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Abstract

We present a novel semi-supervised training
algorithm for learning dependency parsers.
By combining a supervised large margin loss
with an unsupervised least squares loss, a dis-
criminative, convex, semi-supervised learning
algorithm can be obtained that is applicable
to large-scale problems. To demonstrate the
benefits of this approach, we apply the tech-
nique to learning dependency parsers from
combined labeled and unlabeled corpora. Us-
ing a stochastic gradient descent algorithm, a
parsing model can be efficiently learned from
semi-supervised data that significantly outper-
forms corresponding supervised methods.

1 Introduction

Supervised learning algorithms still represent the
state of the art approach for inferring dependency
parsers from data (McDonald et al., 2005a; McDon-
ald and Pereira, 2006; Wang et al., 2007). How-
ever, a key drawback of supervised training algo-
rithms is their dependence on labeled data, which
is usually very difficult to obtain. Perceiving the
limitation of supervised learning—in particular, the

heavy dependence on annotated corpora—many re-
searchers have investigatedsemi-supervisedlearn-
ing techniques that can take both labeled and unla-
beled training data as input. Following the common
theme of “more data is better data” we also use both
a limited labeled corpora and a plentiful unlabeled
data resource. Our goal is to obtain better perfor-
mance than a purely supervised approach without
unreasonable computational effort. Unfortunately,
although significant recent progress has been made
in the area of semi-supervised learning, the perfor-
mance of semi-supervised learning algorithms still
fall far short of expectations, particularly in chal-
lenging real-world tasks such as natural language
parsing or machine translation.

A large number of distinct approaches to semi-
supervised training algorithms have been investi-
gated in the literature (Bennett and Demiriz, 1998;
Zhu et al., 2003; Altun et al., 2005; Mann and
McCallum, 2007). Among the most prominent ap-
proaches are self-training, generative models, semi-
supervised support vector machines (S3VM), graph-
based algorithms and multi-view algorithms (Zhu,
2005).

Self-training is a commonly used technique
for semi-supervised learning that has been ap-
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plied to several natural language processing tasks
(Yarowsky, 1995; Charniak, 1997; Steedman et al.,
2003). The basic idea is to bootstrap a supervised
learning algorithm by alternating between inferring
the missing label information and retraining. Re-
cently, McClosky et al. (2006a) successfully applied
self-training to parsing by exploiting available un-
labeled data, and obtained remarkable results when
the same technique was applied to parser adaptation
(McClosky et al., 2006b). More recently, Haffari
and Sarkar (2007) have extended the work of Abney
(2004) and given a better mathematical understand-
ing of self-training algorithms. They also show con-
nections between these algorithms and other related
machine learning algorithms.

Another approach, generative probabilistic mod-
els, are a well-studied framework that can be ex-
tremely effective. However, generative models use
the EM algorithm for parameter estimation in the
presence of missing labels, which is notoriously
prone to getting stuck in poor local optima. More-
over, EM optimizes a marginal likelihood score that
is not discriminative. Consequently, most previous
work that has attempted semi-supervised or unsu-
pervised approaches to parsing have not produced
results beyond the state of the art supervised results
(Klein and Manning, 2002; Klein and Manning,
2004). Subsequently, alternative estimation strate-
gies for unsupervised learning have been proposed,
such asContrastive Estimation(CE) by Smith and
Eisner (2005). Contrastive Estimation is a general-
ization of EM, by defining a notion of learner guid-
ance. It makes use of a set of examples (itsneighbor-
hood) that are similar in some way to an observed
example, requiring the learner to move probability
mass to a given example, taking only from the ex-
ample’s neighborhood. Nevertheless, CE still suf-
fers from shortcomings, including local minima.

In recent years, SVMs have demonstrated state
of the art results in many supervised learning tasks.
As a result, many researchers have put effort on
developing algorithms for semi-supervised SVMs
(S3VMs) (Bennett and Demiriz, 1998; Altun et
al., 2005). However, the standard objective of an
S3VM is non-convex on the unlabeled data, thus
requiring sophisticated global optimization heuris-
tics to obtain reasonable solutions. A number of
researchers have proposed several efficient approx-

imation algorithms for S3VMs (Bennett and Demi-
riz, 1998; Chapelle and Zien, 2005; Xu and Schu-
urmans, 2005). For example, Chapelle and Zien
(2005) propose an algorithm that smoothes the ob-
jective with a Gaussian function, and then performs
a gradient descent search in the primal space to
achieve a local solution. An alternative approach is
proposed by Xu and Schuurmans (2005) who formu-
late a semi-definite programming (SDP) approach.
In particular, they present an algorithm for multi-
class unsupervised and semi-supervised SVM learn-
ing, which relaxes the original non-convex objective
into a close convex approximation, thereby allowing
a global solution to be obtained. However, the com-
putational cost of SDP is still quite expensive.

Instead of devising various techniques for cop-
ing with non-convex loss functions, we approach the
problem from a different perspective. We simply re-
place the non-convex loss on unlabeled data with an
alternative loss that is jointly convex with respect
to both the model parameters and (the encoding of)
the self-trained prediction targets. More specifically,
for the loss on the unlabeled data part, we substi-
tute the original unsupervised structured SVM loss
with a least squares loss, but keep constraints on
the inferred prediction targets, which avoids trivial-
ization. Although using a least squares loss func-
tion for classification appears misguided, there is
a precedent for just this approach in the early pat-
tern recognition literature (Duda et al., 2000). This
loss function has the advantage that the entire train-
ing objective on both the labeled and unlabeled data
now becomes convex, since it consists of a convex
structured large margin loss on labeled data and a
convex least squares loss on unlabeled data. As
we will demonstrate below, this approach admits an
efficient training procedure that can find a global
minimum, and, perhaps surprisingly, can systemat-
ically improve the accuracy of supervised training
approaches for learning dependency parsers.

Thus, in this paper, we focus onsemi-supervised
language learning, where we can make use of both
labeled and unlabeled data. In particular, we in-
vestigate a semi-supervised approach for structured
large margin training, where the objective is a com-
bination of two convex functions, the structured
large margin loss on labeled data and the least
squares loss on unlabeled data. We apply the result-
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Figure 1: A dependency tree

ing semi-supervised convex objective to dependency
parsing, and obtain significant improvement over
the corresponding supervised structured SVM. Note
that our approach is different from the self-training
technique proposed in (McClosky et al., 2006a),
although both methods belong to semi-supervised
training category.

In the remainder of this paper, we first review
the supervised structured large margin training tech-
nique. Then we introduce the standard semi-
supervised structured large margin objective, which
is non-convex and difficult to optimize. Next we
present a new semi-supervised training algorithm for
structured SVMs which is convex optimization. Fi-
nally, we apply this algorithm to dependency pars-
ing and show improved dependency parsing accu-
racy for both Chinese and English.

2 Dependency Parsing Model

Given a sentenceX = (x1, ..., xn) (xi denotes
each word in the sentence), we are interested in
computing a directed dependency tree,Y , overX.
As shown in Figure 1, in a dependency structure,
the basic units of a sentence are the syntactic re-
lationships (aka. head-child or governor-dependent
or regent-subordinate relations) between two indi-
vidual words, where the relationships are expressed
by drawing links connecting individual words (Man-
ning and Schutze, 1999). The direction of each link
points from a head word to a child word, and each
word has one and only one head, except for the head
of the sentence. Thus a dependency structure is ac-
tually a rooted, directed tree. We assume that a di-
rected dependency treeY consists of ordered pairs
(xi → xj) of words inX such that each word ap-
pears in at least one pair and each word has in-degree
at most one. Dependency trees are assumed to be
projective here, which means that if there is an arc
(xi → xj), thenxi is an ancestor of all the words

betweenxi andxj.1 Let Φ(X) denote the set of all
the directed, projective trees that span onX. The
parser’s goal is then to find the most preferred parse;
that is, a projective tree,Y ∈ Φ(X), that obtains
the highest “score”. In particular, one would assume
that the score of a complete spanning treeY for a
given sentence, whether probabilistically motivated
or not, can be decomposed as a sum of local scores
for each link (a word pair) (Eisner, 1996; Eisner and
Satta, 1999; McDonald et al., 2005a). Given this
assumption, the parsing problem reduces to find

Y ∗ = arg max
Y ∈Φ(X)

score(Y |X) (1)

= arg max
Y ∈Φ(X)

∑

(xi→xj)∈Y

score(xi → xj)

where thescore(xi → xj) can depend on any mea-
surable property ofxi andxj within the sentenceX.
This formulation is sufficiently general to capture
most dependency parsing models, including proba-
bilistic dependency models (Eisner, 1996; Wang et
al., 2005) as well as non-probabilistic models (Mc-
Donald et al., 2005a).

For standard scoring functions, particularly those
used in non-generative models, we further assume
that the score of each link in (1) can be decomposed
into a weighted linear combination of features

score(xi → xj) = θ · f(xi → xj) (2)

wheref(xi → xj) is a feature vector for the link
(xi → xj), andθ are the weight parameters to be
estimated during training.

3 Supervised Structured Large Margin
Training

Supervised structured large margin training ap-
proaches have been applied to parsing and produce
promising results (Taskar et al., 2004; McDonald et
al., 2005a; Wang et al., 2006). In particular, struc-
tured large margin training can be expressed as min-
imizing a regularized loss (Hastie et al., 2004), as
shown below:

1We assume all the dependency trees are projective in our
work (just as some other researchers do), although in the real
word, most languages are non-projective.
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min
θ

β

2
θ⊤θ + (3)

∑

i

max
Li,k

(∆(Li,k, Yi)− diff(θ, Yi, Li,k))

where Yi is the target tree for sentenceXi; Li,k

ranges over all possible alternativek trees inΦ(Xi);
diff(θ, Yi, Li,k) = score(θ, Yi) − score(θ, Li,k);
score(θ, Yi) =

∑

(xm→xn)∈Yi
θ · f(xm → xn), as

shown in Section 2; and∆(Li,k, Yi) is a measure of
distance between the two treesLi,k andYi. This is
an application of the structured large margin training
approach first proposed in (Taskar et al., 2003) and
(Tsochantaridis et al., 2004).

Using the techniques of Hastie et al. (2004) one
can show that minimizing the objective (3) is equiv-
alent to solving the quadratic program

min
θ,ξ

β

2
θ⊤θ + e

⊤ξ subject to

ξi,k ≥ ∆(Li,k, Yi)− diff(θ, Yi, Li,k)

ξi,k ≥ 0

for all i, Li,k ∈ Φ(Xi) (4)

wheree denotes the vector of all 1’s andξ represents
slack variables. This approach corresponds to the
training problem posed in (McDonald et al., 2005a)
and has yielded the best published results for En-
glish dependency parsing.

To compare with the new semi-supervised ap-
proach we will present in Section 5 below, we re-
implemented the supervised structured large margin
training approach in the experiments in Section 7.
More specifically, we solve the following quadratic
program, which is based on Equation (3)

min
θ

α

2
θ⊤θ +

∑

i

max
L

k
∑

m=1

k
∑

n=1

∆(Li,m,n, Yi,m,n)

− diff(θ, Yi,m,n, Li,m,n) (5)

wherediff(θ, Yi,m,n, Li,m,n) = score(θ, Yi,m,n) −
score(θ, Li,m,n) andk is the sentence length. We
represent a dependency tree as ak × k adjacency
matrix. In the adjacency matrix, the value ofYi,m,n

is 1 if the wordm is the head of the wordn, 0 oth-
erwise. Since both the distance function∆(Li, Yi)
and the score function decompose over links, solv-
ing (5) is equivalent to solve the original constrained
quadratic program shown in (4).

4 Semi-supervised Structured Large
Margin Objective

The objective of standard semi-supervised struc-
tured SVM is a combination of structured large mar-
gin losses on both labeled and unlabeled data. It has
the following form:

min
θ

α

2
θ⊤θ +

N
∑

i=1

structuredloss(θ,Xi, Yi)

+ min
Yj

U
∑

j=1

structuredloss(θ,Xj , Yj) (6)

where

structuredloss(θ,Xi, Yi)

= max
L

k
∑

m=1

k
∑

n=1

∆(Li,m,n, Yi,m,n) (7)

−diff(θ, Yi,m,n, Li,m,n)

N andU are the number of labeled and unlabeled
training sentences respectively, andYj ranges over
guessed targets on the unsupervised data.

In the second term of the above objective shown in
(6), bothθ andYj are variables. The resulting loss
function has a hat shape (usually called hat-loss),
which is non-convex. Therefore the objective as a
whole is non-convex, making the search for global
optimal difficult. Note that the root of the optimiza-
tion difficulty for S3VMs is the non-convex property
of the second term in the objective function. We will
propose a novel approach which can deal with this
problem. We introduce an efficient approximation—
least squares loss—for the structured large margin
loss on unlabeled data below.

5 Semi-supervised Convex Training for
Structured SVM

Although semi-supervised structured SVM learning
has been an active research area, semi-supervised
structured SVMs have not been used in many real
applications to date. The main reason is that most
available semi-supervised large margin learning ap-
proaches are non-convex or computationally expen-
sive (e.g. (Xu and Schuurmans, 2005)). These tech-
niques are difficult to implement and extremely hard
to scale up. We present a semi-supervised algorithm
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for structured large margin training, whose objective
is a combination of two convex terms: the super-
vised structured large margin loss on labeled data
and the cheap least squares loss on unlabeled data.
The combined objective is still convex, easy to opti-
mize and much cheaper to implement.

5.1 Least Squares Convex Objective

Before we introduce the new algorithm, we first in-
troduce a convex loss which we apply it to unlabeled
training data for the semi-supervised structured large
margin objective which we will introduce in Sec-
tion 5.2 below. More specifically, we use astruc-
tured least squares loss to approximate the struc-
tured large margin loss on unlabeled data. The cor-
responding objective is:

min
θ,Yj

α

2
θ⊤θ + (8)

λ

2

U
∑

j=1

k
∑

m=1

k
∑

n=1

(

θ⊤f(Xj,m → Xj,n)− Yj,m,n

)2

subject to constraints onY (explained below).
The idea behind this objective is that for each pos-

sible link(Xj,m → Xj,n), we intend to minimize the
difference between the link and the corresponding
estimated link based on the learned weight vector.
Since this is conducted on unlabeled data, we need
to estimate bothθ andYj to solve the optimization
problem. As mentioned in Section 3, a dependency
treeYj is represented as an adjacency matrix. Thus
we need to enforce some constraints in the adjacency
matrix to make sure that eachYj satisfies the depen-
dency tree constraints. These constraints are critical
because they prevent (8) from having a trivial solu-
tion in Y. More concretely, suppose we use rows to
denote heads and columns to denote children. Then
we have the following constraints on the adjacency
matrix:

• (1) All entries in Yj are between0 and 1
(convex relaxation of discrete directed edge in-
dicators);

• (2) The sum over all the entries on each col-
umn is equal to one (one-head rule);

• (3) All the entries on the diagonal are zeros
(no self-link rule);

• (4) Yj,m,n + Yj,n,m ≤ 1 (anti-symmetric
rule), which enforces directedness.

One final constraint that is sufficient to ensure that
a directed tree is obtained, is connectedness (i.e.
acyclicity), which can be enforced with an addi-
tional semidefinite constraint. Although convex, this
constraint is more expensive to enforce, therefore we
drop it in our experiments below. (However, adding
the semidefinite connectedness constraint appears to
be feasible on a sentence by sentence level.)

Critically, the objective (8) isjointly convex in
both the weightsθ and the edge indicator variables
Y. This means, for example, that there are no local
minima in (8)—any iterative improvement strategy,
if it converges at all, must converge to a global min-
imum.

5.2 Semi-supervised Convex Objective

By combining the convex structured SVM loss on
labeled data (shown in Equation (5)) and the con-
vex least squares loss on unlabeled data (shown in
Equation (8)), we obtain a semi-supervised struc-
tured large margin loss

min
θ,Yj

α

2
θ⊤θ +

N
∑

i=1

structuredloss(θ,Xi, Yi) +

U
∑

j=1

least squaresloss(θ,Xj , Yj) (9)

subject to constraints onY (explained above).
Since the summation of two convex functions is

also convex, so is (9). Replacing the two losses with
the terms shown in Equation (5) and Equation (8),
we obtain the final convex objective as follows:

min
θ,Yj

α

2N
θ⊤θ +

N
∑

i=1

max
L

k
∑

m=1

k
∑

n=1

∆(Li,m,n, Yi,m,n)−

diff(θ, Yi,m,n, Li,m,n) +
α

2U
θ⊤θ + (10)

λ

2

U
∑

j=1

k
∑

m=1

k
∑

n=1

(

θ⊤f(Xj,m → Xj,n)− Yj,m,n

)2

subject to constraints onY (explained above),
wherediff(θ, Yi,m,n, Li,m,n) = score(θ, Yi,m,n) −
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score(θ, Li,m,n), N andU are the number of labeled
and unlabeled training sentences respectively, as we
mentioned before. Note that in (10) we have split
the regularizer into two parts; one for the supervised
component of the objective, and the other for the
unsupervised component. Thus the semi-supervised
convex objective is regularized proportionally to the
number of labeled and unlabeled training sentences.

6 Efficient Optimization Strategy

To solve the convex optimization problem shown in
Equation (10), we used a gradient descent approach
which simply uses stochastic gradient steps. The
procedure is as follows.

• Step 0, initialize theYj variables of each
unlabeled sentence as a right-branching (left-
headed) chain model, i.e. the head of each word
is its left neighbor.

• Step 1, pass through all the labeled training sen-
tences one by one. The parametersθ are up-
dated based on each labeled sentence.

• Step 2, based on the learned parameter weights
from the labeled data, updateθ andYj on each
unlabeled sentence alternatively:

– treatYj as a constant, updateθ on each
unlabeled sentence by taking a local gra-
dient step;

– treatθ as a constant, updateYj by call-
ing the optimization software package
CPLEX to solve for an optimal local so-
lution.

• Repeat the procedure of step 1 and step 2 until
maximum iteration number has reached.

This procedure works efficiently on the task of
training a dependency parser. Althoughθ and
Yj are updated locally on each sentence, progress
in minimizing the total objective shown in Equa-
tion (10) is made in each iteration. In our experi-
ments, the objective usually converges within 30 it-
erations.

7 Experimental Results

Given a convex approach to semi-supervised struc-
tured large margin training, and an efficient training

algorithm for achieving a global optimum, we now
investigate its effectiveness for dependency parsing.
In particular, we investigate the accuracy of the re-
sults it produces. We applied the resulting algorithm
to learn dependency parsers for both English and
Chinese.

7.1 Experimental Design

Data Sets
Since we use a semi-supervised approach, both la-
beled and unlabeled training data are needed. For
experiment on English, we used the English Penn
Treebank (PTB) (Marcus et al., 1993) and the con-
stituency structures were converted to dependency
trees using the same rules as (Yamada and Mat-
sumoto, 2003). The standard training set of PTB
was spit into 2 parts: labeled training data—the
first 30k sentences in section 2-21, and unlabeled
training data—the remaining sentences in section
2-21. For Chinese, we experimented on the Penn
Chinese Treebank 4.0 (CTB4) (Palmeret al., 2004)
and we used the rules in (Bikel, 2004) for conver-
sion. We also divided the standard training set into
2 parts: sentences in section 400-931 and sentences
in section 1-270 are used as labeled and unlabeled
data respectively. For both English and Chinese,
we adopted the standard development and test sets
throughout the literature.

As listed in Table 1 with greater detail, we
experimented with sets of data with different sen-
tence length: PTB-10/CTB4-10, PTB-15/CTB4-15,
PTB-20/CTB4-20, CTB4-40 and CTB4, which
contain sentences with up to 10, 15, 20, 40 and all
words respectively.

Features
For simplicity, in current work, we only used two
sets of features—word-pair and tag-pair indicator
features, which are a subset of features used by
other researchers on dependency parsing (McDon-
ald et al., 2005a; Wang et al., 2007). Although
our algorithms can take arbitrary features, by only
using these simple features, we already obtained
very promising results on dependency parsing
using both the supervised and semi-supervised
approaches. Using the full set of features described
in (McDonald et al., 2005a; Wang et al., 2007) and
comparing the corresponding dependency parsing
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English

PTB-10
Training(l/ul) 3026/1016

Dev 163
Test 270

PTB-15
Training 7303/2370

Dev 421
Test 603

PTB-20
Training 12519/4003

Dev 725
Test 1034

Chinese

CTB4-10
Training(l/ul) 642/347

Dev 61
Test 40

CTB4-15
Training 1262/727

Dev 112
Test 83

CTB4-20
Training 2038/1150

Dev 163
Test 118

CTB4-40
Training 4400/2452

Dev 274
Test 240

CTB4
Training 5314/2977

Dev 300
Test 289

Table 1: Size of Experimental Data (# of sentences)

results with previous work remains a direction for
future work.

Dependency Parsing Algorithms
For simplicity of implementation, we use a stan-
dard CKY parser in the experiments, although
Eisner’s algorithm (Eisner, 1996) and the Spanning
Tree algorithm (McDonald et al., 2005b) are also
applicable.

7.2 Results

We evaluate parsing accuracy by comparing the di-
rected dependency links in the parser output against
the directed links in the treebank. The parameters
α andλ which appear in Equation (10) were tuned
on the development set. Note that, during training,
we only used the raw sentences of the unlabeled
data. As shown in Table 2 and Table 3, for each
data set, the semi-supervised approach achieves a
significant improvement over the supervised one in
dependency parsing accuracy on both Chinese and
English. These positive results are somewhat sur-
prising since a very simple loss function was used on

Training Test length Supervised Semi-sup
Train-10 ≤ 10 82.98 84.50

Train-15
≤ 10 84.80 86.93
≤ 15 76.96 80.79

Train-20
≤ 10 84.50 86.32
≤ 15 78.77 80.57
≤ 20 74.89 77.85

Train-40

≤ 10 84.19 85.71
≤ 15 78.03 81.21
≤ 20 76.25 77.79
≤ 40 68.17 70.90

Train-all

≤ 10 82.67 84.80
≤ 15 77.92 79.30
≤ 20 77.30 77.24
≤ 40 70.11 71.90
all 66.30 67.35

Table 2: Supervised and Semi-supervised Dependency
Parsing Accuracy on Chinese (%)

Training Test length Supervised Semi-sup
Train-10 ≤ 10 87.77 89.17

Train-15
≤ 10 88.06 89.31
≤ 15 81.10 83.37

Train-20
≤ 10 88.78 90.61
≤ 15 83.00 83.87
≤ 20 77.70 79.09

Table 3: Supervised and Semi-supervised Dependency
Parsing Accuracy on English (%)
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the unlabeled data. A key benefit of the approach is
that a straightforward training algorithm can be used
to obtain global solutions. Note that the results of
our model are not directly comparable with previous
parsing results shown in (McClosky et al., 2006a),
since the parsing accuracy is measured in terms of
dependency relations while their results aref -score
of the bracketings implied in the phrase structure.

8 Conclusion and Future Work

In this paper, we have presented a novel algorithm
for semi-supervised structured large margin training.
Unlike previous proposed approaches, we introduce
a convex objective for the semi-supervised learning
algorithm by combining a convex structured SVM
loss and a convex least square loss. This new semi-
supervised algorithm is much more computationally
efficient and can easily scale up. We have proved our
hypothesis by applying the algorithm to the signifi-
cant task of dependency parsing. The experimental
results show that the proposed semi-supervised large
margin training algorithm outperforms the super-
vised one, without much additional computational
cost.

There remain many directions for future work.
One obvious direction is to use the whole Penn Tree-
bank as labeled data and use some other unannotated
data source as unlabeled data for semi-supervised
training. Next, as we mentioned before, a much
richer feature set can be used in our model to get
better dependency parsing results. Another direc-
tion is to apply the semi-supervised algorithm to
other natural language problems, such as machine
translation, topic segmentation and chunking. In
these areas, there are only limited annotated data
available. Therefore semi-supervised approaches
are necessary to achieve better performance. The
proposed semi-supervised convex training approach
can be easily applied to these tasks.
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