue

2_ for i(i)lﬁ(sv) .dfoL(e) + 3 crats(e) (D1 (ui) (heap in Pseudocode 3) is used to hold the candi-
5: if c(e) > ¢(D1(v)) then b better derivation? dates for the next-best derivation, which is initial-
6: Di(v) < (e, 1) ized to the set of best derivations along each hyper-
! (D1 v) = cle) edge (lines 7 to 9). Then at each iteration, we pop
8 return D, (TOP) ’

the best derivation (lines 12), and push its succes-
_ sors back into the priority queue (line 14). Analo-
Pseudocode 3 Cube Pruning for Non-local Featuresgoys to the language model cost in forest rescoring,

1: function CuBe((V, E)) the unit feature cost here is a non-monotonic score in
2 for v € V in topological ordedo . . .

3 KBEST(v) the dynamic programming backbone, and the deriva-
4 return D, (TOP) tions may thus be extractedit-of-order So a buffer

5: procedure KBEST(v) buf is used to hold extracted derivations, which is
?I]floeap ;IE/)V (b)ﬂé‘o<— 0 sorted at the end (line 15) to form the list of t&p-

I e v

8 c({e,1)) — EVAL(e,1) o extract unit features derlvgtlons_D(v) of nodev. The complexity of this

9 appende, 1) to heap algorithm isO(FE + VklogkN') (Huang and Chi-

10: HIETPIFY(hTap) o] dl> prioritized frontier ang, 2005), wher@ () is the time for on-the-fly

11: while |heap| > 0 and|buf| < k do ; ;

1 item — POP-MAX (heap) b extract next-best feature extractl_on for (_each subtree, which becomes
13: appendtem to buf the bottleneck in practice.

14: PusHSucc(item, heap)

15 sortbuf to D(v) 4 Supporting Forest Algorithms

16: procedure PusHSuUcc((e, j), heap)

170 eisv — ui...up 4.1 Forest Oracle

18: foriinl...|e|do . .
19: j—j+b >b'is 1 only on theith dim. Recall that the Parseval F-score is the harmonic
20: if [D(u;)| > ji then > enough sub-derivations? mean of labelled precisioR and labelled recalR:
21: c({e,j’)) <« EvaL(e, i) > unit features
22: PusH((e, j'), heap) *
23: function EVAL (e, j) F(y,y*) 2 2PR = 2ly Ny (6)
24: €ISV — Uy ... U P+R ‘y|+|y*‘

25: returnw - fr(e) + w - fx((e,§)) + X3, e(Dy, (us))

where|y| and|y*| are the numbers of brackets in the
test parse and gold parse, respectively, gnd 3|
(pre-computed) local featuras - £, (¢). This algo- is the number of matched brackets. Since the har-

rithm has a time complexity ab(E), and is almost monic mean is a non-linear combination, we can not

identical to traditional chart parsing, except that th@Ptimize the F-scores on sub-forests independently
forest might be more than binary-branching. with a greedy algorithm. In other words, the optimal
For non-local features, we adapt cube IoruninF-score tree in a forest it guaranteed to be com-

from forest rescoring (Chiang, 2007; Huang anﬁosed-of two optimal F-score suptrees.)

Chiang, 2007), since the situation here is analogouswe mster?\d propose a dynamic programming al-
to machine translation decoding with integrated Iarﬁonthm which ppt|m|zes the number of matched
guage models: we can view the scores of unit no yrackets for a given number of test brackets. For ex-

local features as the language model cost, computgaqple’ our algorithm will ask questions like,

on-the-fly when combining sub-constituents. “when a test parse has 5 brackets, what is the
bottom-up on the forest, keeping a beam of at nhost

derivations at each node, and uses tHeest pars- More formally, at each node, we compute aiora-
ing Algorithm 2 of Huang and Chiang (2005) tocle functionora[v] : N — N, which maps an integer
speed up the computation. When combining the sub+o ora[v](t), the max. number of matched brackets

590

Pseudocode 4 Forest Oracle Algorithm Shown in Pseudocode 4, we perform these com-
1: function ORACLE((V, E), ") putations in a bottom-up topological order, and fi-
2. forv € V'in topological ordedo nally at the root node TOP, we can compute the best

2_ f°r2§fi(iflﬂfmulel global F-score by maximizing over different num-
5: oralv] «— orafv] & (®;orafus]) bers of test brackets (line 7). The oracle tggecan

6 orafv] < orafv] ft (1, Luey~) be recursively restored by keeping backpointers for
7. return F(yt,y®) = max, 299080 poraclek eachora[v](t), which we omit in the pseudocode.

The time complexity of this algorithm for a sen-
tence ofl words isO(|E| - 1*(®~1)) wherea is the
for all parseg, of nodev with exactlyt brackets: arity of the forest. For a CKY forest, this amounts
oralv](f) £ max |y Ny’ 7 © O(l‘?’ 12 = O(_l5), but for general forests like
Yo:|yo|=t those in our experiments the complexities are much
higher. In practice it takes on avera@®5 seconds
for forests pruned by = 10 (see Section 4.2), but
we can pre-compute and store the oracle for each
forest before training starts.

When nodev is combined with another node
along a hyperedge = ((v, u), w), we need to com-
bine the two oracle functionsra[v] and ora[u] by
distributing the test brackets af betweerv andu,
and optimize the number of matched bracktes. T95 Forest Pruning

do this we define aonvolution operato between
two functionsf andg: Our forest pruning algorithm (Jonathan Graehl, p.c.)

is very similar to the method based on marginal
(fog)) £ tfﬂg}gtf(h) +g(t2) (8) probability (Charniak and Johnson, 2005), except
that ours prunes hyperedges as well as nodes. Ba-
For instance: sically, we use an Inside-Outside algorithm to com-
pute the Viterbi inside cogi(v) and the Viterbi out-

; | f(lt) ® Z | gﬁf) — side costy(v) for each node, and then compute the
3 ‘ 2 5 ‘ 4 merit af(e) for each hyperedge:
The oracle function for the head nodseis then afB(e) = a(head(e)) + Z Bu;) (13)

oralw|(t) = (orav] ® oralu])(t — 1) + Luey (9) ui€tails(e)

wherel is the indicator function, returning 1 if node INtuitively, this merit is the cost of the best deriva-
w is found in the gold treg*, in which case we ton that traverses;, and the differencei(e) =
increment the number of matched brackets. We cat?(¢) — (TOP) can be seen as the distance away

also express Eq. 9 in a purely functional form from the globally best derivation. We prune away
all hyperedges that hav&e) > p for a thresh-

oralw] = (orafv] ® orafu]) I+ (1,1uey+) (10) old p. Nodes with all incoming hyperedges pruned
are also pruned. The key difference from (Charniak
and Johnson, 2005) is that in this algorithm, a node
can “partially” survive the beam, with a subset of its
(F A (a,b)(t) 2 F(t—a)+b (11) hyperedges pruned. In practice, this methqd prunes
on average 15% more hyperedges than their method.
Above we discussed the case of one hyperedge. If
there is another hyperedgé deriving nodew, we 5 EXxperiments

also need to combine the resulting oracle functions
from both hyperedges, for which we defin@aint- We compare the performance of our forest reranker
wise additionoperators: againstn-best reranking on the Penn English Tree-

bank (Marcus et al., 1993). The baseline parser is
(f®g)t) & max{f(t),q(t)} (12) the Charniak parser, which we modified to output a

where {} is a translation operatorwhich shifts a
function along the axes:

591

Iéocal instances| Non-Local instances § 99.0 =20]
ule 10,851 | ParentRule 18,019 N 1
Word 20,328 | WProj 27,417 990 ¢ - i --"'_'1‘6‘0
WordEdges | 454,101| Heads 70,013 S 950 L - n=50 n=100 1
ColL enPar 22 | HeadTree 67,836 o L _
Bigram® 10,292 | Heavy 1,401 = 93.0 | -
Trigram® 24,677 | NGramTree 67,559 5 r forest oracle —+— 1
HeadMod® | 12,047 | RightBranch 2 2 91.0 best oracle —--x-—-]
DistMod® 16,017 & g9 L Fl-best | yi-best oracie n
Total Feature Instances: 800, 582 0 500 1000 1500 2000

Table 2: Features used in this work. Those with a average # of hyperedges or brackets per sentence
are from (Collins, 2000), and others are from (Char-

niak and Johnson, 2005), with simplifications. Figure 4: Forests (shown with various pruning
thresholds) enjoy higher oracle scores and more

compact sizes tham-best lists (on sec 23).
packed forest for each senterice.

51 DataPreparation tures in the updated versiGriHowever, our initial

We use the standard split of the Treebank: sectiofXPeriments show that, even with this much simpler
02-21 as the training data (39832 sentences), ségature set, our 50-best reranker performed equally
tion 22 as the development set (1700 sentences), afi§!l as theirs (both with an F-score of 91.4, see Ta-
section 23 as the test set (2416 sentences). FolloRes 3 and 4). This result confirms that our feature
ing (Charniak and Johnson, 2005), the training set &t design is appropriate, and the averaged percep-
split into 20 folds, each containing about 1992 serifon learner is a reasonable candidate for reranking.
tences, and is parsed by the Charniak parser with aThe forests dumped from the Charniak parser are
model trained on sentences from the remaining 18Uge in size, so we use the forest pruning algorithm
folds. The development set and the test set are pardBdSection 4.2 to prune them down to a reasonable
with a model trained on all 39832 training sentence$ize. In the following experiments we use a thresh-

We implemented both-best and forest reranking 0ld of p = 10, which results in forests with an av-
systems in Python and ran our experiments on a 6&fage number of 123.1 hyperedges per forest. Then
bit Dual-Core Intel Xeon with 3.0GHz CPUs. ourfor each forest, we annotate its forest oracle, and
feature set is summarized in Table 2, which closelgn €ach hyperedge, pre-compute its local featbires.
follows Charniak and Johnson (2005), except thaghown in Figure 4, these forests have an forest or-
we excluded the non-local featurEsges, NGram, acle of 97.8, which is 1.1% higher than the 50-best
and CoPar, and simplifiedRule and NGramTree oracle (96.7), and are 8 times smaller in size.
features, since they were too complicated to CONE» Resultsand Analysis

pute* We also added fouanlexicalizedlocal fea- bl h f ff k
iroe from Collins (2000) fo cope with data-sparsity-Ta e 3 compares the performance of forest rerank-

Following Charniak and Johnson (2005), we eXi_ng against standard-best reranking. For both sys-
’ s, we first use only the local features, and then

tracted the features from the 50-best parses on t he f Wi he devel q
training set (sec. 02-21), and used a cut-off of 5 t§ 'the features. We use the development set o deter-

prune away low-count features. There are 0.8M fednine the optimal number of iterations for averaged
tures in our final set, considerably fewer than tha?erceptron, and report the Score on the test set.

of Charniak and Johnson which has about 1.3M feé/-\/ith only local features, our forest reranker achieves
- ' an F-score of 91.25, and with the addition of non-

3This is a relatively minor change to the Charniak parser.
since it implements Algorithm 3 of Huang and Chiang (2005) Shttp://www.cog.brown.eda/mj/software.htm. We follow
for efficient enumeration afi-best parses, which requires stor-this version as it corrects some bugs from their 2005 paper
ing the forest. The modified parser and related scripts for hanvhich leads to a 0.4% increase in performance (see Table 4).
dling forests (e.g. oracles) will be available on my homepage. ®A subset of local features, e \§lor dEdges, is independent

“In fact, ourRule andParentRule features are two special of which hyperedge the node takes in a derivation, and can thus
cases of the originaRule feature in (Charniak and Johnson, be annotated on nodes rather than hyperedges. We call these
2005). We also restricteldGramTreeto be on bigrams only. featuresnode-loca) which also include part diVord features.

592

] baseline: 1-best Charniak parser | 89.72] type | system F%
n-best reranking Collins (2000) 89.7
features | n | pre-comp. | training | F1% Henderson (2004) 90.1

local 50 | 1.7G/16h| 3 x 0.1h| 91.28 D Charniak and Johnson (2005)91.0
all 50 | 24G /19| 4 x 0.3h | 91.43 updatedJohnson, 2006) 91.4
all 100 | 5.3G/44h| 4 x 0.7h | 91.49 thiswork 91.7

forest reranking (» = 10) G Bod (2003) 90.7
features | k | pre-comp. | training | F1% Petrov and Klein (2007) 90.1

local - 3x 0.8h| 91.25 S | McClosky et al. (2006) 92.1

all 15 1.2G/2.9n 4 x 6.1h | 91.69

Table 4. Comparison of our final results with other
Table 3: Forest reranking comparedtdest rerank- best-performing systems on the whole Section 23.
ing on sec. 23. Thpre-comp. column is for feature Types D, G, and S denote discriminative, generative,
extraction, andraining column shows the number and semi-supervised approaches, respectively.

of perceptron iterations that achieved best results on

the dev set, and average time per iteration. McClosky et al. (2006) achieved an even higher ac-

cuarcy (92.1) by leveraging on much larger unla-
Relled data. Moreover, their technique is orthogonal
to ours, and we suspect that replacing theiest

reranker by our forest reranker might get an even

local features, the accuracy rises to 91.69 (with bea
sizek = 15), which is a 0.26% absolute improve-

ment over 50-best rerankir(g.
better performance. Plus, except foibest rerank-

This improvement might look relatively small, but. L .
it is much harder to make a similar progress withng: most discriminative methods require repeated

n-best reranking. For example, even if we doublgars_ing of the training s_et, which is generally im-
the size of then-best list to 100, the pen‘ormance'Orat'c‘leI (Petrov and Klein, 2008). Therefore, pre-

only goes up by 0.06% (Table 3). In fact, the 100Vious work often resorts to extremely short sen-

: . tences € 15 words) or only looked at local fea-
best oracle is only 0.5% higher than the 50-best on& .
y o res (Taskar et al., 2004; Henderson, 2004; Turian

(see Fig. 4). In addition, the feature extraction ste :
in 100-best reranking produces huge data files a pl_MeIamed,_ZOO?). In comparison, thanks to the
icient decoding, our work not only scaled to the

takes 44 hours in total, though this part can be para"f‘-h le Treebank. but al fully ted
lelized® On two CPUs, 100-best reranking takes pgvnole freebank, but aiso successiully Incorporate

hours, while our forest-reranker can also finish in zgon-local features, which showed an absolute im-
hours, with a much smaller disk space. Indeed thgrovement of 0.44% over that of local features alone.

demonstrates the severe redundancies as another @is- Conclusion

advantage oh—best_ lists, where many .subtrees ASve have presented a framework for reranking on
repeated across different parses, while the pack cked forests which compactly encodes many more

forest reducgs space dram_atically by sharing co andidates than-best lists. With efficient approx-
mon sub-derlvatlons. (see Fig. 4)' imate decoding, perceptron training on the whole
To put our results in perspective, we also COMmpargeehank becomes practical, which can be done in
them with other best-performing systems in Table 4, ¢ 5 day even with a Python implementation. Our
Our final result (91.7) is better than any previouslyin,| result outperforms both 50-best and 100-best
reported system trained on the Treebank, althoug@anking baselines, and is better than any previ-

— i _ ously reported systems trained on the Treebank. We
It is surprising that 50-best reranking with local features

achieves an even higher F-score of 91.28, and we suspect thi9§o devised a dynamic programming algorithm for

due to the aggressive updates and instability of the perceptrofgrest oracles, an interesting problem by itself. We
as we do observe the learning curves to be non-monotonic. Wsgjieve this general framework could also be applied
leave the use of more stable learning algorithms to future work. . . .

8The n-best feature extraction already usekative counts to other problems involving forests or lattices, such

(Johnson, 2006), which reduced file sizes by at least a factor @S sequence labeling and machine translation.

593

References Proceedings of the HLT-NAACNew York City,
N USA, June.
Sytlwe B]',”O:]anc:j I?ernzird_Langb_1989. The_Strucl'Ryan McDonald, Koby Crammer, and Fernando
ure of shared orests in ambiguous parsing. N pereira. 2005. Online large-margin training of

Proceedings of ACL '89ages 143-151. .
Rens Bod. 2003. An efficient implementation of a i%pl_endency parsers. Rroceedings of the 43rd

new DOP model. IProceedings of EACL . .
Eugene Charniak and Mark Johnson. 2005. Coarsgl-av Petrov and .Daf‘ Klein. 2.007' Improv_ed infer
.) . N ence for unlexicalized parsing. Proceedings of
to-fine-grainedn-best parsing and discriminative HLT-NAACL

Eureéigklgﬂgmgﬁce%ggs O]:Athg:;gfn?-:ntro Slav Petrov and Dan Klein. 2008. Discriminative
9 ' ' Py log-linear grammars with latent variables. Rro-

inspired parser. liProceedings of NAACL ceedings of NIPS 20

David Chiang. . 2007. ngrarchlc_al Phrase_Libin Shen, Anoop Sarkar, and Franz Josef Och.
based translation. Computational Linguistics

33(2):201-208. 2005. Discriminative reranking for machine

Michael Collins. 2000. Discriminative reranking translation. IrProce(_edmg_s of HLT’NAACL
. . Ben Taskar, Dan Klein, Michael Collins, Daphne
for natural language parsing. Proceedings of

ICML, pages 175-182. Koller, and Chris Manning. 2004. Max-margin

Michael Collins. 2002. Discriminative training parsing. InProceedings of EMNLP

methods for hidden markov models: Theory an&oseph. TL.‘”""F and |. Dan Melamed. 2007. Scalable
. . . discriminative learning for natural language pars-
experiments with perceptron algorithms. Rno-

ceedings of EMNLP ing and translation. IProceedings of NIPS 19

James Henderson. 2004. Discriminative training of
a neural network statistical parser.Rroceedings
of ACL

Liang Huang and David Chiang. 2005. Better
best Parsing. IProceedings of the Ninth Interna-
tional Workshop on Parsing Technologies (IWPT-
2005)

Liang Huang and David Chiang. 2007. Forest
rescoring: Fast decoding with integrated language
models. InProceedings of ACL

Mark Johnson. 2006. Features of statisti-
cal parsers. Talk given at thdoint Mi-
crosoft Research and Univ. of Washing-
ton Computational Linguistics Colloquium
http://www.cog.brown.edw/mj/papers/ms-
uwO6talk.pdf.

Dan Klein and Christopher D. Manning. 2001.
Parsing and Hypergraphs. Rroceedings of the
Seventh International Workshop on Parsing Tech-
nologies (IWPT-2001), 17-19 October 2001, Bei-
jing, China

Mitchell P. Marcus, Beatrice Santorini, and
Mary Ann Marcinkiewicz. 1993. Building a
large annotated corpus of English: the Penn Tree-
bank.Computational Linguistics19:313-330.

David McClosky, Eugene Charniak, and Mark John-
son. 2006. Effective self-training for parsing. In

594

