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Abstract

We improve the quality of statistical machine
translation (SMT) by applying models that
predict word forms from their stems using
extensive morphological and syntactic infor-
mation from both the source and target lan-
guages. Our inflection generation models are
trained independently of the SMT system. We
investigate different ways of combining the in-
flection prediction component with the SMT
system by training the base MT system on
fully inflected forms or on word stems. We
applied our inflection generation models in
translating English into two morphologically
complex languages, Russian and Arabic, and
show that our model improves the quality of
SMT over both phrasal and syntax-based SMT
systems according to BLEU and human judge-
ments.

1 Introduction

One of the outstanding problems for further improv-
ing machine translation (MT) systems is the diffi-
culty of dividing the MT problem into sub-problems
and tackling each sub-problem in isolation to im-
prove the overall quality of MT. Evidence for this
difficulty is the fact that there has been very little
work investigating the use of such independent sub-
components, though we started to see some success-
ful cases in the literature, for example in word align-
ment (Fraser and Marcu, 2007), target language cap-
italization (Wang et al., 2006) and case marker gen-
eration (Toutanova and Suzuki, 2007).

This paper describes a successful attempt to in-
tegrate a subcomponent for generating word inflec-
tions into a statistical machine translation (SMT)
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system. Our research is built on previous work in
the area of using morpho-syntactic information for
improving SMT. Work in this area is motivated by
two advantages offered by morphological analysis:
(1) it provides linguistically motivated clustering of
words and makes the data less sparse; (2) it cap-
tures morphological constraints applicable on the
target side, such as agreement phenomena. This sec-
ond problem is very difficult to address with word-
based translation systems, when the relevant mor-
phological information in the target language is ei-
ther non-existent or implicitly encoded in the source
language. These two aspects of morphological pro-
cessing have often been addressed separately: for
example, morphological pre-processing of the input
data is a common method of addressing the first as-
pect, e.g. (Goldwater and McClosky, 2005), while
the application of a target language model has al-
most solely been responsible for addressing the sec-
ond aspect. Minkov et al. (2007) introduced a way
to address these problems by using a rich feature-
based model, but did not apply the model to MT.

In this paper, we integrate a model that predicts
target word inflection in the translations of English
into two morphologically complex languages (Rus-
sian and Arabic) and show improvements in the MT
output. We study several alternative methods for in-
tegration and show that it is best to propagate un-
certainty among the different components as shown
by other research, e.g. (Finkel et al., 2006), and in
some cases, to factor the translation problem so that
the baseline MT system can take advantage of the
reduction in sparsity by being able to work on word
stems. We also demonstrate that our independently
trained models are portable, showing that they can
improve both syntactic and phrasal SMT systems.
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2 Related work

There has been active research on incorporating
morphological knowledge in SMT. Several ap-
proaches use pre-processing schemes, including
segmentation of clitics (Lee, 2004; Habash and Sa-
dat, 2006), compound splitting (NieBen and Ney,
2004) and stemming (Goldwater and McClosky,
2005). Of these, the segmentation approach is dif-
ficult to apply when the target language is morpho-
logically rich as the segmented morphemes must be
put together in the output (El-Kahlout and Oflazer,
2006); and in fact, most work using pre-processing
focused on translation into English. In recent
work, Koehn and Hoang (2007) proposed a general
framework for including morphological features in
a phrase-based SMT system by factoring the repre-
sentation of words into a vector of morphological
features and allowing a phrase-based MT system to
work on any of the factored representations, which
is implemented in the Moses system. Though our
motivation is similar to that of Koehn and Hoang
(2007), we chose to build an independent compo-
nent for inflection prediction in isolation rather than
folding morphological information into the main
translation model. While this may lead to search er-
rors due to the fact that the models are not integrated
as tightly as possible, it offers some important ad-
vantages, due to the very decoupling of the compo-
nents. First, our approach is not affected by restric-
tions on the allowable context size or a phrasal seg-
mentation that are imposed by current MT decoders.
This also makes the model portable and applicable
to different types of MT systems. Second, we avoid
the problem of the combinatorial expansion in the
search space which currently arises in the factored
approach of Moses.

Our inflection prediction model is based on
(Minkov et al., 2007), who build models to predict
the inflected forms of words in Russian and Arabic,
but do not apply their work to MT. In contrast, we
focus on methods of integration of an inflection pre-
diction model with an MT system, and on evaluation
of the model’s impact on translation. Other work
closely related to ours is (Toutanova and Suzuki,
2007), which uses an independently trained case
marker prediction model in an English-Japanese
translation system, but it focuses on the problem of
generating a small set of closed class words rather
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than generating inflected forms for each word in
translation, and proposes different methods of inte-
gration of the components.

3 Inflection prediction models

This section describes the task and our model for in-
flection prediction, following (Minkov et al., 2007).

We define the task of inflection prediction as the
task of choosing the correct inflections of given tar-
get language stems, given a corresponding source
sentence. The stemming and inflection operations
we use are defined by lexicons.

3.1 Lexicon operations

For each target language we use a lexicon L which
determines the following necessary operations:

Stemming: returns the set of possible morpholog-
ical stems S,, = {s', ..., s'} for the word w accord-
ingto L. !

Inflection: returns the set of surface word forms
I, = {i,...,i™} for the stems S,, according to L.

Morphological analysis: returns the set of possible
morphological analyses A, = {a!,...,a"} for w. A
morphological analysis a is a vector of categorical
values, where each dimension and its possible values
are defined by L.

For the morphological analysis operation, we
used the same set of morphological features de-
scribed in (Minkov et al., 2007), that is, seven fea-
tures for Russian (POS, Person, Number, Gender,
Tense, Mood and Case) and 12 for Arabic (POS,
Person, Number, Gender, Tense, Mood, Negation,
Determiner, Conjunction, Preposition, Object and
Possessive pronouns). Each word is factored into
a stem (uninflected form) and a subset of these fea-
tures, where features can have either binary (as in
Determiner in Arabic) or multiple values. Some fea-
tures are relevant only for a particular (set of) part-
of-speech (POS) (e.g., Gender is relevant only in
nouns, pronouns, verbs, and adjectives in Russian),
while others combine with practically all categories
(e.g., Conjunction in Arabic). The number of possi-
ble inflected forms per stem is therefore quite large:
as we see in Table 1 of Section 3, there are on av-
erage 14 word forms per stem in Russian and 24 in

!Alternatively, stemming can return a disambiguated stem
analysis; in which case the set S, consists of one item. The
same is true with the operation of morphological analysis.



Arabic for our dataset. This makes the generation of
correct forms a challenging problem in MT.

The Russian lexicon was obtained by intersecting
a general domain lexicon with our training data (Ta-
ble 2), and the Arabic lexicon was obtained by run-
ning the Buckwalter morphological analyser (Buck-
walter, 2004) on the training data. Contextual dis-
ambiguation of morphology was not performed in
either of these languages. In addition to the forms
supposed by our lexicon, we also treated capitaliza-
tion as an inflectional feature in Russian, and defined
all true-case word variants as possible inflections of
its stem(s). Arabic does not use capitalization.

3.2 Task

More formally, our task is as follows: given a source
sentence e, a sequence of stems in the target lan-
guage S,...5¢, ... 5, forming a translation of e,
and additional morpho-syntactic annotations A de-
rived from the input, select an inflection y; from its
inflection set I; for every stem set Sy in the target
sentence.

3.3 Models

We built a Maximum Entropy Markov model for in-
flection prediction following (Minkov et al., 2007).
The model decomposes the probability of an inflec-
tion sequence into a product of local probabilities for
the prediction for each word. The local probabilities
are conditioned on the previous k predictions (k is
set to four in Russian and two in Arabic in our ex-
periments). The probability of a predicted inflection
sequence, therefore, is given by:

n
p(¥|7) = Hp(yt | Ye—1--Ytks Tt), Yt € I,
t=1
where I; is the set of inflections corresponding to Sy,

and z; refers to the context at position ¢. The con-
text available to the task includes extensive morpho-
logical and syntactic information obtained from the
aligned source and target sentences. Figure 1 shows
an example of an aligned English-Russian sentence
pair: on the source (English) side, POS tags and
word dependency structure are indicated by solid
arcs. The alignments between English and Russian
words are indicated by the dotted lines. The de-
pendency structure on the Russian side, indicated by
solid arcs, is given by a treelet MT system (see Sec-
tion 4.1), projected from the word dependency struc-
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Tl 1l

DET NN+sg PREP NN+pl  AUXV+sg VERB+pastpart

the allocation  of resources  has completed

NN+sg+nom+neut VERB+perf+p;ass+neut+sg

NN+pl+gen+masc
pacnpeaeieHne pecypcos 3aBEPLICHO
raspredelenie resursov zaversheno

L ‘ |

Figure 1: Aligned English-Russian sentence pair with
syntactic and morphological annotation.

ture of English and word alignment information.

The features for our inflection prediction model
are binary and pair up predicates on the context
(%, yt—1..-y¢—r) and the target label (y;). The fea-
tures at a certain position ¢ can refer to any word
in the source sentence, any word stem in the tar-
get language, or any morpho-syntactic information
in A. This is the source of the power of a model
used as an independent component — because it does
not need to be integrated in the main search of an
MT decoder, it is not subject to the decoder’s local-
ity constraints, and can thus make use of more global
information.

3.4 Performance on reference translations

Table 1 summarizes the results of applying the in-
flection prediction model on reference translations,
simulating the ideal case where the translations in-
put to our model contain correct stems in correct
order. We stemmed the reference translations, pre-
dicted the inflection for each stem, and measured the
accuracy of prediction, using a set of sentences that
were not part of the training data (1K sentences were
used for Arabic and 5K for Russian).? Our model
performs significantly better than both the random
and trigram language model baselines, and achieves
an accuracy of over 91%, which suggests that the
model is effective when its input is clean in its stem
choice and order. Next, we apply our model in the
more noisy but realistic scenario of predicting inflec-
tions of MT output sentences.

>The accuracy is based on the words in our lexicon. We
define the stem of an out-of-vocabulary (OOV) word to be it-
self, so in the MT scenario described below, we will not predict
the word forms for an OOV item, and will simply leave it un-
changed.



Russian Arabic

Random 164 8.7

LM 81.0 69.4
Model 91.6 91.0
Avg | T] 139 24.1

Table 1: Results on reference translations (accuracy, %).

4 Machine translation systems and data

We integrated the inflection prediction model with
two types of machine translation systems: systems
that make use of syntax and surface phrase-based
systems.

4.1 Treelet translation system

This is a syntactically-informed MT system, de-
signed following (Quirk et al., 2005). In this ap-
proach, translation is guided by treelet translation
pairs, where a treelet is a connected subgraph of a
syntactic dependency tree. Translations are scored
according to a linear combination of feature func-
tions. The features are similar to the ones used in
phrasal systems, and their weights are trained us-
ing max-BLEU training (Och, 2003). There are
nine feature functions in the treelet system, includ-
ing log-probabilities according to inverted and direct
channel models estimated by relative frequency, lex-
ical weighting channel models following Vogel et
al. (2003), a trigram target language model, two or-
der models, word count, phrase count, and average
phrase size functions.

The treelet translation model is estimated using
a parallel corpus. First, the corpus is word-aligned
using an implementation of lexicalized-HMMs (He,
2007); then the source sentences are parsed into a
dependency structure, and the dependency is pro-
jected onto the target side following the heuristics
described in (Quirk et al., 2005). These aligned sen-
tence pairs form the training data of the inflection
models as well. An example was given in Figure 1.

4.2 Phrasal translation system

This is a re-implementation of the Pharaoh trans-
lation system (Koehn, 2004). It uses the same
lexicalized-HMM model for word alignment as the
treelet system, and uses the standard extraction
heuristics to extract phrase pairs using forward and
backward alignments. In decoding, the system uses
a linear combination of feature functions whose
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weights are trained using max-BLEU training. The
features include log-probabilities according to in-
verted and direct channel models estimated by rel-
ative frequency, lexical weighting channel models,
a trigram target language model, distortion, word
count and phrase count.

4.3 Data sets

For our English-Russian and English-Arabic experi-
ments, we used data from a technical (computer) do-
main. For each language pair, we used a set of paral-
lel sentences (train) for training the MT system sub-
models (e.g., phrase tables, language model), a set
of parallel sentences (lambda) for training the com-
bination weights with max-BLEU training, a set of
parallel sentences (dev) for training a small number
of combination parameters for our integration meth-
ods (see Section 5), and a set of parallel sentences
(test) for final evaluation. The details of these sets
are shown in Table 2. The training data for the in-
flection models is always a subset of the training set
(train). All MT systems for a given language pair
used the same datasets.

Dataset  sent pairs word tokens (avg/sent)
English-Russian

English Russian
train 1,642K | 24,351K (14.8) 22,002K (13.4)
lambda 2K 30K (15.1) 27K (13.7)
dev 1K 14K (13.9) 13K (13.5)
test 4K 61K (15.3) 60K (14.9)
English-Arabic

English Arabic
train 463K | 5,223K (11.3)  4,761K (10.3)
lambda 2K 22K (11.1) 20K (10.0)
dev 1K 11K (11.1) 10K (10.0)
test 4K 44K (11.0) 40K (10.1)

Table 2: Data set sizes, rounded up to the nearest 1000.

5 Integration of inflection models with MT
systems

We describe three main methods of integration we
have considered. The methods differ in the extent to
which the factoring of the problem into two subprob-
lems — predicting stems and predicting inflections
— is reflected in the base MT systems. In the first
method, the MT system is trained to produce fully
inflected target words and the inflection model can
change the inflections. In the other two methods, the



MT system is trained to produce sequences of tar-
get language stems S, which are then inflected by
the inflection component. Before we motivate these
methods, we first describe the general framework for
integrating our inflection model into the MT system.

For each of these methods, we assume that the
output of the base MT system can be viewed as a
ranked list of translation hypotheses for each source
sentence e. More specifically, we assume an out-
put {S1,S2,...,Sm} of m-best translations which
are sequences of target language stems. The transla-
tions further have scores {w;,wa,...,w,,} assigned
by the base MT system. We also assume that each
translation hypothesis S; together with source sen-
tence e can be annotated with the annotation A, as
illustrated in Figure 1. We discuss how we convert
the output of the base MT systems to this form in the
subsections below.

Given such a list of candidate stem sequences, the
base MT model together with the inflection model
and a language model choose a translation Y* as
follows:

(1) Y; = argmaxyrc 15,y M log Prar (Y Si)+
)\QZOQPLM(YZ), 1=1...n

2) Y* = argmax
)\QZOQPLM(}/'L’) + /\3wi
In these formulas, the dependency on e and A
is omitted for brevity in the expression for the
probability according to the inflection model Prjy.
Pra(Y/) is the joint probability of the sequence
of inflected words according to a trigram language
model (LM). The LM used for the integration is the
same LM used in the base MT system that is trained
on fully inflected word forms (the base MT system
trained on stems uses an LM trained on a stem se-
quence). Equation (1) shows that the model first se-
lects the best sequence of inflected forms for each
MT hypothesis S; according to the LM and the in-
flection model. Equation (2) shows that from these
n fully inflected hypotheses, the model then selects
the one which has the best score, combined with
the base MT score w; for S;. We should note that
this method does not represent standard n-best re-
ranking because the input from the base MT system
contains sequences of stems, and the model is gen-
erating fully inflected translations from them. Thus
the chosen translation may not be in the provided n-
best list. This method is more similar to the one used

MlogPra(YilSi) +

1=1...n
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in (Wang et al., 2006), with the difference that they
use only 1-best input from a base MT system.

The interpolation weights )\ in Equations (1) and
(2) as well as the optimal number of translations n
from the base MT system to consider, given a maxi-
mum of m=100 hypotheses, are trained using a sep-
arate dataset. We performed a grid search on the
values of A and n, to maximize the BLEU score of
the final system on a development set (dev) of 1000
sentences (Table 2).

The three methods of integration differ in the way
the base MT engine is applied. Since we always dis-
card the choices of specific inflected forms for the
target stems by converting candidate translations to
sequences of stems, it is interesting to know whether
we need a base MT system that produces fully in-
flected translations or whether we can do as well
or better by training the base MT systems to pro-
duce sequences of stems. Stemming the target sen-
tences is expected to be helpful for word alignment,
especially when the stemming operation is defined
so that the word alignment becomes more one-to-
one (Goldwater and McClosky, 2005). In addition,
stemming the target sentences reduces the sparsity
in the translation tables and language model, and is
likely to impact positively the performance of an MT
system in terms of its ability to recover correct se-
quences of stems in the target. Also, machine learn-
ing tells us that solving a more complex problem
than we are evaluated on (in our case for the base
MT, predicting stems together with their inflections
instead of just predicting stems) is theoretically un-
justified (Vapnik, 1995).

However, for some language pairs, stemming one
language can make word alignment worse, if it
leads to more violations in the assumptions of cur-
rent word alignment models, rather than making the
source look more like the target. In addition, using a
trigram LM on stems may lead to larger violations of
the Markov independence assumptions, than using a
trigram LM on fully inflected words. Thus, if we ap-
ply the exact same base MT system to use stemmed
forms in alignment and/or translation, it is not a pri-
ori clear whether we would get a better result than if
we apply the system to use fully inflected forms.



5.1 Method 1

In this method, the base MT system is trained in
the usual way, from aligned pairs of source sen-
tences and fully inflected target sentences. The in-
flection model is then applied to re-inflect the 1-best
or m-best translations and to select an output trans-
lation. The hypotheses in the m-best output from the
base MT system are stemmed and the scores of the
stemmed hypotheses are assumed to be equal to the
scores of the original ones.> Thus we obtain input of
the needed form, consisting of m sequences of target
language stems along with scores.

For this and other methods, if we are working
with an m-best list from the treelet system, every
translation hypothesis contains the annotations A
that our model needs, because the system maintains
the alignment, parse trees, etc., as part of its search
space. Thus we do not need to do anything further
to obtain input of the form necessary for application
of the inflection model.

For the phrase-based system, we generated the
annotations needed by first parsing the source sen-
tence e, aligning the source and candidate transla-
tions with the word-alignment model used in train-
ing, and projected the dependency tree to the target
using the algorithm of (Quirk et al., 2005). Note that
it may be better to use the word alignment main-
tained as part of the translation hypotheses during
search, but our solution is more suitable to situations
where these can not be easily obtained.

For all methods, we study two settings for integra-
tion. In the first, we only consider (n=1) hypotheses
from the base MT system. In the second setting, we
allow the model to use up to 100 translations, and
to automatically select the best number to use. As
seen in Table 3, (n=16) translations were chosen for
Russian and as seen in Table 5, (n=2) were chosen
for Arabic for this method.

5.2 Method 2

In this method, the base MT system is trained to pro-
duce sequences of stems in the target language. The
most straightforward way to achieve this is to stem
the training parallel data and to train the MT sys-
tem using this input. This is our Method 3 described

31t may be better to take the max of the scores for a stem

sequence occurring more than once in the list, or take the log-
sum-exp of the scores.
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below. We formulated Method 2 as an intermedi-
ate step, to decouple the impact of stemming at the
alignment and translation stages.

In Method 2, word alignment is performed us-
ing fully inflected target language sentences. After
alignment, the target language is stemmed and the
base MT systems’ sub-models are trained using this
stemmed input and alignment. In addition to this
word-aligned corpus the MT systems use another
product of word alignment: the IBM model 1 trans-
lation tables. Because the trained translation tables
of IBM model 1 use fully inflected target words, we
generated stemmed versions of the translation tables
by applying the rules of probability.

5.3

In this method the base MT system produces se-
quences of target stems. It is trained in the same way
as the baseline MT system, except its input parallel
training data are preprocessed to stem the target sen-
tences. In this method, stemming can impact word
alignment in addition to the translation models.

Method 3

6 MT performance results

Before delving into the results for each method, we
discuss our evaluation measures. For automatically
measuring performance, we used 4-gram BLEU
against a single reference translation. We also report
oracle BLEU scores which incorporate two kinds of
oracle knowledge. For the methods using n=1 trans-
lation from a base MT system, the oracle BLEU
score is the BLEU score of the stemmed translation
compared to the stemmed reference, which repre-
sents the upper bound achievable by changing only
the inflected forms (but not stems) of the words in a
translation. For models using n > 1 input hypothe-
ses, the oracle also measures the gain from choos-
ing the best possible stem sequence in the provided
(m=100-best) hypothesis list, in addition to choos-
ing the best possible inflected forms for these stems.
For the models in the tables, even if, say, n=16 was
chosen in parameter fitting, the oracle is measured
on the initially provided list of 100-best.

6.1 English-Russian treelet system

Table 3 shows the results of the baseline and the
model using the different methods for the treelet
MT system on English-Russian. The baseline is the



Model BLEU Oracle BLEU
Base MT (n=1) 2924 -

Method 1 (n=1) 3044  36.59

Method 1 (n=16) 30.61 45.33

Method 2 (n=1) 30.79 37.38

Method 2 (n=16) 31.24  48.48

Method 3 (n=1) 3142  38.06

Method 3 (n=32) 31.80 49.19

Table 3: Test set performance for English-to-Russian MT
(BLEU) results by model using a treelet MT system.

treelet system described in Section 4.1 and trained
on the data in Table 2.

We can see that Method 1 results in a good im-
provement of 1.2 BLEU points, even when using
only the best (n = 1) translation from the baseline.
The oracle improvement achievable by predicting
inflections is quite substantial: more than 7 BLEU
points. Propagating the uncertainty of the baseline
system by using more input hypotheses consistently
improves performance across the different methods,
with an additional improvement of between .2 and
.4 BLEU points.

From the results of Method 2 we can see that re-
ducing sparsity at translation modeling is advanta-
geous. Both the oracle BLEU of the first hypothe-
sis and the achieved performance of the model im-
proved; the best performance achieved by Method 2
is .63 points higher than the performance of Method
1. We should note that the oracle performance for
Method 2, n > 1 is measured using 100-best lists of
target stem sequences, whereas the one for Method
1 is measured using 100-best lists of inflected target
words. This can be a disadvantage for Method 1,
because a 100-best list of inflected translations actu-
ally contains about 50 different sequences of stems
(the rest are distinctions in inflections). Neverthe-
less, even if we measure the oracle for Method 2
using 40-best, it is higher than the 100-best oracle
of Method 1. In addition, it appears that using a hy-
pothesis list larger than n > 1=100 is not be helpful
for our method, as the model chose to use only up to
32 hypotheses.

Finally, we can see that using stemming at the
word alignment stage further improved both the or-
acle and the achieved results. The performance of
the best model is 2.56 BLEU points better than the
baseline. Since stemming in Russian for the most
part removes properties of words which are not ex-
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pressed in English at the word level, these results
are consistent with previous results using stemming
to improve word alignment. From these results, we
also see that about half of the gain from using stem-
ming in the base MT system came from improving
word alignment, and half came from using transla-
tion models operating at the less sparse stem level.

Overall, the improvement achieved by predicting
morphological properties of Russian words with a
feature-rich component model is substantial, given
the relatively large size of the training data (1.6 mil-
lion sentences), and indicates that these kinds of
methods are effective in addressing the problems
in translating morphology-poor to morphology-rich
languages.

6.2 English-Russian phrasal system

For the phrasal system, we performed integration
only with Method 1, using the top 1 or 100-
best translations. This is the most straightforward
method for combining with any system, and we ap-
plied it as a proof-of-concept experiment.

Model BLEU Oracle BLEU
Base MT (n=1) 36.00 -

Method 1 (n=1) 36.43  42.33

Method 1 (n=100) 36.72  55.00

Table 4: Test set performance for English-to-Russian MT
(BLEU) results by model using a phrasal MT system.

The phrasal MT system is trained on the same
data as the treelet system. The phrase size and dis-
tortion limit were optimized (we used phrase size of
7 and distortion limit of 3). This system achieves a
substantially better BLEU score (by 6.76) than the
treelet system. The oracle BLEU score achievable
by Method 1 using n=1 translation, though, is still
6.3 BLEU point higher than the achieved BLEU.

Our model achieved smaller improvements for the
phrasal system (0.43 improvement for n=1 transla-
tions and 0.72 for the selected n=100 translations).
However, this improvement is encouraging given the
large size of the training data. One direction for
potentially improving these results is to use word
alignments from the MT system, rather than using
an alignment model to predict them.



Model BLEU Oracle BLEU
Base MT (n=1) 3554 -

Method 1 (n=1) 37.24  42.29

Method 1 (n=2) 37.41 52.21

Method 2 (n=1) 36.53  42.46

Method 2 (n=4) 36.72  54.74

Method 3 (n=1) 36.87  42.96

Method 3 (n=2) 36.92  54.90

Table 5: Test set performance for English-to-Arabic MT
(BLEU) results by model using a treelet MT system.

6.3 English-Arabic treelet system

The Arabic system also improves with the use of our
mode: the best system (Method 1, n=2) achieves
the BLEU score of 37.41, a 1.87 point improve-
ment over the baseline. Unlike the case of Rus-
sian, Method 2 and 3 do not achieve better results
than Method 1, though the oracle BLEU score im-
proves in these models (54.74 and 54.90 as opposed
to 52.21 of Method 1). We do notice, however, that
the oracle improvement for the 1-best analysis is
much smaller than what we obtained in Russian.
We have been unable to closely diagnose why per-
formance did not improve using Methods 2 and 3
so far due to the absence of expertise in Arabic, but
one factor we suspect is affecting performance the
most in Arabic is the definition of stemming: the
effect of stemming is most beneficial when it is ap-
plied specifically to normalize the distinctions not
explicitly encoded in the other language; it may hurt
performance otherwise. We believe that in the case
of Arabic, this latter situation is actually happen-
ing: grammatical properties explicitly encoded in
English (e.g., definiteness, conjunction, pronominal
clitics) are lost when the Arabic words are stemmed.
This may be having a detrimental effect on the MT
systems that are based on stemmed input. Further
investigation is necessary to confirm this hypothesis.

6.4 Human evaluation

In this section we briefly report the results of human
evaluation on the output of our inflection prediction
system, as the correlation between BLEU scores and
human evaluation results is not always obvious. We
compared the output of our component against the
best output of the treelet system without our com-
ponent. We evaluated the following three scenarios:
(1) Arabic Method 1 with n=1, which corresponds
to the best performing system in BLEU according to
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Table 5; (2) Russian, Method 1 with n=1; (3) Rus-
sian, Method 3 with n=32, which corresponds to the
best performing system in BLEU in Table 3. Note
that in (1) and (2), the only differences in the com-
pared outputs are the changes in word inflections,
while in (3) the outputs may differ in the selection
of the stems.

In all scenarios, two human judges (native speak-
ers of these languages) evaluated 100 sentences that
had different translations by the baseline system and
our model. The judges were given the reference
translations but not the source sentences, and were
asked to classify each sentence pair into three cate-
gories: (1) the baseline system is better (score=-1),
(2) the output of our model is better (score=1), or (3)
they are of the same quality (score=0).

human eval score BLEU diff
Arabic Method 1 0.1 1.9
Russian Method 1 0.255 1.2
Russian Method 3 0.26 2.6

Table 6: Human evaluation results

Table 6 shows the results of the averaged, aggre-
gated score across two judges per evaluation sce-
nario, along with the BLEU score improvements
achieved by applying our model. We see that in all
cases, the human evaluation scores are positive, indi-
cating that our models produce translations that are
better than those produced by the baseline system.
We also note that in Russian, the human evaluation
scores are similar for Method 1 and 3 (0.255 and
0.26), though the BLEU score gains are quite differ-
ent (1.2 vs 2.6). This may be attributed to the fact
that human evaluation typically favors the scenario
where only word inflections are different (Toutanova
and Suzuki, 2007).

7 Conclusion and future work

We have shown that an independent model of mor-
phology generation can be successfully integrated
with an SMT system, making improvements in both
phrasal and syntax-based MT. In the future, we
would like to include more sophistication in the de-
sign of a lexicon for a particular language pair based
on error analysis, and extend our pre-processing to
include other operations such as word segmentation.

“However, the improvement in Arabic is not statistically sig-
nificant on this 100 sentence set.
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