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Abstract

Many factors are thought to increase the
chances of misrecognizing a word in ASR,
including low frequency, nearby disfluencies,
short duration, and being at the start of a turn.
However, few of these factors have been for-
mally examined. This paper analyzes a variety
of lexical, prosodic, and disfluency factors to
determine which are likely to increase ASR er-
ror rates. Findings include the following. (1)
For disfluencies, effects depend on the type of
disfluency: errorsncreaseby up to 15% (ab-
solute) for words near fragments, luldcrease

by up to 7.2% (absolute) for words near repeti-
tions. This decrease seems to be due to longer
word duration. (2) For prosodic features, there
are more errors for words wittxtremevalues
than words withtypical values. (3) Although
our results are based on output from a system
with speaker adaptation, speaker differences
are a major factor influencing error rates, and
the effects of features such as frequency, pitch,
and intensity may vary between speakers.

and Furui, 2001). Siegler and Stern (1995) and
Shinozaki and Furui (2001) also found higher er-
ror rates in very slow speech. Word length (in
phones) has also been found to be a useful pre-
dictor of higher error rates (Shinozaki and Furui,
2001). In Hirschberg et al's (2004) analysis of
two human-computer dialogue systems, misrecog-
nized turns were found to have (on average) higher
maximum pitch and energy than correctly recog-
nized turns. Results for speech rate were ambiguous:
faster utterances had higher error rates in one corpus,
but lower error rates in the other. Finally, Adda-
Decker and Lamel (2005) demonstrated that both
French and English ASR systems had more trouble
with male speakers than female speakers, and found
several possible explanations, including higher rates
of disfluencies and more reduction.

Many questions are left unanswered by these pre-
vious studies. In the word-level analyses of Fosler-
Lussier and Morgan (1999) and Shinozaki and Fu-
rui (2001), only substitution and deletion errors were
considered, so we do not know how including inser-
tions might affect the results. Moreover, these stud-

1 Introduction : S ) :
ies primarily analyzed lexical, rather than prosodic,

In order to improve the performance of automatidactors. Hirschberg et al.’s (2004) work suggests that
speech recognition (ASR) systems on conversationptosodic factors can impact error rates, but leaves
speech, it is important to understand the factorgpen the question of which factors are important at
that cause problems in recognizing words. Previoube word level and how they influence recognition
work on recognition of spontaneous monologuesf natural conversational speech. Adda-Decker and
and dialogues has shown that infrequent words ateamel’s (2005) suggestion that higher rates of dis-
more likely to be misrecognized (Fosler-Lussier anfluency are a cause of worse recognition for male
Morgan, 1999; Shinozaki and Furui, 2001) and thadpeakers presupposes that disfluencies raise error
fast speech increases error rates (Siegler and Sterates. While this assumption seems natural, it has
1995; Fosler-Lussier and Morgan, 1999; Shinozakiet to be carefully tested, and in particular we do not
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know whether disfluent words are associated with Ins Del Sub Total % data

errors in adjacent words, or are simply more likely to Full word 16 6.9 105 19.0 94.2
be misrecognized themselves. Other factors that ar&illed pause 0.6 - 164 17.0 2.8
often thought to affect a word’s recognition, such asFragment 2.3 - 17.3 196 2.0
its status as a content or function word, and whetheiBackchannel 0.3 30.7 5.0 36.0 0.6
it starts a turn, also remain unexamined. Guess 1.6 - 306 321 0.4
The present study is designed to address all ofTotal 16 6.7 109 197 100

these questions by analyzing the effects of a wide

range of lexical and prosodic factors on the accurable 1: Individual word error rates for different word
racy of an English ASR system for conversationdlypes, and the proportion of words belonging to each
telephone speech. In the remainder of this paper, vige. Deletions of filled pauses, fragments, a_nd guesses
first describe the data set used in our study and intrgre not counted as errors in the standard scoring method.
duce a new measure of errandividual word error

rate (IWER), that allows us to include insertion er-the adjacent words. We could then define IWER as
rors in our analysis, along with deletions and substit00(n; + ng + n,)/R, wheren;, ng4, andn, are the
tutions. Next, we present the features we collectegisertion, deletion, and substitution counts for indi-
for each word and the effects of those features indiddual words (withn; = D andng = S). In general,
vidually on IWER. Finally, we develop a joint sta- however,n; > I, so that the IWER for a given data
tistical model to examine the effects of each featureet would be larger than the WER. To facilitate com-

while controlling for possible correlations. parisons with standard WER, we therefore discount
insertions by a factoty, such thatvn; = I. In this
2 Data study,a = .617.

For our analysis, we used the output from thg Analysis of individual features

SRI/ICSI/UW RT-04 CTS system (Stolcke et al.,

2006) on the NIST RT-03 development set. This sys>-1  Features

tem’s performance was state-of-the-art at the time dthe reference transcriptions used in our analysis

the 2004 evaluation. The data set contains 36 teldistinguish between five different types of words:

phone conversations (72 speakers, 38477 refererfgéed pauses m, ub), fragments \yh-, redistr-),

words), half from the Fisher corpus and half frombackchannelsuh-huh mm-hn), guesses (where the

the Switchboard corpu]s. transcribers were unsure of the correct words), and
The standard measure of error used in ASR il words (everything else). Error rates for each

word error rate(WER), computed a$00(/ + D +  of these types can be found in Table 1. The re-

S)/R, wherel, D and S are the number of inser- mainder of our analysis considers only the 36159 in-

tions, deletions, and substitutions found by alignvocabulary full words in the reference transcriptions

ing the ASR hypotheses with the reference trarlz0 OOV full words are excluded). We collected the

scriptions, andR is the number of reference words.following features for these words:

Since we wish to know what features of a referenc

. . peaker sexMale or female.

word increase the probability of an error, we nee§

a way to measure the errors attributable to individBroad syntactic class Open class (e.g., nouns and

ual words — arindividual word error rate(IWER). ~ Verbs), closed class (e.g., prepositions and articles),

We assume that a substitution or deletion error ca®l discourse marker (e.gokay, wel). Classes were

be assigned to its corresponding reference word, bigentified using a POS tagger (Ratnaparkhi, 1996)

for insertion errors, there may be two adjacent refrained on the tagged Switchboard corpus.

erence words that could be responsible. Our s@-og probability The unigram log probability of

lution is to assign any insertion errors to each ogach word, as listed in the system’s language model.

LThese conversations are not part of the standard Fisher aM¥Ord length The length of each word (in phones),
Switchboard corpora used to train most ASR systems. determined using the most frequent pronunciation
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BefRep FirRep MidRep LastRep AfRep BefFP AfFP BefFr AfFr
yeah [ i i thi nk you should um ask for the ref- recomendation

Figure 1: Example illustrating disfluency features: wordswring before and after repetitions, filled pauses, and
fragments; first, middle, and last words in a repeated semuen

found for that word in the recognition lattices. 3.2 Results and discussion

Position near disfluency A collection of features Results of our analysis of individual features can be
indicating whether a word occurred before or after ound in Table 2 (for categorical features) and Figure
filled pause, fragment, or repeated word; or whethe (for numeric features). Comparing the error rates
the word itself was the first, last, or other word in &or the full-word and the no-contractions data sets in
sequence of repetitions. Figure 1 illustrates. Onlyable 2 verifies that removing contractions does not
identical repeated words with no intervening wordgreate systematic changes in the patterns of errors,
or filled pauses were considered repetitions. although it does lower error rates (and significance

First word of turn  Turn boundaries were assignedvalues) slightly overall. (Firstand middle repetitions
automatically at the beginning of any utterance fol@"® combined as non-final repetitions in the table,

lowing a pause of at least 100 ms during which th@ecause only 52 words were middle repetitions, and
other speaker spoke. their error rates were similar to initial repetitions.)

Speech rate The average speech rate (in phones pg.2.1 Disfluency features
second) was computed for each utterance using thePerhaps the most interesting result in Table 2 is

pronunciation dictionary extracted from the latticegy, ¢ the effects of disfluencies are highly variable de-
and the utterance boundary timestamps in the refeﬁ'ending on the type of disfluency and the position

ence transcriptions. of a word relative to it. Non-final repetitions and

In addition to the above features, we used Pradfords next to fragments have an IWER up to 15%

(Boersma and Weenink, 2007) to collect the follow{@Psolute)higher than the average word, while fi-

ing additional prosodic features on a subset of thlaal repetitions and words following repetitipns have
data obtained by excluding all contractichs: an IWER up to 7.2%ower. Words occurring be-
fore repetitions or next to filled pauses do not have

Pitch The minimum, maximum, mean, and rangesignificantly different error rates than words not in
of pitch for each word. those positions. Our results for repetitions support

Intensity The minimum, maximum, mean, ano|Shriberg’s (1995) hy.pqthesisthatthefinal word of a
range of intensity for each word. repeated sequence is in fact fluent.

Duration The duration of each word. 3.2.2 Other categorical features

Our results support the common wisdom that
pen class words have lower error rates than other
ords (although the effect we find is small), and that
words at the start of a turn have higher error rates.
Also, like Adda-Decker and Lamel (2005), we find

2Contractions were excluded before collecting prosodic feaﬂ‘lat male speakers have higher error rates than fe-
tures for the following reason. In the reference transcriptions

and alignments used for scoring ASR systems, contractions afﬂaa}'?s’ though in our data set the d'ﬁerence IS more
treated as two separate words. However, aside from speech r&#iking (3.6% absolute, compared to their 2.0%).

our prosodic features were collected using word-by-word times- -
tamps from a forced alignment that used a transcription whei@.2.3 Word probability and word length

gontractlons are tregted.as single wordsl,. Thus, the start and end.l_uming to Figure 2, we find (consistent with pre-
times for a contraction in the forced alignment correspond to

two words in the alignments used for scoring, and it is not cleaYiOUS results) that low-probability words have dra-
how to assign prosodic features appropriately to those words.matically higher error rates than high-probability

31017 words (85.8% of the full-word data set) re-
main in the no-contractions data set after removin
words for which pitch and/or intensity features coul
not be extracted.
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Filled Pau. | Fragment | Repetition Syntactic Class Sex

Bef Aft | Bef Aft | Bef Aft NonF Fin| Clos Open Disc| 1st M F | Al

(@ IWER 17.6 16.9| 338 21.6| 16.7 13.8 260 116 | 197 180 19.6| 212 | 206 17.0 | 18.8
%wds 1.7 17, 16 15| 07 0.9 1.2 11| 438 505 58 6.2| 525 475| 100
(b) IWER 17.6 17.2| 320 215 158 142 251 116 | 188 17.8 19.0| 20.3 | 200 164 | 18.3
%wds 19 18/ 16 15| 08 0.8 14 11] 439 496 6.6/ 6.4 | 522 47.8| 100

Table 2: IWER by feature and percentage of words exhibitirodp é@ature for (a) the full-word data set and (b) the no-
contractions data set. Error rates that are significantfgréint for words with and without a given feature (computed
using 10,000 samples in a Monte Carlo permutation test)raeld (p < .05) or bold italics (p < .005). Features
shown are whether a word occurs before or after a filled pdeggment, or repetition; is a non-final or final repetition;
is open class, closed class, or a discourse marker; is thevéird of a turn; or is spoken by a male or femakdl is
the IWER for the entire data set. (Overall IWER is slightly lovilean in Table 1 due to the removal of OOV words.)

words. More surprising is that word length inwith worse recognition than average values. We ex-
phones doenot seem to have a consistent effect ormplore this possibility further in Section 4.

IWER. Further analysis reveals a possible explana- . . o

tion: word length is correlated with duration, but# Analysis using a joint model

anti-correlated to the same degree with log proban the previous section, we investigated the effects
bility (the Kendallr statistics are .50 and -.49). Fig- of various individual features on ASR error rates.
ure 2 shows that words with longer duration havgjowever, there are many correlations between these
lower IWER. Since words with more phones tend tgeatures — for example, words with longer duration
have longer duration, but lower frequency, there igre likely to have a larger range of pitch and inten-
no overall effect of length. sity. In this section, we build a single model with all
of our features as potential predictors in order to de-
termine the effects of each feature after controlling
Figure 2 shows that means of pitch and intensitfor the others. We use the no-contractions data set so

have relatively little effect except at extreme valihat we can include prosodic features in our model.
ues, where more errors occur. In contrast, pitcBince only 1% of tokens have an IWER 1, we

and intensity range show clear linear trends, witlsimplify modeling by predicting only whether each
greater range of pitch or intensity leading to lowetoken is responsible for an error or not. That is, our
IWER 3 As noted above, decreased duration is aslependent variable is binary, taking on the value 1 if
sociated with increased IWER, and (as in previouBVER > 0 for a given token and 0 otherwise.

work), we find that IWER increases dramatically

.1 Model

for fast speech. We also see a tendency towards
higher IWER for very slow speech, consistent withT0 model data with a binary dependent variable, a
Shinozaki and Furui (2001) and Siegler and Sterl@gistic regression model is an appropriate choice.
(1995). The effects of pitch minimum and maximumin logistic regression, we model tHeg oddsas a
are not shown for reasons of space, but are similipear combination of feature values . . . z:

to pitch mean. Also not shpwn are intensity mini- IogL — Bozo+ 171 + - - . + Buin

mum (with more errors at higher values) and inten- 1-p

sity maximum (with more errors at lower values). wherep is the probability that the outcome occurs

For most of our prosodic features, as well as loghere, that a word is misrecognized) afigl. .. 3,

probability, extreme values seem to be associatette coefficients (feature weights) to be estimated.
- Standard logistic regression models assume that all

_ 3_Our decision to use _the_ Iog transf(_)rm of pitch range wagategorical features affixed effectsmeaning that
grlglnally based on the dlstrlbutlon of plt(?h range values in th%ll possible values for these features are known in
ata set. Exploratory data analysis also indicated that using the . . .
transformed values would likely lead to a better model fit (Sec@dvance, and each value may have an arbitrarily dif-
tion 4) than using the raw values. ferent effect on the outcome. However, features

3.2.4 Prosodic features
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Figure 2: Effects of numeric features on IWER of the SRI sysfenthe no-contractions data set. All feature values
were binned, and the average IWER for each bin is plotted, twélarea of the surrounding circle proportional to the
number of points in the bin. Dotted lines show the average VB the entire data set.

such as speaker identity do not fit this pattern. Ineorrelated with the mean values, making parameter
stead, we control for speaker differences by assurestimation in the combined model difficult. Prelimi-
ing that speaker identity is endom effegtmean- nary investigation indicated that using the mean val-
ing that the speakers observed in the data are a rares would lead to the best overall fit to the data.
dom sample from a larger population. The base- In addition to these basic fixed effects, our ini-
line probability of error for each speaker is thereforgial model included quadratic terms for all of the nu-
assumed to be a normally distributed random varmeric features, as suggested by our analysis in Sec-
able, with mean equal to the population mean, angbn 3, as well as random effects for speaker iden-
variance to be estimated by the model. Stated difity and word identity. All numeric features were
ferently, a random effect allows us to add a factorescaled to values between 0 and 1 so that coeffi-
to the model for speaker identity, without allowingcients are comparable.

arbitrary variation in error rates between speakers.

Models such as ours, with both fixed and randod.2 Results and discussion

effects,. are known asixed-effects modelgnd 'are _ Figure 3 shows the estimated coefficients and stan-
becoming a standard method for analyzing linguisya g errors for each of the fixed effect categorical

tic data (Baayen, 2008). We fit our models using thf’eatures remaining in the reduced model (i.e., after

Ime4 package (Bates, 2007) of R (R Devempmerﬁackwards elimination). Since all of the features are
Core Team, 2007). binary, a coefficient of3 indicates that the corre-
To analyze the joint effects of all of our featuressponding feature, when present, adds a weiglit of
we initially built as large a model as possible, ando the log odds (i.e., multiplies the odds of an error
usedbackwards eliminatiotio remove features one by a factor ofe?). Thus, features with positive co-
at a time whose presence did not contribute signifefficientsincreasethe odds of an error, and features
cantly (atp < .05) to model fit. All of the features with negative coefficientdecreasehe odds of an er-
shown in Table 2 were converted to binary variablegor. The magnitude of the coefficient corresponds to
and included as predictors in our initial model, alonghe size of the effect.
with a binary feature controlling for corpus (Fisher Interpreting the coefficients for our numeric fea-
or Switchboard), and all numeric features in Figuréures is less intuitive, since most of these variables
2. We did not include minimum and maximum val-have both linear and quadratic effects. The contribu-
ues for pitch and intensity because they are highlion to the log odds of a particular numeric feature
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‘n’gﬁffﬁgﬁep e : Similarly, male speakers still have higher error rates

after frag —— than females. This last result sheds some light on

efore frag ——

after FP [ the work of Adda-Decker and Lamel (2005), who

before PP - suggested several factors that could explain males’

sex=M —— . .

SoTpUS=SW ! higher error rates. In partlgular, they showed that
' ' ' ' ' ' males have higher rates of disfluency, produce words

-15 -1.0 -0.5 0.0 0.5 1.0

with slightly shorter durations, and use more alter-

Figure 3: Estimates and standard errors of the coefficienf@te (‘sloppy”) !oronunciations. Our joint mOd?I
for the categorical predictors in the reduced model.  controls for the first two of these factors, suggesting
that the third factor or some other explanation must

account for the remaining differences between males
5 _and females. One possibility is that female speech is
ax; + bxj. We plot these curves for each nUMeriG, o ool recognized because females tend to have
feature in Figure 4. Values on theaxes with posi- expanded vowel spaces (Diehl et al., 1996), a factor

tive y values indicate increased odds of an error, and ¢ j¢ agsociated with greater intelligibility (Brad-

negativey values_lndlcate e “low et al., 1996) and is characteristic of genres with
ror. Thex axes in these plots reflect the rescale

wer ASR error rates (Nakamura et al., 2008).
values of each feature, so that O corresponds to the

minimum value in the data set, and 1 to the maxi4.2.3 Prosodic features
mum value.

x;, with linear and quadratic coefficientsandb, is

Examining the effects of pitch and intensity indi-
4.2.1 Disfluencies vidually, we found that increased range for these fea-
In our analysis of individual features, we foungtures is associated with lower IWER, while higher

that different types of disfluencies have different efPItch and extremes of intensity are associated with
igher IWER. In the joint model, we see the same

fects: non-final repeated words and words near fra&- ;
ments have higher error rates, while final repetitionglcfeCt of pitch mean and an even stronger effect for

and words following repetitions have lower errofMensity, with the predicted odds of an error dra-
rates. After controlling for other factors, a differ-Matically higher for extreme intensity values. Mean-
ent picture emerges. There is no longer an effect f3¥Ni€, We no longer see a benefit for increased pitch
final repetitions or words after repetitions; all othef@N9€ and intensity; rathe.r, we see smgll quadratic
disfluency features increase the odds of an error I§ffeCts for both features, i.e. words with average
a factor of 1.3 to 2.9. These differences from Sed2nges of pitch and intensity are recognized more
tion 3 can be explained by noting that words nea(—F-asily than words with extreme values for these fea-
filed pauses and repetitions have longer duratiorfd"€S: As with disfluencies, we hypothesize that the

than other words (Bell et al., 2003). Longer duratiorll'near trends observed in Section 3 are primarily due

lowers IWER, so controlling for duration reveals thel© €ffécts of duration, since duration is moderately

negative effect of the nearby disfluencies. Our re_c_orrelgted with both log pitch range (= .35) and
sults are also consistent with Shriberg’s (1995) findNtensity rangef = .41). _
ings on fluency in repeated words, since final rep- Our final two prosodic features, duration and

etitions have no significant effect in our combinecPeech rate, showed strong linear and weak
model, while non-final repetitions incur a penalty. duadratic trends when analyzed individually. Ac-
cording to our model, both duration and speech rate

4.2.2 Other categorical features are still important predictors of error after control-
Without controlling for other lexical or prosodic ling for other features. However, as with the other

features, we found that a word is more likely toprosodic features, predictions of the joint model are

be misrecognized at the beginning of a turn, andominated by quadratic trends, i.e., predicted error

less likely to be misrecognized if it is an open classates are lower for average values of duration and

word. According to our joint model, these effectsspeech rate than for extreme values.

still hold even after controlling for other features. Overall, the results from our joint analysis suggest
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Figure 4: Predicted effect on the log odds of each numericifeaincluding linear and (if applicable) quadratic terms

Model Neg. log lik.  Diff.  df full model; in fact, this single parameter is more im-
Full 12932 0 32 portant than all of the lexical features combined. To
Reduced 12935 3 26

see which lexical items are causing the most diffi-

No lexical 13203 271 16 . . . . .
No prosodic 13387 455 20 culty, we examlngd the items with the _hlghest estl_—
No speaker 13432 500 31 mated increases in error. The top 20 items on this
No word 13267 335 31 list includeyup, yep, yes, buy, then, thaandr., all
Baseline 14691 1759 1 of which are acoustically similar to each other or to

other high-frequency words, as well as the waafls
Table 3: Fit to the data of various models. Degrees dkr, since, nowandthough which occur in many

freedom (df) for each model is the number of fixed efsyntactic contexts, making them difficult to predict
fects plus the number of random effects plus 1 (for thgz5ed on the language model.
intercept). Full model contains all predictorfi}educed

conta!ns only predlctor§ contributing significantly to fl'[;4.2.5 Differences between speakers
Baselinecontains only intercept. Other models are ob-

tained by removing features froRull. Diff is the differ- We examined the importance of the random effect
ence in log likelihood between each model . for speaker identity in a similar fashion to the ef-
fect for word identity. As shown in Table 3, speaker
identity is a very important factor in determining the
Hrobability of error. That is, the lexical and prosodic
variables examined here are not sufficient to fully
explain the differences in error rates between speak-
4.2.4 Differences between lexical items ers. In fact, the speaker effect is the single most im-

As discussed above, our model contains a randop®rtant factor in the model.

effect for word identity, to control for the possibil-  Given that the differences in error rates between
ity that certain lexical items have higher error ratespeakers are so large (average IWER for different
that are not explained by any of the other factorspeakers ranges from 5% to 51%), we wondered
in the model. It is worth asking whether this ran-whether our model is sufficient to capture the kinds
dom effect is really necessary. To address this quest speaker variation that exist. The model assumes
tion, we compared the fit to the data of two modelsthat each speaker has a different baseline error rate,
each containing all of our fixed effects and a ranbut that the effects of each variable are the same for
dom effect for speaker identity. One model also coneach speaker. Determining the extent to which this
tained a random effect for word identity. Results arassumption is justified is beyond the scope of this
shown in Table 3. The model without a random efpaper, however we present some suggestive results
fect for word identity is significantly worse than thein Figure 5. This figure illustrates some of the dif-

that, after controlling for other factorextremeval-
ues for prosodic features are associated with wor
recognition thanypical values.
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Figure 5: Estimated effects of various features on the eai@s of two different speakers (top and bottom). Dashed
lines illustrate the baseline probability of error for eagieaker. Solid lines were obtained by fitting a logistic esgr
sion model to each speaker’s data, with the variable lalmtatiez-axis as the only predictor.

ferences between two speakers chosen fairly arliies are normally obscured by the greater duration of
trarily from our data set. Not only are the baselinaearby words. (3) For most acoustic-prosodic fea-
error rates different for the two speakers, but the etures, words with extreme values have worse recog-
fects of various features appear to be very differenhition than words with average values. This effect
in one case even reversed. The rest of our data dmtcomes much more pronounced after controlling
exhibits similar kinds of variability for many of the for other factors. (4) After controlling for lexical
features we examined. These differences in ASR band prosodic characteristics, the lexical items with
havior between speakers are particularly interestirthe highest error rates are primarily homophones or
considering that the system we investigated here atear-homophones (e.dyvs. by, thenvs. than).
ready incorporates speaker adaptation models.  (5) Speaker differences account for much of the vari-
ance in error rates between words. Moreover, the di-
5 Conclusion rection and strength of effects of different prosodic

In this paper, we introduced thedividual word er- featurgs may vary between speakers. _
ror rate (IWER) for measuring ASR performance While we plan to extend our analysis to other

on individual words, including insertions as well a*SR Systéms in order to determine the generality
deletions and substitutions. Using IWER, we ang2f our findings, we have already gained important

lyzed the effects of various word-level lexical and"Sights into a number of factors that increase ASR
prosodic features, both individually and in a joint€/fOr rates. In addltlon,_ our results suggest a rlc_h
model. Our analysis revealed the following effectsarea for future research in further analyzing the vari-
(1) Words at the start of a turn have slightly highe?b'“ty _of both'IeX|caI and prosodic effects on ASR
IWER than average, and open class (content) wordhavior for different speakers.

have slightly lower IWER. These effects persist even

after controlling for other lexical and prosodic fac-Acknowledgments

tors. (2) Disfluencies heavily impact error rates:
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