
Proceedings of ACL-08: HLT, pages 505–513,
Columbus, Ohio, USA, June 2008. c©2008 Association for Computational Linguistics

Randomized Language Models via Perfect Hash Functions

David Talbot∗
School of Informatics

University of Edinburgh
2 Buccleuch Place, Edinburgh, UK
d.r.talbot@sms.ed.ac.uk

Thorsten Brants
Google Inc.

1600 Amphitheatre Parkway
Mountain View, CA 94303, USA

brants@google.com

Abstract

We propose a succinct randomized language
model which employs a perfect hash func-
tion to encode fingerprints of n-grams and
their associated probabilities, backoff weights,
or other parameters. The scheme can repre-
sent any standard n-gram model and is easily
combined with existing model reduction tech-
niques such as entropy-pruning. We demon-
strate the space-savings of the scheme via ma-
chine translation experiments within a dis-
tributed language modeling framework.

1 Introduction

Language models (LMs) are a core component in
statistical machine translation, speech recognition,
optical character recognition and many other areas.
They distinguish plausible word sequences from a
set of candidates. LMs are usually implemented
as n-gram models parameterized for each distinct
sequence of up to n words observed in the train-
ing corpus. Using higher-order models and larger
amounts of training data can significantly improve
performance in applications, however the size of the
resulting LM can become prohibitive.

With large monolingual corpora available in ma-
jor languages, making use of all the available data
is now a fundamental challenge in language mod-
eling. Efficiency is paramount in applications such
as machine translation which make huge numbers
of LM requests per sentence. To scale LMs to larger
corpora with higher-order dependencies, researchers

∗Work completed while this author was at Google Inc.

have considered alternative parameterizations such
as class-based models (Brown et al., 1992), model
reduction techniques such as entropy-based pruning
(Stolcke, 1998), novel represention schemes such as
suffix arrays (Emami et al., 2007), Golomb Coding
(Church et al., 2007) and distributed language mod-
els that scale more readily (Brants et al., 2007).

In this paper we propose a novel randomized lan-
guage model. Recent work (Talbot and Osborne,
2007b) has demonstrated that randomized encod-
ings can be used to represent n-gram counts for
LMs with signficant space-savings, circumventing
information-theoretic constraints on lossless data
structures by allowing errors with some small prob-
ability. In contrast the representation scheme used
by our model encodes parameters directly. It can
be combined with any n-gram parameter estimation
method and existing model reduction techniques
such as entropy-based pruning. Parameters that are
stored in the model are retrieved without error; how-
ever, false positives may occur whereby n-grams not
in the model are incorrectly ‘found’ when requested.
The false positive rate is determined by the space us-
age of the model.

Our randomized language model is based on the
Bloomier filter (Chazelle et al., 2004). We encode
fingerprints (random hashes) of n-grams together
with their associated probabilities using a perfect
hash function generated at random (Majewski et al.,
1996). Lookup is very efficient: the values of 3 cells
in a large array are combined with the fingerprint of
an n-gram. This paper focuses on machine transla-
tion. However, many of our findings should transfer
to other applications of language modeling.

505

2 Scaling Language Models

In statistical machine translation (SMT), LMs are
used to score candidate translations in the target lan-
guage. These are typically n-gram models that ap-
proximate the probability of a word sequence by as-
suming each token to be independent of all but n−1
preceding tokens. Parameters are estimated from
monolingual corpora with parameters for each dis-
tinct word sequence of length l ∈ [n] observed in
the corpus. Since the number of parameters grows
somewhat exponentially with n and linearly with the
size of the training corpus, the resulting models can
be unwieldy even for relatively small corpora.

2.1 Scaling Strategies

Various strategies have been proposed to scale LMs
to larger corpora and higher-order dependencies.
Model-based techniques seek to parameterize the
model more efficiently (e.g. latent variable models,
neural networks) or to reduce the model size directly
by pruning uninformative parameters, e.g. (Stolcke,
1998), (Goodman and Gao, 2000). Representation-
based techniques attempt to reduce space require-
ments by representing the model more efficiently or
in a form that scales more readily, e.g. (Emami et al.,
2007), (Brants et al., 2007), (Church et al., 2007).

2.2 Lossy Randomized Encodings

A fundamental result in information theory (Carter
et al., 1978) states that a random set of objects can-
not be stored using constant space per object as the
universe from which the objects are drawn grows
in size: the space required to uniquely identify an
object increases as the set of possible objects from
which it must be distinguished grows. In language
modeling the universe under consideration is the
set of all possible n-grams of length n for given
vocabulary. Although n-grams observed in natu-
ral language corpora are not randomly distributed
within this universe no lossless data structure that we
are aware of can circumvent this space-dependency
on both the n-gram order and the vocabulary size.
Hence as the training corpus and vocabulary grow, a
model will require more space per parameter.

However, if we are willing to accept that occa-
sionally our model will be unable to distinguish be-
tween distinct n-grams, then it is possible to store

each parameter in constant space independent of
both n and the vocabulary size (Carter et al., 1978),
(Talbot and Osborne, 2007a). The space required in
such a lossy encoding depends only on the range of
values associated with the n-grams and the desired
error rate, i.e. the probability with which two dis-
tinct n-grams are assigned the same fingerprint.

2.3 Previous Randomized LMs

Recent work (Talbot and Osborne, 2007b) has used
lossy encodings based on Bloom filters (Bloom,
1970) to represent logarithmically quantized cor-
pus statistics for language modeling. While the ap-
proach results in significant space savings, working
with corpus statistics, rather than n-gram probabil-
ities directly, is computationally less efficient (par-
ticularly in a distributed setting) and introduces a
dependency on the smoothing scheme used. It also
makes it difficult to leverage existing model reduc-
tion strategies such as entropy-based pruning that
are applied to final parameter estimates.

In the next section we describe our randomized
LM scheme based on perfect hash functions. This
scheme can be used to encode any standard n-gram
model which may first be processed using any con-
ventional model reduction technique.

3 Perfect Hash-based Language Models

Our randomized LM is based on the Bloomier filter
(Chazelle et al., 2004). We assume the n-grams and
their associated parameter values have been precom-
puted and stored on disk. We then encode the model
in an array such that each n-gram’s value can be re-
trieved. Storage for this array is the model’s only
significant space requirement once constructed.1

The model uses randomization to map n-grams
to fingerprints and to generate a perfect hash func-
tion that associates n-grams with their values. The
model can erroneously return a value for an n-gram
that was never actually stored, but will always return
the correct value for an n-gram that is in the model.
We will describe the randomized algorithm used to
encode n-gram parameters in the model, analyze the
probability of a false positive, and explain how we
construct and query the model in practice.

1Note that we do not store the n-grams explicitly and there-
fore that the model’s parameter set cannot easily be enumerated.

506

3.1 N -gram Fingerprints
We wish to encode a set of n-gram/value pairs

S = {(x1, v(x1)), (x2, v(x2)), . . . , (xN , v(xN))}

using an array A of size M and a perfect hash func-
tion. Each n-gram xi is drawn from some set of pos-
sible n-grams U and its associated value v(xi) from
a corresponding set of possible values V .

We do not store the n-grams and their proba-
bilities directly but rather encode a fingerprint of
each n-gram f(xi) together with its associated value
v(xi) in such a way that the value can be retrieved
when the model is queried with the n-gram xi.

A fingerprint hash function f : U → [0, B − 1]
maps n-grams to integers between 0 and B − 1.2

The array A in which we encode n-gram/value pairs
has addresses of size dlog2 Be hence B will deter-
mine the amount of space used per n-gram. There
is a trade-off between space and error rate since the
larger B is, the lower the probability of a false pos-
itive. This is analyzed in detail below. For now we
assume only that B is at least as large as the range
of values stored in the model, i.e. B ≥ |V|.

3.2 Composite Perfect Hash Functions
The function used to associate n-grams with their
values (Eq. (1)) combines a composite perfect hash
function (Majewski et al., 1996) with the finger-
print function. An example is shown in Fig. 1.
The composite hash function is made up of k in-
dependent hash functions h1, h2, . . . , hk where each
hi : U → [0,M − 1] maps n-grams to locations in
the array A. The lookup function is then defined as
g : U → [0, B − 1] by3

g(xi) = f(xi)⊗

(
k⊗

i=1

A[hi(xi)]

)
(1)

where f(xi) is the fingerprint of n-gram xi and
A[hi(xi)] is the value stored in location hi(xi) of the
array A. Eq. (1) is evaluated to retrieve an n-gram’s
parameter during decoding. To encode our model
correctly we must ensure that g(xi) = v(xi) for all
n-grams in our set S. Generating A to encode this

2The analysis assumes that all hash functions are random.
3We use ⊗ to denote the exclusive bitwise OR operator.

Figure 1: Encoding an n-gram’s value in the array.

function for a given set of n-grams is a significant
challenge described in the following sections.

3.3 Encoding n-grams in the model
All addresses in A are initialized to zero. The proce-
dure we use to ensure g(xi) = v(xi) for all xi ∈ S
updates a single, unique location in A for each n-
gram xi. This location is chosen from among the k
locations given by hj(xi), j ∈ [k]. Since the com-
posite function g(xi) depends on the values stored at
all k locations A[h1(xi)], A[h2(xi)], . . . , A[hk(xi)]
in A, we must also ensure that once an n-gram xi

has been encoded in the model, these k locations
are not subsequently changed since this would inval-
idate the encoding; however, n-grams encoded later
may reference earlier entries and therefore locations
in A can effectively be ‘shared’ among parameters.

In the following section we describe a randomized
algorithm to find a suitable order in which to enter
n-grams in the model and, for each n-gram xi, de-
termine which of the k hash functions, say hj , can
be used to update A without invalidating previous
entries. Given this ordering of the n-grams and the
choice of hash function hj for each xi ∈ S, it is clear
that the following update rule will encode xi in the
array A so that g(xi) will return v(xi) (cf. Eq.(1))

A[hj(xi)] = v(xi)⊗ f(xi)⊗
k⊗

i=1∩i6=j

A[hi(xi)]. (2)

3.4 Finding an Ordered Matching
We now describe an algorithm (Algorithm 1; (Ma-
jewski et al., 1996)) that selects one of the k hash

507

functions hj , j ∈ [k] for each n-gram xi ∈ S and
an order in which to apply the update rule Eq. (2) so
that g(xi) maps xi to v(xi) for all n-grams in S.

This problem is equivalent to finding an ordered
matching in a bipartite graph whose LHS nodes cor-
respond to n-grams in S and RHS nodes correspond
to locations in A. The graph initially contains edges
from each n-gram to each of the k locations in A
given by h1(xi), h2(xi), . . . , hk(xi) (see Fig. (2)).
The algorithm uses the fact that any RHS node that
has degree one (i.e. a single edge) can be safely
matched with its associated LHS node since no re-
maining LHS nodes can be dependent on it.

We first create the graph using the k hash func-
tions hj , j ∈ [k] and store a list (degree one)
of those RHS nodes (locations) with degree one.
The algorithm proceeds by removing nodes from
degree one in turn, pairing each RHS node with
the unique LHS node to which it is connected. We
then remove both nodes from the graph and push the
pair (xi, hj(xi)) onto a stack (matched). We also
remove any other edges from the matched LHS node
and add any RHS nodes that now have degree one
to degree one. The algorithm succeeds if, while
there are still n-grams left to match, degree one
is never empty. We then encode n-grams in the order
given by the stack (i.e., first-in-last-out).

Since we remove each location in A (RHS node)
from the graph as it is matched to an n-gram (LHS
node), each location will be associated with at most
one n-gram for updating. Moreover, since we match
an n-gram to a location only once the location has
degree one, we are guaranteed that any other n-
grams that depend on this location are already on
the stack and will therefore only be encoded once
we have updated this location. Hence dependencies
in g are respected and g(xi) = v(xi) will remain
true following the update in Eq. (2) for each xi ∈ S.

3.5 Choosing Random Hash Functions
The algorithm described above is not guaranteed to
succeed. Its success depends on the size of the array
M , the number of n-grams stored |S| and the choice
of random hash functions hj , j ∈ [k]. Clearly we
require M ≥ |S|; in fact, an argument from Majew-
ski et al. (1996) implies that if M ≥ 1.23|S| and
k = 3, the algorithm succeeds with high probabil-

Figure 2: The ordered matching algorithm: matched =
[(a, 1), (b, 2), (d, 4), (c, 5)]

ity. We use 2-universal hash functions (L. Carter
and M. Wegman, 1979) defined for a range of size
M via a prime P ≥ M and two random numbers
1 ≤ aj ≤ P and 0 ≤ bj ≤ P for j ∈ [k] as

hj(x) ≡ ajx + bj mod P

taken modulo M . We generate a set of k hash
functions by sampling k pairs of random numbers
(aj , bj), j ∈ [k]. If the algorithm does not find
a matching with the current set of hash functions,
we re-sample these parameters and re-start the algo-
rithm. Since the probability of failure on a single
attempt is low when M ≥ 1.23|S|, the probability
of failing multiple times is very small.

3.6 Querying the Model and False Positives
The construction we have described above ensures
that for any n-gram xi ∈ S we have g(xi) = v(xi),
i.e., we retrieve the correct value. To retrieve a value
given an n-gram xi we simply compute the finger-
print f(xi), the hash functions hj(xi), j ∈ [k] and
then return g(xi) using Eq. (1). Note that unlike the
constructions in (Talbot and Osborne, 2007b) and
(Church et al., 2007) no errors are possible for n-
grams stored in the model. Hence we will not make
errors for common n-grams that are typically in S.

508

Algorithm 1 Ordered Matching
Input : Set of n-grams S; k hash functions hj , j ∈ [k];
number of available locations M .
Output : Ordered matching matched or FAIL.
matched⇐ []
for all i ∈ [0, M − 1] do
r2li ⇐ ∅

end for
for all xi ∈ S do
l2ri ⇐ ∅
for all j ∈ [k] do
l2ri ⇐ l2ri ∪ hj(xi)
r2lhj(xi) ⇐ r2lhj(xi) ∪ xi

end for
end for
degree one⇐ {i ∈ [0, M − 1] | |r2li| = 1}
while |degree one| ≥ 1 do
rhs⇐ POP degree one

lhs⇐ POP r2lrhs

PUSH (lhs, rhs) onto matched

for all rhs′ ∈ l2rlhs do
POP r2lrhs′

if |r2lrhs′ | = 1 then
degree one⇐ degree one ∪ rhs′

end if
end for

end while
if |matched| = |S| then

return matched

else
return FAIL

end if

On the other hand, querying the model with an n-
gram that was not stored, i.e. with xi ∈ U \ S we
may erroneously return a value v ∈ V .

Since the fingerprint f(xi) is assumed to be dis-
tributed uniformly at random (u.a.r.) in [0, B − 1],
g(xi) is also u.a.r. in [0, B−1] for xi ∈ U\S . Hence
with |V| values stored in the model, the probability
that xi ∈ U \ S is assigned a value in v ∈ V is

Pr{g(xi) ∈ V|xi ∈ U \ S} = |V|/B.

We refer to this event as a false positive. If V is fixed,
we can obtain a false positive rate ε by setting B as

B ≡ |V|/ε.

For example, if |V| is 128 then taking B = 1024
gives an error rate of ε = 128/1024 = 0.125 with
each entry in A using dlog2 1024e = 10 bits. Clearly
B must be at least |V| in order to distinguish each
value. We refer to the additional bits allocated to

each location (i.e. dlog2 Be − log2 |V| or 3 in our
example) as error bits in our experiments below.

3.7 Constructing the Full Model
When encoding a large set of n-gram/value pairs S,
Algorithm 1 will only be practical if the raw data
and graph can be held in memory as the perfect hash
function is generated. This makes it difficult to en-
code an extremely large set S into a single array A.
The solution we adopt is to split S into t smaller
sets S′

i, i ∈ [t] that are arranged in lexicographic or-
der.4 We can then encode each subset in a separate
array A′

i, i ∈ [t] in turn in memory. Querying each
of these arrays for each n-gram requested would be
inefficient and inflate the error rate since a false posi-
tive could occur on each individual array. Instead we
store an index of the final n-gram encoded in each
array and given a request for an n-gram’s value, per-
form a binary search for the appropriate array.

3.8 Sanity Checks
Our models are consistent in the following sense

(w1, w2, . . . , wn) ∈ S =⇒ (w2, . . . , wn) ∈ S.

Hence we can infer that an n-gram can not be
present in the model, if the n− 1-gram consisting of
the final n − 1 words has already tested false. Fol-
lowing (Talbot and Osborne, 2007a) we can avoid
unnecessary false positives by not querying for the
longer n-gram in such cases.

Backoff smoothing algorithms typically request
the longest n-gram supported by the model first, re-
questing shorter n-grams only if this is not found. In
our case, however, if a query is issued for the 5-gram
(w1, w2, w3, w4, w5) when only the unigram (w5) is
present in the model, the probability of a false posi-
tive using such a backoff procedure would not be ε as
stated above, but rather the probability that we fail to
avoid an error on any of the four queries performed
prior to requesting the unigram, i.e. 1−(1−ε)4 ≈ 4ε.
We therefore query the model first with the unigram
working up to the full n-gram requested by the de-
coder only if the preceding queries test positive. The
probability of returning a false positive for any n-
gram requested by the decoder (but not in the model)
will then be at most ε.

4In our system we use subsets of 5 million n-grams which
can easily be encoded using less than 2GB of working space.

509

4 Experimental Set-up

4.1 Distributed LM Framework

We deploy the randomized LM in a distributed
framework which allows it to scale more easily
by distributing it across multiple language model
servers. We encode the model stored on each lan-
guagage model server using the randomized scheme.

The proposed randomized LM can encode param-
eters estimated using any smoothing scheme (e.g.
Kneser-Ney, Katz etc.). Here we choose to work
with stupid backoff smoothing (Brants et al., 2007)
since this is significantly more efficient to train and
deploy in a distributed framework than a context-
dependent smoothing scheme such as Kneser-Ney.
Previous work (Brants et al., 2007) has shown it to
be appropriate to large-scale language modeling.

4.2 LM Data Sets

The language model is trained on four data sets:
target: The English side of Arabic-English parallel
data provided by LDC (132 million tokens).
gigaword: The English Gigaword dataset provided
by LDC (3.7 billion tokens).
webnews: Data collected over several years, up to
January 2006 (34 billion tokens).
web: The Web 1T 5-gram Version 1 corpus provided
by LDC (1 trillion tokens).5

An initial experiment will use the Web 1T 5-gram
corpus only; all other experiments will use a log-
linear combination of models trained on each cor-
pus. The combined model is pre-compiled with
weights trained on development data by our system.

4.3 Machine Translation

The SMT system used is based on the framework
proposed in (Och and Ney, 2004) where translation
is treated as the following optimization problem

ê = arg max
e

M∑
i=1

λiΦi(e, f). (3)

Here f is the source sentence that we wish to trans-
late, e is a translation in the target language, Φi, i ∈
[M] are feature functions and λi, i ∈ [M] are
weights. (Some features may not depend on f .)

5N -grams with count < 40 are not included in this data set.

Full Set Entropy-Pruned
1-grams 13,588,391 13,588,391
2-grams 314,843,401 184,541,402
3-grams 977,069,902 439,430,328
4-grams 1,313,818,354 407,613,274
5-grams 1,176,470,663 238,348,867
Total 3,795,790,711 1,283,522,262

Table 1: Num. of n-grams in the Web 1T 5-gram corpus.

5 Experiments

This section describes three sets of experiments:
first, we encode the Web 1T 5-gram corpus as a ran-
domized language model and compare the result-
ing size with other representations; then we mea-
sure false positive rates when requesting n-grams
for a held-out data set; finally we compare transla-
tion quality when using conventional (lossless) lan-
guages models and our randomized language model.

Note that the standard practice of measuring per-
plexity is not meaningful here since (1) for efficient
computation, the language model is not normalized;
and (2) even if this were not the case, quantization
and false positives would render it unnormalized.

5.1 Encoding the Web 1T 5-gram corpus

We build a language model from the Web 1T 5-gram
corpus. Parameters, corresponding to negative loga-
rithms of relative frequencies, are quantized to 8-bits
using a uniform quantizer. More sophisticated quan-
tizers (e.g. (S. Lloyd, 1982)) may yield better results
but are beyond the scope of this paper.

Table 1 provides some statistics about the corpus.
We first encode the full set of n-grams, and then a
version that is reduced to approx. 1/3 of its original
size using entropy pruning (Stolcke, 1998).

Table 2 shows the total space and number of bytes
required per n-gram to encode the model under dif-
ferent schemes: “LDC gzip’d” is the size of the files
as delivered by LDC; “Trie” uses a compact trie rep-
resentation (e.g., (Clarkson et al., 1997; Church et
al., 2007)) with 3 byte word ids, 1 byte values, and 3
byte indices; “Block encoding” is the encoding used
in (Brants et al., 2007); and “randomized” uses our
novel randomized scheme with 12 error bits. The
latter requires around 60% of the space of the next
best representation and less than half of the com-

510

size (GB) bytes/n-gram
Full Set
LDC gzip’d 24.68 6.98
Trie 21.46 6.07
Block Encoding 18.00 5.14
Randomized 10.87 3.08
Entropy Pruned
Trie 7.70 6.44
Block Encoding 6.20 5.08
Randomized 3.68 3.08

Table 2: Web 1T 5-gram language model sizes with dif-
ferent encodings. “Randomized” uses 12 error bits.

monly used trie encoding. Our method is the only
one to use the same amount of space per parameter
for both full and entropy-pruned models.

5.2 False Positive Rates
All n-grams explicitly inserted into our randomized
language model are retrieved without error; how-
ever, n-grams not stored may be incorrectly assigned
a value resulting in a false positive. Section (3) an-
alyzed the theoretical error rate; here, we measure
error rates in practice when retrieving n-grams for
approx. 11 million tokens of previously unseen text
(news articles published after the training data had
been collected). We measure this separately for all
n-grams of order 2 to 5 from the same text.

The language model is trained on the four data
sources listed above and contains 24 billion n-
grams. With 8-bit parameter values, the model
requires 55.2/69.0/82.7 GB storage when using
8/12/16 error bits respectively (this corresponds to
2.46/3.08/3.69 bytes/n-gram).

Using such a large language model results in a
large fraction of known n-grams in new text. Table
3 shows, e.g., that almost half of all 5-grams from
the new text were seen in the training data.

Column (1) in Table 4 shows the number of false
positives that occurred for this test data. Column
(2) shows this as a fraction of the number of unseen
n-grams in the data. This number should be close to
2−b where b is the number of error bits (i.e. 0.003906
for 8 bits and 0.000244 for 12 bits). The error rates
for bigrams are close to their expected values. The
numbers are much lower for higher n-gram orders
due to the use of sanity checks (see Section 3.8).

total seen unseen
2gms 11,093,093 98.98% 1.02%
3gms 10,652,693 91.08% 8.92%
4gms 10,212,293 68.39% 31.61%
5gms 9,781,777 45.51% 54.49%

Table 3: Number of n-grams in test set and percentages
of n-grams that were seen/unseen in the training data.

(1) (2) (3)
false pos. false pos

unseen
false pos

total

8 error bits
2gms 376 0.003339 0.000034
3gms 2839 0.002988 0.000267
4gms 6659 0.002063 0.000652
5gms 6356 0.001192 0.000650
total 16230 0.001687 0.000388
12 error bits
2gms 25 0.000222 0.000002
3gms 182 0.000192 0.000017
4gms 416 0.000129 0.000041
5gms 407 0.000076 0.000042
total 1030 0.000107 0.000025

Table 4: False positive rates with 8 and 12 error bits.

The overall fraction of n-grams requested for
which an error occurs is of most interest in applica-
tions. This is shown in Column (3) and is around a
factor of 4 smaller than the values in Column (2). On
average, we expect to see 1 error in around 2,500 re-
quests when using 8 error bits, and 1 error in 40,000
requests with 12 error bits (see “total” row).

5.3 Machine Translation

We run an improved version of our 2006 NIST MT
Evaluation entry for the Arabic-English “Unlimited”
data track.6 The language model is the same one as
in the previous section.

Table 5 shows baseline translation BLEU scores
for a lossless (non-randomized) language model
with parameter values quantized into 5 to 8 bits. We
use MT04 data for system development, with MT05
data and MT06 (“NIST” subset) data for blind test-
ing. As expected, results improve when using more
bits. There seems to be little benefit in going beyond

6See http://www.nist.gov/speech/tests/mt/2006/doc/

511

dev test test
bits MT04 MT05 MT06
5 0.5237 0.5608 0.4636
6 0.5280 0.5671 0.4649
7 0.5299 0.5691 0.4672
8 0.5304 0.5697 0.4663

Table 5: Baseline BLEU scores with lossless n-gram
model and different quantization levels (bits).

 0.554

 0.556

 0.558

 0.56

 0.562

 0.564

 0.566

 0.568

 0.57

 8 9 10 11 12 13 14 15 16

M
T

05
 B

LE
U

Number of Error Bits

8 bit values
7 bit values
6 bit values
5 bit values

Figure 3: BLEU scores on the MT05 data set.

8 bits. Overall, our baseline results compare favor-
ably to those reported on the NIST MT06 web site.

We now replace the language model with a ran-
domized version. Fig. 3 shows BLEU scores for the
MT05 evaluation set with parameter values quan-
tized into 5 to 8 bits and 8 to 16 additional ‘er-
ror’ bits. Figure 4 shows a similar graph for MT06
data. We again see improvements as quantization
uses more bits. There is a large drop in performance
when reducing the number of error bits from 10 to
8, while increasing it beyond 12 bits offers almost
no further gains with scores that are almost identi-
cal to the lossless model. Using 8-bit quantization
and 12 error bits results in an overall requirement of
(8+12)×1.23 = 24.6 bits = 3.08 bytes per n-gram.

All runs use the sanity checks described in Sec-
tion 3.8. Without sanity checks, scores drop, e.g. by
0.002 for 8-bit quantization and 12 error bits.

Randomization and entropy pruning can be com-
bined to achieve further space savings with minimal
loss in quality as shown in Table (6). The BLEU
score drops by between 0.0007 to 0.0018 while the

 0.454

 0.456

 0.458

 0.46

 0.462

 0.464

 0.466

 0.468

 8 9 10 11 12 13 14 15 16

M
T

06
 (

N
IS

T
)

B
LE

U

Number of Error Bits

8 bit values
7 bit values
6 bit values
5 bit values

Figure 4: BLEU scores on MT06 data (“NIST” subset).

size dev test test
LM GB MT04 MT05 MT06

unpruned block 116 0.5304 0.5697 0.4663
unpruned rand 69 0.5299 0.5692 0.4659
pruned block 42 0.5294 0.5683 0.4665
pruned rand 27 0.5289 0.5679 0.4656

Table 6: Combining randomization and entropy pruning.
All models use 8-bit values; “rand” uses 12 error bits.

model is reduced to approx. 1/4 of its original size.

6 Conclusions

We have presented a novel randomized language
model based on perfect hashing. It can associate
arbitrary parameter types with n-grams. Values ex-
plicitly inserted into the model are retrieved without
error; false positives may occur but are controlled
by the number of bits used per n-gram. The amount
of storage needed is independent of the size of the
vocabulary and the n-gram order. Lookup is very
efficient: the values of 3 cells in a large array are
combined with the fingerprint of an n-gram.

Experiments have shown that this randomized
language model can be combined with entropy prun-
ing to achieve further memory reductions; that error
rates occurring in practice are much lower than those
predicted by theoretical analysis due to the use of
runtime sanity checks; and that the same translation
quality as a lossless language model representation
can be achieved when using 12 ‘error’ bits, resulting
in approx. 3 bytes per n-gram (this includes one byte
to store parameter values).

512

References

B. Bloom. 1970. Space/time tradeoffs in hash coding
with allowable errors. CACM, 13:422–426.

Thorsten Brants, Ashok C. Popat, Peng Xu, Franz J.
Och, and Jeffrey Dean. 2007. Large language mod-
els in machine translation. In Proceedings of EMNLP-
CoNLL 2007, Prague.

Peter F. Brown, Vincent J. Della Pietra, Peter V. deSouza,
Jennifer C. Lai, and Robert L. Mercer. 1992. Class-
based n-gram models of natural language. Computa-
tional Linguistics, 18(4):467–479.

Peter Brown, Stephen Della Pietra, Vincent Della Pietra,
and Robert Mercer. 1993. The mathematics of ma-
chine translation: Parameter estimation. Computa-
tional Linguistics, 19(2):263–311.

Larry Carter, Robert W. Floyd, John Gill, George
Markowsky, and Mark N. Wegman. 1978. Exact and
approximate membership testers. In STOC, pages 59–
65.

L. Carter and M. Wegman. 1979. Universal classes of
hash functions. Journal of Computer and System Sci-
ence, 18:143–154.

Bernard Chazelle, Joe Kilian, Ronitt Rubinfeld, and
Ayellet Tal. 2004. The Bloomier Filter: an efficient
data structure for static support lookup tables. In Proc.
15th ACM-SIAM Symposium on Discrete Algoritms,
pages 30–39.

Kenneth Church, Ted Hart, and Jianfeng Gao. 2007.
Compressing trigram language models with golomb
coding. In Proceedings of EMNLP-CoNLL 2007,
Prague, Czech Republic, June.

P. Clarkson and R. Rosenfeld. 1997. Statistical language
modeling using the CMU-Cambridge toolkit. In Pro-
ceedings of EUROSPEECH, vol. 1, pages 2707–2710,
Rhodes, Greece.

Ahmad Emami, Kishore Papineni, and Jeffrey Sorensen.
2007. Large-scale distributed language modeling. In
Proceedings of the IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP)
2007, Hawaii, USA.

J. Goodman and J. Gao. 2000. Language model size re-
duction by pruning and clustering. In ICSLP’00, Bei-
jing, China.

S. Lloyd. 1982. Least squares quantization in PCM.
IEEE Transactions on Information Theory, 28(2):129–
137.

B.S. Majewski, N.C. Wormald, G. Havas, and Z.J. Czech.
1996. A family of perfect hashing methods. British
Computer Journal, 39(6):547–554.

Franz J. Och and Hermann Ney. 2004. The alignment
template approach to statistical machine translation.
Computational Linguistics, 30(4):417–449.

Andreas Stolcke. 1998. Entropy-based pruning of back-
off language models. In Proc. DARPA Broadcast News
Transcription and Understanding Workshop, pages
270–274.

D. Talbot and M. Osborne. 2007a. Randomised language
modelling for statistical machine translation. In 45th
Annual Meeting of the ACL 2007, Prague.

D. Talbot and M. Osborne. 2007b. Smoothed Bloom
filter language models: Tera-scale LMs on the cheap.
In EMNLP/CoNLL 2007, Prague.

513

