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Abstract

In this work, we develop and evaluate a wide
range of feature spaces for deriving Levin-
style verb classifications (Levin, 1993). We
perform the classification experiments using
Bayesian Multinomial Regression (an effi-
cient log-linear modeling framework which
we found to outperform SVMs for this task)
with the proposed feature spaces. Our exper-
iments suggest that subcategorization frames
are not the most effective features for auto-
matic verb classification. A mixture of syntac-
tic information and lexical information works
best for this task.

1 Introduction

Much research in lexical acquisition of verbs has
concentrated on the relation between verbs and their
argument frames. Many scholars hypothesize that
the behavior of a verb, particularly with respect to
the expression of arguments and the assignment of
semantic roles is to a large extent driven by deep
semantic regularities (Dowty, 1991; Green, 1974;
Goldberg, 1995; Levin, 1993). Thus measurements
of verb frame patterns can perhaps be used to probe
for linguistically relevant aspects of verb meanings.
The correspondence between meaning regularities
and syntax has been extensively studied in Levin
(1993) (hereafter Levin). Levin’s verb classes are
based on the ability of a verb to occur or not occur
in pairs of syntactic frames that are in some sense
meaning preserving (diathesis alternation). The fo-
cus is on verbs for which distribution of syntactic
frames is a useful indicator of class membership,
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and, correspondingly, on classes which are relevant
for such verbs. By using Levin’s classification, we
obtain a window on some (but not all) of the poten-
tially useful semantic properties of verbs.

Levin’s verb classification, like others, helps re-
duce redundancy in verb descriptions and enables
generalizations across semantically similar verbs
with respect to their usage. When the information
about a verb type is not available or sufficient for us
to draw firm conclusions about its usage, the infor-
mation about the class to which the verb type be-
longs can compensate for it, addressing the perva-
sive problem of data sparsity in a wide range of NLP
tasks, such as automatic extraction of subcategoriza-
tion frames (Korhonen, 2002), semantic role label-
ing (Swier and Stevenson, 2004; Gildea and Juraf-
sky, 2002), natural language generation for machine
translation (Habash et al., 2003), and deriving pre-
dominant verb senses from unlabeled data (Lapata
and Brew, 2004).

Although there exist several manually-created
verb lexicons or ontologies, including Levin’s verb
taxonomy, VerbNet, and FrameNet, automatic verb
classification (AVC) is still necessary for extend-
ing existing lexicons (Korhonen and Briscoe, 2004),
building and tuning lexical information specific to
different domains (Korhonen et al., 2006), and boot-
strapping verb lexicons for new languages (Tsang
et al., 2002).

AVC helps avoid the expensive hand-coding of
such information, but appropriate features must be
identified and demonstrated to be effective. In this
work, our primary goal is not necessarily to obtain
the optimal classification, but rather to investigate
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the linguistic conditions which are crucial for lex-
ical semantic classification of verbs. We develop
feature sets that combine syntactic and lexical infor-
mation, which are in principle useful for any Levin-
style verb classification. We test the general ap-
plicability and scalability of each feature set to the
distinctions among 48 verb classes involving 1,300
verbs, which is, to our knowledge, the largest in-
vestigation on English verb classification by far. To
preview our results, a feature set that combines both
syntactic information and lexical information works
much better than either of them used alone. In ad-
dition, mixed feature sets also show potential for
scaling well when dealing with larger number of
verbs and verb classes. In contrast, subcategoriza-
tion frames, at least on their own, are largely inef-
fective for AVC, despite their evident effectiveness
in supporting Levin’s initial intuitions.

2 Related Work

Earlier work on verb classification has generally
adopted one of the two approaches for devising sta-
tistical, corpus-based features.

Subcategorization frame (SCF): Subcategoriza-
tion frames are obviously relevant to alternation
behaviors. It is therefore unsurprising that much
work on verb classification has adopted them as fea-
tures (Schulte im Walde, 2000; Brew and Schulte im
Walde, 2002; Korhonen et al., 2003). However, rely-
ing solely on subcategorization frames also leads to
the loss of semantic distinctions. Consider the frame
NP-V-PPwith. The semantic interpretation of this
frame depends to a large extent on the NP argument
selected by the preposition with. In (1), the same
surface form NP-V-PPwith corresponds to three dif-
ferent underlying meanings. However, such seman-
tic distinctions are totally lost if lexical information
is disregarded.

(1) a. Tate witha fork. INSTRUMENT]
b. Ileft with a friend. [ACCOMPANIMENT]
c. Isang with confidence. MANNER]

This deficiency of unlexicalized subcategoriza-
tion frames leads researchers to make attempts to
incorporate lexical information into the feature rep-
resentation. One possible improvement over subcat-
egorization frames is to enrich them with lexical in-
formation. Lexicalized frames are usually obtained
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by augmenting each syntactic slot with its head noun
2.
(2  a. NP(D)-V-PP(with:fork)
b. NP(I)-V-PP(with:friend)
c. NP(I)-V-PP(with:confidence)

With the potentially improved discriminatory
power also comes increased exposure to sparse data
problems. Trying to overcome the problem of data
sparsity, Schulte im Walde (2000) explores the ad-
ditional use of selectional preference features by
augmenting each syntactic slot with the concept to
which its head noun belongs in an ontology (e.g.
WordNet). Although the problem of data sparsity
is alleviated to certain extent (3), these features
do not generally improve classification performance
(Schulte im Walde, 2000; Joanis, 2002).

(3)  a. NP(PERSON)-V-PP(with:ARTIFACT)
b. NP(PERSON)-V-PP(with:PERSON)
c. NP(PERSON)-V-PP(with: FEELING)

JOANISO07: Incorporating lexical information di-
rectly into subcategorization frames has proved in-
adequate for AVC. Other methods for combining
syntactic information with lexical information have
also been attempted (Merlo and Stevenson, 2001;
Joanis et al., 2007). These studies use a small col-
lection of features that require some degree of expert
linguistic analysis to devise. The deeper linguistic
analysis allows their feature set to cover a variety of
indicators of verb semantics, beyond that of frame
information. Joanis et al. (2007) reports an experi-
ment that involves 15 Levin verb classes. They de-
fine a general feature space that is supposed to be
applicable to all Levin classes. The features they
use fall into four different groups: syntactic slots,
slot overlaps, tense, voice and aspect, and animacy
of NPs.

e Syntactic slots: They encode the frequency of
the syntactic positions (e.g. SUBIJECT, OB-
JECT, PPar). They are considered approxima-
tion to subcategorization frames.

e Slot overlaps: They are supposed to capture
the properties of alternation by identifying if
a given noun can occur in different syntactic
positions relative to a particular verb. For in-
stance, in the alternation The ice melted and



The sun melted the ice, ice occurs in the sub-
ject position in the first sentence but in the ob-
ject position in the second sentence. An over-
lap feature records that there is a subject-object
alternation for melt.

e Tense, voice and aspect: Verb meaning and al-
ternations also interact in interesting ways with
tense, voice, and aspect. For example, mid-
dle construction is usually used in present tense
(e.g. The bread cuts easily).

e Animacy of NPs: The animacy of the seman-
tic role corresponding to the head noun in each
syntactic slot can also distinguish classes of
verbs.

Joanis et al. (2007) demonstrates that the gen-
eral feature space they devise achieves a rate of
error reduction ranging from 48% to 88% over a
chance baseline accuracy, across classification tasks
of varying difficulty. However, they also show that
their general feature space does not generally im-
prove the classification accuracy over subcategoriza-
tion frames (see table 1).

Experimental Task All Features | SCF
Average 2-way 83.2 80.4
Average 3-way 69.6 69.4
Average (> 6)-way 61.1 62.8

Table 1: Results from Joanis et al. (2007) (%)

3 Integration of Syntactic and Lexical
Information

In this study, we explore a wider range of features
for AVC, focusing particularly on various ways to
mix syntactic with lexical information.

Dependency relation (DR): Our way to over-
come data sparsity is to break lexicalized frames into
lexicalized slots (a.k.a. dependency relations). De-
pendency relations contain both syntactic and lexical
information (4).

4) a. SUBI(), PP(with:fork)
b. SUBI()), PP(with:friend)
c. SUBIJ(I), PP(with:confidence)

However, augmenting PP with nouns selected by
the preposition (e.g. PP(with:fork)) still gives rise
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to data sparsity. We therefore decide to break it
into two individual dependency relations: PP(with),
PP-fork. Although dependency relations have been
widely used in automatic acquisition of lexical infor-
mation, such as detection of polysemy (Lin, 1998)
and WSD (McCarthy et al., 2004), their utility in
AVC still remains untested.

Co-occurrence (CO): CO features mostly convey
lexical information only and are generally consid-
ered not particularly sensitive to argument structures
(Rohde et al., 2004). Nevertheless, it is worthwhile
testing whether the meaning components that are
brought out by syntactic alternations are also cor-
related to the neighboring words. In other words,
Levin verbs may be distinguished on the dimension
of neighboring words, in addition to argument struc-
tures. A test on this claim can help answer the ques-
tion of whether verbs in the same Levin class also
tend to share their neighboring words.

Adapted co-occurrence (ACO): Conventional
CO features generally adopt a stop list to filter out
function words. However, some of the functions
words, prepositions in particular, are known to carry
great amount of syntactic information that is related
to lexical meanings of verbs (Schulte im Walde,
2003; Brew and Schulte im Walde, 2002; Joanis
et al., 2007). In addition, whereas most verbs tend to
put a strong selectional preference on their nominal
arguments, they do not care much about the iden-
tity of the verbs in their verbal arguments. Based on
these observations, we propose to adapt the conven-
tional CO features by (1) keeping all prepositions
(2) replacing all verbs in the neighboring contexts of
each target verb with their part-of-speech tags. ACO
features integrate at least some degree of syntactic
information into the feature space.

SCF+CO: Another way to mix syntactic informa-
tion with lexical information is to use subcategoriza-
tion frames and co-occurrences together in hope that
they are complementary to each other, and therefore
yield better results for AVC.

4 Experiment Setup
4.1 Corpus

To collect each type of features, we use the Giga-
word Corpus, which consists of samples of recent
newswire text data collected from four distinct in-



ternational sources of English newswire.

4.2 Feature Extraction

We evaluate six different feature sets for their effec-
tiveness in AVC: SCF, DR, CO, ACO, SCF+CO,
and JOANIS07. SCF contains mainly syntactic in-
formation, whereas CO lexical information. The
other four feature sets include both syntactic and lex-
ical information.

SCF and DR: These more linguistically informed
features are constructed based on the grammatical
relations generated by the C&C CCG parser (Clark
and Curran, 2007). Take He broke the door with a
hammer as an example. The grammatical relations
generated are given in table 2.

he broke the door with a hammer.
(det door_3 the_2)

(dobj _ broke_1 door_3)

(det hammer_6 a_5)

(dobj with_4 hammer_6)

(iobj broke_1 with_4)

(ncsubj broke_1 He_0 )

Table 2: grammatical relations generated by the parser

We first build a lexicalized frame for the verb
break: NP1(he)-V-NP2(door)-PP(with:hammer).
This is done by matching each grammatical label
onto one of the traditional syntactic constituents.
The set of syntactic constituents we use is summa-
rized in table 3.

constituent | remark
NP1 subject of the verb
NP2 object of the verb
NP3 indirect object of the verb
PPp prepositional phrase
TO infinitival clause
GER gerund
THAT sentential complement headed by that
WH sentential complement headed by a wh-word
ADJP adjective phrase
ADVP adverb phrase

Table 3: Syntactic constituents used for building SCFs

Based on the lexicalized frame, we construct
an SCF NP1-NP2-PPwith for break. The set of
DRs generated for break is [SUBJ(he), OBJ(door),
PP(with), PP-hammer].

CO: These features are collected using a flat 4-
word window, meaning that the 4 words to the
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left/right of each target verb are considered poten-
tial CO features. However, we eliminate any CO
features that are in a stopword list, which con-
sists of about 200 closed class words including
mainly prepositions, determiners, complementizers
and punctuation. We also lemmatize each word us-
ing the English lemmatizer as described in Minnen
et al. (2000), and use lemmas as features instead of
words.

ACO: As mentioned before, we adapt the conven-
tional CO features by (1) keeping all prepositions
(2) replacing all verbs in the neighboring contexts of
each target verb with their part-of-speech tags. (3)
keeping words in the left window only if they are
tagged as a nominal.

SCF+CO: We combine the SCF and CO features.

JOANIS07: We use the feature set proposed in
Joanis et al. (2007), which consists of 224 features.
We extract features on the basis of the output gener-
ated by the C&C CCG parser.

4.3 Verb Classes

Our experiments involve two separate sets of verb
classes:

Joanis15: Joanis et al. (2007) manually selects
pairs, or triples of classes to represent a range of
distinctions that exist among the 15 classes they in-
vestigate. For example, some of the pairs/triples are
syntactically dissimilar, while others show little syn-
tactic distinction across the classes.

Levind48: Earlier work has focused only on a
small set of verbs or a small number of verb classes.
For example, Schulte im Walde (2000) uses 153
verbs in 30 classes, and Joanis et al. (2007) takes
on 835 verbs and 15 verb classes. Since one of our
primary goals is to identify a general feature space
that is not specific to any class distinctions, it is of
great importance to understand how the classifica-
tion accuracy is affected when attempting to classify
more verbs into a larger number of classes. In our
automatic verb classification, we aim for a larger
scale experiment. We select our experimental verb
classes and verbs as follows: We start with all Levin
197 verb classes. We first remove all verbs that be-
long to at least two Levin classes. Next, we remove
any verb that does not occur at least 100 times in
the English Gigaword Corpus. All classes that are
left with at least 10 verbs are chosen for our experi-



ment. This process yields 48 classes involving about
1,300 verbs. In our automatic verb classification ex-
periment, we test the applicability of each feature
set to distinctions among up to 48 classes '. To our
knowledge, this is, by far, the largest investigation
on English verb classification.

5 Machine Learning Method

5.1 Preprocessing Data

We represent the semantic space for verbs as a ma-
trix of frequencies, where each row corresponds to
a Levin verb and each column represents a given
feature. We construct a semantic space with each
feature set. Except for JONAIS07 which only con-
tains 224 features, all the other feature sets lead to a
very high-dimensional space. For instance, the se-
mantic space with CO features contains over one
million columns, which is too huge and cumber-
some. One way to avoid these high-dimensional
spaces is to assume that most of the features are irrel-
evant, an assumption adopted by many of the previ-
ous studies working with high-dimensional seman-
tic spaces (Burgess and Lund, 1997; Pado and La-
pata, 2007; Rohde et al., 2004). Burgess and Lund
(1997) suggests that the semantic space can be re-
duced by keeping only the k columns (features) with
the highest variance. However, Rohde et al. (2004)
have found it is simpler and more effective to dis-
card columns on the basis of feature frequency, with
little degradation in performance, and often some
improvement. Columns representing low-frequency
features tend to be noisier because they only involve
few examples. We therefore apply a simple fre-
quency cutoff for feature selection. We only use fea-
tures that occur with a frequency over some thresh-
old in our data.

In order to reduce undue influence of outlier fea-
tures, we employ the four normalization strategies in
table 4, which help reduce the range of extreme val-
ues while having little effect on others (Rohde et al.,
2004). The raw frequency (w,, r) of a verb v oc-
curring with a feature fis replaced with the normal-

'In our experiment, we only use monosemous verbs from
these 48 verb classes. Due to the space limit, we do not list the
48 verb classes. The size of the most classes falls in the range
between 10 to 30, with a couple of classes having a size over
100.
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ized value (w;, f), according to each normalization
method. Our experiments show that using correla-
tion for normalization generally renders the best re-
sults. The results reported below are obtained from
using correlation for normalization.

/
w =
v, f

Wy F
25 W,
w,u,f
2 wi,f
Zj le) j1/2
T“H;,f_zj' wv,jZi Wi, f
() wo i (T=3; wy )5, wi p (T—32; wy f))1/?

l T=3%, Zj Wi, j

column

|
row ‘
|
length ‘

correlation

Table 4: Normalization techniques

To preprocess data, we first apply a frequency cut-
off to our data set, and then normalize it using the
correlation method. To find the optimal threshold
for frequency cut, we consider each value between 0
and 10,000 at an interval of 500. In our experiments,
results on training data show that performance de-
clines more noticeably when the threshold is lower
than 500 or higher than 10,000. For each task and
feature set, we select the frequency cut that offers
the best accuracy on the preprocessed training set
according to k-fold stratified cross validation 2.

5.2 Classifier

For all of our experiments, we use the software that
implements the Bayesian multinomial logistic re-
gression (a.k.a BMR). The software performs the so-
called 1-of-k classification (Madigan et al., 2005).
BMR is similar to Maximum Entropy. It has been
shown to be very efficient with handling large num-
bers of features and extremely sparsely populated
matrices, which characterize the data we have for
AVC 3. To begin, let x = [z1, ..., 7, ..., 74)T be a
vector of feature values characterizing a verb to be
classified. We encode the fact that a verb belongs
toaclass k£ € 1,..., K by a K-dimensional 0/1 val-
ued vector y = (y1,...,yx)" , where y; = 1 and all
other coordinates are 0. Multinomial logistic regres-

210-fold for Joanis15 and 9-fold for Levin48. We use a bal-
anced training set, which contains 20 verbs from each class in
Joanis15, but only 9 verbs from each class in Levin48.

3We also tried Chang and Lin (2001)’s LIBSVM library for
Support Vector Machines (SVMs), however, BMR generally
outperforms SVMs.



sion is a conditional probability model of the form,
parameterized by the matrix 5 = [(1, ..., Ok]. Each
column of (3 is a parameter vector corresponding to
one of the classes: By = [Br1, -+, Bral” -

Py = 1|6k, @) = exp(B z)/ Y eap(Bf, )

ki

6 Results and Discussion

6.1 Evaluation Metrics

Following Joanis et al. (2007), we adopt a single
evaluation measure - macro-averaged recall - for all
of our classification tasks. As discussed below, since
we always use balanced training sets for each indi-
vidual task, it makes sense for our accuracy metric to
give equal weight to each class. Macro-averaged re-
call treats each verb class equally, so that the size of
a class does not affect macro-averaged recall. It usu-
ally gives a better sense of the quality of classifica-
tion across all classes. To calculate macro-averaged
recall, the recall value for each individual verb class
has to be computed first.

no. of test verbs in class c correctly labeled
recall =

no. of test verbs in class c

With a recall value computed for each verb class,
the macro-averaged recall can be defined by:

1

macro-averaged recall = Z recall for class c

|C‘ ceC
C : asetof verb classes

¢ : an individual verd class

|C| : the number of verb classes

6.2 Joanisl5s

With those manually-selected 15 classes, Joanis
et al. (2007) conducts 11 classification tasks includ-
ing six 2-way classifications, two 3-way classifica-
tions, one 6-way classification, one 8-way classifi-
cation, and one 14-way classification. In our exper-
iments, we replicate these 11 classification tasks us-
ing the proposed six different feature sets. For each
classification task in this task set, we randomly se-
lect 20 verbs from each class as the training set. We
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repeat this process 10 times for each task. The re-
sults reported for each task is obtained by averaging
the results of the 10 trials. Note that for each trial,
each feature set is trained and tested on the same
training/test split.

The results for the 11 classification tasks are sum-
marized in table 5. We provide a chance baseline
and the accuracy reported in Joanis et al. (2007) 4 for
comparison of our results. A few points are worth
noting:

e Although widely used for AVC, SCF, at least
when used alone, is not the most effective fea-
ture set. Our experiments show that the per-
formance achieved by using SCF is generally
worse than using the feature sets that mix syn-
tactic and lexical information. As a matter of
fact, it even loses to the simplest feature set CO
on 4 tasks, including the 14-way task.

e The two feature sets (DR, SCF+CQO) we pro-
pose that combine syntactic and lexical infor-
mation generally perform better than those fea-
ture sets (SCF, CO) that only include syntactic
or lexical information. Although there is not a
clear winner, DR and SCF+CO generally out-
perform other feature sets, indicating that they
are effective ways for combining syntactic and
lexical information. In particular, these two
feature sets perform comparatively well on the
tasks that involve more classes (e.g. 14-way),
exhibiting the tendency to scale well with larger
number of verb classes and verbs. Another fea-
ture set that combines syntactic and lexical in-
formation, ACO, which keeps function words
in the feature space to preserve syntactic infor-
mation, outperforms the conventional CO on
the majority of tasks. All these observations
suggest that how to mix syntactic and lexical
information is one of keys to an improved verb
classification.

e Although JOANISO07 also combines syntactic
and lexical information, its performance is not
comparable to that of other feature sets that mix
syntactic and lexical information. In fact, SCF

*Joanis et al. (2007) is different from our experiments in that
they use a chunker for feature extraction and the Support Vector
Machine for classification.



Experimental Task Random As Reported in Feature Set
Baseline | Joanis et al. (2007) | SCF | DR CO | ACO | SCF+CO | JOANISO7

1) Benefactive/Recipient 50 86.4 88.6 | 884 | 88.2 | 89.1 90.7 88.9
2) Admire/Amuse 50 93.9 96.7 | 97.5 | 92.1 | 90.5 96.4 96.6
3) Run/Sound 50 86.8 854 | 89.6 | 91.8 | 90.2 90.5 87.1
4) Light/Sound 50 75.0 74.8 | 90.8 | 869 | 89.7 88.8 82.1
5) Cheat/Steal 50 76.5 77.6 | 80.6 | 72.1 75.5 77.8 76.4
6) Wipe/Steal 50 80.4 84.8 | 80.6 | 79.0 | 79.4 84.4 83.9
7) Spray/Fill/Putting 333 65.6 73.0 | 72.8 | 59.6 | 66.6 73.8 69.6
8) Run/State Change/Object drop 333 74.2 748 | 772 | 769 | 77.6 80.5 75.5
9) Cheat/Steal/Wipe/Spray/Fill/Putting 16.7 64.3 649 | 651 | 548 | 59.1 65.0 64.3
10) 9)/Run/Sound 12.5 61.7 623 | 658 | 557 | 60.8 66.9 63.1
11) 14-way (all except Benefactive) 7.1 58.4 564 | 657 | 575 59.6 66.3 57.2

Table 5: Experimental results for Joanis15 (%)

and JOANISO7 yield similar accuracy in our
experiments, which agrees with the findings in
Joanis et al. (2007) (compare table 1 and 5).

6.3 Levind8

Recall that one of our primary goals is to identify
the feature set that is generally applicable and scales
well while we attempt to classify more verbs into a
larger number of classes. If we could exhaust all the
possible n-way (2 < n < 48) classification tasks
with the 48 Levin classes we will investigate, it will
allow us to draw a firmer conclusion about the gen-
eral applicability and scalability of a particular fea-
ture set. However, the number of classification tasks
grows really huge when n takes on certain value (e.g.
n = 20). For our experiments, we set n to be 2, 5,
10, 20, 30, 40, or 48. For the 2-way classification,
we perform all the possible 1,028 tasks. For the 48-
way classification, there is only one possible task.
We randomly select 100 n-way tasks each for n =
5, 10, 20, 30, 40. We believe that this series of tasks
will give us a reasonably good idea of whether a par-
ticular feature set is generally applicable and scales
well.

The smallest classes in Levin48 have only 10
verbs. We therefore reduce the number of training
verbs to 9 for each class. For each n =2, 5, 10, 20,
30, 40, 48, we will perform certain number of n-way
classification tasks. For each n-way task, we ran-
domly select 9 verbs from each class as training data,
and repeat this process 10 times. The accuracy for
each n-way task is then computed by averaging the
results from these 10 trials. The accuracy reported
for the overall n-way classification for each selected
n, is obtained by averaging the results from each in-
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dividual n-way task for that particular n. Again, for
each trial, each feature set is trained and tested on
the same training/test split.

The results for Levind8 are presented in table 6,
which clearly reveals the general applicability and
scalability of each feature set.

e Results from Levin48 reconfirm our finding
that SCF is not the most effective feature set for
AVC. Although it achieves the highest accuracy
on the 2-way classification, its accuracy drops
drastically as n gets bigger, indicating that SCF
does not scale as well as other feature sets when
dealing with larger number of verb classes. On
the other hand, the co-occurrence feature (CO),
which is believed to convey only lexical infor-
mation, outperforms SCF on every n-way clas-
sification when n > 10, suggesting that verbs
in the same Levin classes tend to share their
neighboring words.

e The three feature sets we propose that com-
bine syntactic and lexical information generally
scale well. Again, DR and SCF+CO gener-
ally outperform all other feature sets on all n-
way classifications, except the 2-way classifica-
tion. In addition, ACO achieves a better perfor-
mance on every n-way classification than CO.
Although SCF and CO are not very effective
when used individually, they tend to yield the
best performance when combined together.

e Again, JOANISO07 does not match the perfor-
mance of other feature sets that combine both
syntactic and lexical information, but yields
similar accuracy as SCF.



. . Feature Set
Experimental Task | No of Tasks | Random Baseline SCF DR co ACO | SCE+CO | JOANISO7

2-way 1,028 50 84.0 | 834 | 77.8 80.9 82.9 82.4
5-way 100 20 719 | 764 | 704 | 73.0 77.3 72.2
10-way 100 10 65.8 | 73.7 | 68.8 | 71.2 72.8 65.9
20-way 100 5 514 | 65.1 | 58.8 | 60.1 65.8 50.7
30-way 100 3.3 46.7 | 569 | 48.6 | 51.8 57.8 47.1
40-way 100 2.5 436 | 54.8 | 47.3 | 499 55.1 44.2
48-way 1 2.2 39.1 | 51.6 | 424 | 46.8 52.8 38.9

Table 6: Experimental results for Levin48 (%)

6.4 Further Discussion

Previous studies on AVC have focused on using
SCFs. Our experiments reveal that SCFs, at least
when used alone, compare poorly to the feature sets
that mix syntactic and lexical information. One ex-
planation for the poor performance could be that we
use all the frames generated by the CCG parser in
our experiment. A better way of doing this would
be to use some expert-selected SCF set. Levin clas-
sifies English verbs on the basis of 78 SCFs, which
should, at least in principle, be good at separating
verb classes. To see if Levin-selected SCFs are
more effective for AVC, we match each SCF gen-
erated by the C&C CCG parser (CCG-SCF) to one
of 78 Levin-defined SCFs, and refer to the resulting
SCF set as unfiltered-Levin-SCF. Following stud-
ies on automatic SCF extraction (Brent, 1993), we
apply a statistical test (Binomial Hypothesis Test) to
the unfiltered-Levin-SCF to filter out noisy SCFs,
and denote the resulting SCF set as filtered-Levin-
SCF. We then perform the 48-way task (one of
Levin48) with these two different SCF sets. Recall
that using CCG-SCF gives us a macro-averaged re-
call of 39.1% on the 48-way task. Our experiments
show that using unfiltered-Levin-SCF and filtered-
Levin-SCEF raises the accuracy to 39.7% and 40.3%
respectively. Although a little performance gain has
been obtained by using expert-defined SCFs, the ac-
curacy level is still far below that achieved by using
a feature set that combines syntactic and semantic
information. In fact, even the simple co-occurrence
feature (CO) yields a better performance (42.4%)
than these Levin-selected SCF sets.

7 Conclusion and Future Work

We have performed a wide range of experiments
to identify which features are most informative in
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AVC. Our conclusion is that both syntactic and lex-
ical information are useful for verb classification.
Although neither SCF nor CO performs well on its
own, a combination of them proves to be the most in-
formative feature for this task. Other ways of mixing
syntactic and lexical information, such as DR, and
ACO, work relatively well too. What makes these
mixed feature sets even more appealing is that they
tend to scale well in comparison to SCF and CO. In
addition, these feature sets are devised on a general
level without relying on any knowledge about spe-
cific classes, thus potentially applicable to a wider
range of class distinctions. Assuming that Levin’s
analysis is generally applicable across languages in
terms of the linking of semantic arguments to their
syntactic expressions, these mixed feature sets are
potentially useful for building verb classifications
for other languages.

For our future work, we aim to test whether an
automatically created verb classification can be ben-
eficial to other NLP tasks. One potential applica-
tion of our verb classification is parsing. Lexicalized
PCFGs (where head words annotate phrasal nodes)
have proved a key tool for high performance PCFG
parsing, however its performance is hampered by
the sparse lexical dependency exhibited in the Penn
Treebank. Our experiments on verb classification
have offered a class-based approach to alleviate data
sparsity problem in parsing. It is our goal to test
whether this class-based approach will lead to an im-
proved parsing performance.
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