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Abstract

Statistical parsing of noun phraser) struc-
ture has been hampered by a lack of gold-
standard data. This is a significant problem for
CCGbank, where binary branching deriva-
tions are often incorrect, a result of the auto-
matic conversion from the Penn Treebank.

We correct these errors in CCGbank using a
gold-standard corpus afpP structure, result-
ing in a much more accurate corpus. We also
implement noveNER features that generalise
the lexical information needed to parses
and provide important semantic information.
Finally, evaluating against DepBank demon-
strates the effectiveness of our modified cor-
pus and novel features, with an increase in
parser performance of 1.51%.

Introduction

(N
(N'N | ung)
(N
(N'N cancer) (N deaths) ) )

This structure is correct for most Englistes and

is the best solution that doesn’t require manual re-
annotation. However, the resulting derivations often
contain errors. This can be seen in the previous ex-
ample, wherd ung cancer should form a con-
stituent, but does not.

The first contribution of this paper is to correct
these CCGbank errors. We apply an automatic con-
version process using the gold-standarddata an-
notated by Vadas and Curran (2007a). Over a quar-
ter of the sentences in CCGbank need to be altered,
demonstrating the magnitude of the problem and
how important it is that these errors are fixed.

We then run a number of parsing experiments us-
ing our new version of the CCGbank corpus. In
particular, we implement new features usiRgR

by a number of widely-used parsers, e.g. Colling,qs from the BBN Entity Type Corpus (Weischedel
(2003). This is because their training data, the Pengyq grynstein, 2005). These features are targeted at

Treebank (Marcus et al.

Penn Treebank can be seen in this example:

, 1993), does not fully annG, oroving the recovery ofip structure, increasing
tateNp structure. The flat structure described by th‘f)arser performance by 0.64%

F-score.
Finally, we evaluate against DepBank (King et al.,

(NP (NN lung) (NN cancer) (NNS deaths)) 2003). This corpus annotates intermad structure,
CCGbank (Hockenmaier and Steedman, 2007) &nd so is particularly relevant for the changes we
the primary English corpus for Combinatory Catehave made to CCGbank. Thea parser now recov-
gorial Grammar ¢cG) (Steedman, 2000) and wasers additional structure learnt from owp corrected
created by a semi-automatic conversion from theorpus, increasing performance by 0.92%. Applying
Penn Treebank. Howeverca is a binary branch- theNER features results in a total increase of 1.51%.
ing grammar, and as such, cannot leawestructure This work allows parsers trained on CCGbank to
underspecified. Instea@ll NPs were made right- model NP structure accurately, and then pass this
branching, as shown in this example: crucial information on to downstream systems.
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(@ (b)
N N
N/N N N
| v \ . ~ |
cotton  conj N N/N N/N|conj] fibers
1 / AN | , N
and N/N N cotton conj N/N
| | l |
acetate fibers and acetate

N/N

Figure 1: (a) Incorreatcé derivation from Hockenmaier and Steedman (2007) (b) Theecbderivation

2 Background grammar. Lexical categories (also callapertagy
are made up of basic atoms such%gSentence)
and NP (Noun Phrase), which can be combined to
form complex categories. For example, a transitive
o _ verb such asought (as inl BM bought the

e (crude oil) prices- left-branching conpany) would have the category:S\ NP)/NP.

* world (oil prices)- right-branching The slashes indicate the directionality of arguments,
Lauer (1995) presents two models to solve this proliere two arguments are expected: Nansubject on
lem: the adjacency model, which compares the age |eft; and arnp object on the right. Once these
sociation strength between words 1-2 to words 2-3rguments are filled, a sentence is produced.
and the dependency model, which compares words categories are combined using combinatory rules

1-2 to words 1-3. Lauer (1995) experiments with &,,ch as forward and backward application:
data set of 244ps, and finds that the dependency X/YY = X (>) (1)

model is superior, achieving 80.7% accuracy.
Most NP bracketing research has used Lauer’s Yy X\Y = X () )
data set. Because it is a very small corpus, mo§ther rules such as composition and type-raising are
approaches have been unsupervised, measuring Bsed to analyse some linguistic constructions, while
sociation strength with counts from a separate largetaining the canonical categories for each word.
corpus. Nakov and Hearst (2005) use search engindis is an advantage @fcg, allowing it to recover
hit counts and extend the query set with typographiong-range dependencies without the need for post-
cal markers. This results in 89.3% accuracy. processing, as is the case for many other parsers.
Recently, Vadas and Curran (2007a) annotated in- In Section 1, we described the incorreet struc-
ternalNP structure for the entire Penn Treebank, protures in CCGbank, but a further problem that high-
viding a large gold-standard corpus fop bracket- lights the need to improvaPp derivations is shown
ing. Vadas and Curran (2007b) carry out superviseih Figure 1. When a conjunction occurs in &R, a
experiments using this data set of 36,584s, out- nhon-<carule is required in order to reach a parse:
performing the Collins (2003) parser. conj N = N (3)

The Vadas and Curran (2007a) annotation SChemg,is e treats the conjunction in the same manner

insertsNM. andJ JP brackets to describe the correctyg 4 modifier, and results in the incorrect derivation
NP structure, as shown below:

shown in Figure 1(a). Our work creates the correct
(NP (NML (NN lung) (NN cancer) ) cca derivation, shown in Figure 1(b), and removes
(NNS deat hs) ) the need for the grammar rule in (3).
We use these brackets to determine new gold- Honnibal and Curran (2007) have also made
standardccG derivations in Section 3. changes to CCGbank, aimed at better differentiat-
ing between complements and adjuncts. PropBank
(Palmer et al., 2005) is used as a gold-standard to in-
Combinatory Categorial Grammarc¢c) (Steed- form these decisions, similar to the way that we use
man, 2000) is a type-driven, lexicalised theory othe Vadas and Curran (2007a) data.

Parsing of\ps is typically framed asip bracketing,
where the task is limited to discriminating betwee
left and right-branchingups of three nouns only:

2.1 Combinatory Categorial Grammar
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(@ (b) (c)

N N N

7N VRN 7N
N/N N 777 777 N/N N
1 7/ AN / AN | - ~ |
lung N/N N 777 ???  deaths (N/N)/(N/N) N/N deaths

[ [ |

carllcer deaths lung callﬂcer lung carllcer

Figure 2: (a) Original right-branching CCGbank (b) Lefehching (c) Left-branching with new supertags

2.2 CCGparsing tokens. For example, we would insert tinsL

The C&C cca parser (Clark and Curran, 2007b) isPracket shown below:

used to perform our experiments, and to evaluatg NP (DT a) (-LRB- -LRB-)

the effect of the changes to CCGbank. The parser (NM. (RB very) (JJ negative) )
uses a two-stage system, first employing a supertag- (- RRB- -RRB-) (NN reaction) )

ger (Bangalore and Joshi, 1999) to propose |eXirpis simple heuristic capturase structure not ex-

cal categories for each word, and then applying thﬁlicitly annotated by Vadas and Curran (2007a).

CKY chart parsing algorithm. A log-linear model is The conversion algorithm applies the following
used to identify the most probable derivation, Whicr&teps for eachiM. or JJP bracket:

makes it possible to add the novel features we de-
scribe in Section 4, unlike RCFG 1. Identify the CCGbankowest spanning nodge
The C&C parser is evaluated on predicate- the lowest constituent that covers all of the

argument dependencies derived from CCGbank. words in theNwVL or JJP bracket;

These dependencies are represented as 5-tuple$. flatten the lowest spanning node, to remove the

(hy, f, s, ha, 1), wherehy is the head of the predi- right-branching structure;

cate; f is the supertag ok, s describes which ar- 3 insert new left-branching structure;

gument of f is being filled; , is the head of the  , identify heads:

argument; and encodes whether the dependency is 5 . )
. assign supertags;

local or long-range. For example, the dependency .

encodingconpany as the object obought (asin 6. generate new dependencies.

| BM bought the conpany)isrepresented by: As an example, we will follow the conversion pro-

bouaht. (S\NP;)/NP».2 4 cess for theNML bracket below:
(ouaht, (S\NP1)/NFa. 2, company. =) () (NP (NML (NN ung) (NN cancer) )

This is a local dependency, whezenpany is fill- (NNS deat hs) )

ing the second argument slot, the object. The corresponding lowest spanning node, which
incorrectly haxancer deat hs as a constituent,
is shown in Figure 2(a). To flatten the node, we re-
This section describes the process of converting thlmirsively remove brackets that partially overlap the
Vadas and Curran (2007a) datadoG derivations. NM bracket. Nodes that don't overlap at all are left
The tokens dominated byM. andJJP brackets in intact. This process results in a list of nodes (which
the source data are formed into constituents in th@ay or may not be leaves), which in our example is
corresponding CCGbank sentence. We generate theung, cancer ,deat hs]. We then insert the cor-
two forms of output that CCGbank contains: AUTOrect left-branching structure, shown in Figure 2(b).
files, which represent the tree structure of each seAd this stage, the supertags are still incomplete.
tence; and PARG files, which list the word—word de- Heads are then assigned using heuristics adapted
pendencies (Hockenmaier and Steedman, 2005). from Hockenmaier and Steedman (2007). Since we
We apply one preprocessing step on the Perare applying these to CCGbanle structures rather
Treebank data, where if multiple tokens are enclosdtian the Penn Treebank, thestag based heuristics
by brackets, then BIML node is placed around thoseare sufficient to determine heads accurately.

3 Conversion Process
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Finally, we assign supertags to the new structureluring the head-finding stage, and then assigned the
We want to make the minimal number of changesupertag dominating the entire coordination. Inter-
to the entire sentence derivation, and so the supertagning non-conjunct nodes are given the same cate-
of the dominating node is fixed. Categories are thegory with theconj feature, resulting in a derivation
propagated recursively down the tree. For a nodthat can be parsed with the standard CCGbank bi-
with categoryX, its head child is also given the cat-nary coordination rules:
egory X. The non-head child is always treated as

an adjunct, and given the categoXy/ X or X\ X as conj X = Xleonj] (8)
appropriate. Figure 2(c) shows the final result of this X Xeonj] = X )
step for our example. The derivation in Figure 1(b) is produced by these

corrections to coordination derivations. As a result,

. applications of the noiCcG rule shown in (3) have
The changes described so far have generated the 66N reduced from 1378 to 145 cases.

tree structure, but the last step is to generate new de-Some POS tags require special behaviour. De-

pendencies. We recursively traverse the tree, at €aglininers and possessive pronouns are both usually
level creatlng a dependency between the heads &(/en the supertagP[nb] /N, and this should not
the left and right children. These dependencies as changed by the conversion process. Accordingly,
never long-range, and therefore easy to deal itlq o not alter tokens withostags ofoT andPRPS.
We may also need to change dependencies reachip@ioaq  their sibling node is given the categafy
from inside to outside thep, if the head(s) of the 5, yheir parent node is made the head. The parent's
NP have changed. In these cases we simply replagg,jing is then assigned the appropriate adjunct cat-
the old hea_d(s) with the new one(s) in the relevarggory (usuallyNP\NP). Tokens with punctuation
dependencies. The number of heads may change Resq 444 4o not have their supertag changed either.
cause we now analyse conjunctions correctly. Finally, there are cases where the lowest span-
In our example, the original dependencies were:ning node covers a constituent that should not be
(lung, N /N1, 1, deaths, —) (5) E:rl:"inged. For example, in the followimgp:
(cancer, N /Ny, 1,deaths, —) (6) (NML (NN | ower) (NN court) )
(JJ final) (NN ruling) )
with the original CCGbank lowest spanning node:

(lung, (N/N1)/(N/N)g,2,cancer,—)  (7) (N (N'N | over)

To determine that the conversion process worked (N (NN cour t) .
correctly, we manually inspected its output for (N (NN final) (Nruling) ) ) )
unique tree structures in Sections 00—07. This idel€f i nal ruling node should not be altered.
tified problem cases to correct, such as those de-!t may seem trivial to process in this case, but

3.1 Dependency generation

while after the conversion process, (5) becomes:

scribed in the following section. consider a similarly structuredp: | ower court
ruling that the U S. can bar the use
3.2 Exceptional cases of . .. Our minimalist approach avoids reanalysing

Firstly, when the lowest spanning node covers thé1e many linguistic constructions that can be dom-
NML or JJP bracket exactly, no changes need to b#ated byNps, as this would reinvent the creation
made to CCGbank. These cases occur when CC@E CCGbank. As a result, we only flatten those
bank already received the correct structure duringonstituents that partially overlap tieL or JJP
the original conversion process. For example, bracleracket. The existing structure and dependencies of
ets separating a possessive from its possessor wetBer constituents are retained. Note that we are still
detected automatically. converting everyNML and JJP bracket, as even in

A more complex case is conjunctions, which ddhe subordinate clause example, only the structure
not follow the simple head/adjunct method of asaroundl ower court needs to be altered.
signing supertags. Instead, conjuncts are identified *period, comma, colon, and left and right bracket.
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the world s largest aid donor the world 's largest aid donor
NP[nb]/N N/N N NP\NP NP\NP NP\NP NP[nb]/N N (NP[nb]/N)\NP N/N N/N N
TN — n~NP N
NP NP[nb]/N N
NP NP
NP

NP
(@) (b)

Figure 3: CCGbank derivations for possessives

>

| # ]| % version process highlighted a number of instances
Possessive 224 | 43.75 where the original CCGbank analysis was incorrect.
Left child contains DT/PRP$ 87 | 16.99 An example of this error can be seen in Figure 3(a),
Couldn't assign to non-leaf 66 | 12.89 where the possessive doesn’t take any arguments.
Conjunction 35 6.84 Instead,largest aid donorincorrectly modifies the
Automatic conversion was correct 26 5.08 NPone word at a time. The correct derivation after
Entity with internal brackets 23 4.49 manual analysis is in (b).
DT 22 4.30 The second-most common cause occurs when
NML/JJP bracket is an error 12 2.34 there is apposition inside ther. This can be seen
Other 17 3.32 in Figure 4. As there is no punctuation on which
Total 512 | 100.00 to coordinate (which is how CCGbank treats most
appositions) the best derivation we can obtain is to
Table 1: Manual analysis haveVictor Borgemodify the precedingyp.
The final step in the conversion process was
3.3 Manual annotation to validate the corpus against tltecG grammar,

_ first by those productions used in the existing
A handful of problems that occurred during the CONtcGbank, and then against those actually licensed
yer_sion process were corrected manually. The fir§)ty ccG (with pre-existing ungrammaticalities re-
indicator of a problem was the presence of & po§;oyed). Sixteen errors were identified by this pro-
sessive. This is unexpected, because possessi@ss ang subsequently corrected by manual analysis.
were already bracketed properly when CCGbank In total, we have altered 12,475 CCGbank sen-

was originally created (Hockenmaier, 20@3,6.4). tences (25.5%) and 20.409 dependencies (1.95%
Secondly, a non-flattened node should not be as- (25.5%) ’ P (1.95%).

signed a supertag that it did not already have. Thi& NER features

is because, as described previously, a non-leaf node

could dominate any kind of structure. Finally, weNamed entity recognitionNER) provides informa-

expect the lowest spanning node to cover only thgon that is particularly relevant foup parsing, sim-

NML or JJP bracket and one more constituent to thely because entities are nouns. For example, know-

right. If it doesn't, because of unusual punctuationing thatAi r For ce is an entity tells us thadi r

or an incorrect bracket, then it may be an error. Ifforce contract is a left-branchingvp.

all these cases, which occur throughout the corpus, vadas and Curran (2007a) describe usirgtags

we manua"y analysed the derivation and fixed anMuring the annotation process, Suggesting NER-

errors that were observed. based features will be helpful in a statistical model.
512 cases were flagged by this approach, drhere has also been recent work combimimEg and

1.90% of the 26,993 brackets convertedtoc. Ta- parsing in the biomedical field. Lewin (2007) exper-

ble 1 shows the causes of these problems. The mastents with detecting basers usingNER informa-

common cause of errors was possessives, as the ctinn, while Buyko et al. (2007) use@rFto identify
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a guest comedian Victor Borge a guest comedian Victor Borge
NP[nb]/N N/N N/N N/N N NP[nb]/N N/N N  (NP\NP)/(NP\NP) NP\NP
N N NP\NP g

N
N

NP

NP

vV V. V V

NP
(a) (b)
Figure 4: CCGbank derivations for apposition widih

coordinate structure in biological named entities. the NE tags. Using the same example as above, one
We draw NE tags from the BBN Entity Type of the new features would be:
Corpus (Weischedel and Brunstein, 2005), which N — N/N N + CARD + NORP

describes 28 different entity types. These in- Tpe |ast group of features is based on te

clude the standard person, location and organizati%tegory spanned by each constituent. We iden-
classes, as well person descriptions (generally oCCliy, constituents that dominate tokens that all have
pations), NORP (National, Other, Religious or Potha samene tag, as these nodes will not cause a

litical groups),_and works of art. Some classes als‘?:rossing bracket” with the named entity. For ex-
have finer-grained subtypes, although we use onlyynie the constituerffor ce contract , in the
the coarse tags in our experiments. NP Ai r Force contract, spans two different

Clark and Curran (2007b) has a full descriptiorNEtagS’ and should be penalised by the modet.
of the C&C parser’s pre-existing features, to Whichgq, e on the other hand only spadBGtags, and
we have added a number of novetr-based fea- gou1d be preferred accordingly.

tures. Many of these features generalise the head\ye 4150 take into account whether the constituent
words and/orPostags that are already part of thegpang theentire named entity.  Combining these
feature sgt. T'he resylts of applying these features,qes with others of differente tags shouldnot
are described in Sections 5.3 and 6. be penalised by the model, as the must combine
The first feature is a simple lexical feature, deWith the rest of the sentence at some point.
scribing theNE tag of each token in the sentence. Thesene spanning features are implemented as
This feature, and all others that we describe herg,q grammar rule in combination with the parent
are not active when thee tag(s) ared, as there iSno \qde or the child nodes. For the former, one fea-
NER information from tokens thqt are not entities. 1 ,re is active when the node spans the entire entity,
The next group of features is based on the 105 another is active in other cases. Similarly, there
cal tree (a parent and two child nodes) formed bye four features for the child nodes, depending on
every grammar rule application. We add a feaghether neither, the left, the right or both nodes span
ture where the rule being applied is combined with,e entirene. As an example, if théi r For ce

the parentsNE tag. For example, when joining constituent were being joined wittont r act , then
two constituents (fi ve, CD, CARD, N/N) and the child feature would be:

(Eur opeans, NNPS, NORP, N ), the feature is: N — N/N N +LEFT +ORG+ 0

N — N/N N +NoRP assuming that there are mabdags to the right.
as the head of the constituentdar opeans.

In the same way, we implement features that con® EXxperiments

bine the grammar rule with the child nodes. Therg, . experiments are run with tH@8.C ccG parser

are a!reaij features i'n the model describing ea‘i‘@:lark and Curran, 2007b), and will evaluate the
combination of the children’s head words aPdS hanges made to CCGbank, as well as the effective-
tags, which we extend to include combinations with, .« ot thener features. We train on Sections 02-

2These 4-tuples are the node’s heads NE, and supertag. 21, and test on Section 00.
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\ PREC\ RECALL \ F-SCORE \ PREC\ RECALL \ F-SCORE

Original 91.85| 92.67 92.26 Original 83.65| 82.81 83.23
NP corrected| 91.22| 92.08 91.65 NP corrected| 83.31| 82.33 82.82
Table 2: Supertagging results Table 4: Parsing results with automatiostags

| PREC | RECALL | F-SCORE

PREC | RECALL | F-SCORE
Original 85.34| 84.55 84.94 ‘ ‘ ‘

NP corrected| 85.08| 84.17 84.63 Original 86.00| 85.15 85.58
NP corrected| 85.71| 84.83 85.27

Table 3: Parsing results with gold-standaristags ) .
Table 5: Parsing results wither features

5.1 Supertagging

Before we begin full parsing experiments, we evalway, asNP dependencies'remain undifferentiated.in
uate on the Supertagger alone. The Supertagger.ngrse-r OUtpUt. The resultis arecall O:f 77.03%, which
an important stage of theca parsing process, its is noticeably lower than the overall figure.

results will affect performance in later experiments. \We have also experimented with using automat-
Table 2 shows that F-score has dropped by 0.61%gally assignedrostags. These tags are accurate
This is not surprising, as the conversion process hagth an F-score of 96.34%, with precision 96.20%
increased the ambiguity of supertagsnips. Previ- and recall 96.49%. Table 4 shows that, unsur-
ously, a bareip could only have a sequencedf/ N prisingly, performance is lower without the gold-
tags followed by a finalvV. There are now more standard data. Thep corrected model drops an ad-
complex possibilities, equal to the Catalan numbeditional 0.1% F-score over the original model, sug-

of the length of thenp. gesting thatostags are particularly important for
o _ recovering internalP structure. Evaluatingip de-
5.2 Initial parsing results pendencies only, in the same manner as before, re-

We now compare parser performance onwecor-  sults in a recall figure of 75.21%.
rected version of the corpus to that on original CCG-
bank. We are using the normal-form parser model
and report labelled precision, recall and F-score fo?-3 NER featuresresults
all dependencies. The results are shown in Table 3.
able 5 shows the results of adding tRer fea-

The F-score drops by 0.31% in our new version of _ . _
the corpus. However, this comparison is not entirel{Hrés We described in Section 4. Performance has

fair, as the original CCGbank test data does not ifPcreased by 0.64% on both versions of the corpora.
clude thenp structure that theip corrected model is |t IS surprising that theup corrected increase is not
being evaluated on. Vadas and Curran (2007a) expd/ger, as we would expect the features to be less
rienced a similar drop in performance on Penn Tre&ffective on the original CCGbank. This is because
bank data, and noted that the F-score bt and incorrect right-branchingips such ag\ir Force con-
JJP brackets was about 20% lower than the overalfact would introduce noise to theer features.
figure. We suspect that a similar effect is causing the Table 6 presents the results of using automati-
drop in performance here. cally assignedpos and NE tags, i.e. parsing raw
Unfortunately, there are no expliciL andJJP  text. TheNER tagger achieves 84.45% F-score on
brackets to evaluate on in tleeeG corpus, and so an all non-O classes, with precision being 78.35% and
NP structure only figure is difficult to compute. Re-recall 91.57%. We can see that parsing F-score
call can be calculated by marking those dependeias dropped by about 2% compared to using gold-
cies altered in the conversion process, and evaluatistandardPos and NER data, however, theeR fea-
only on them. Precision cannot be measured in thisires still improve performance by about 0.3%.

341



\ PREC\ RECALL \ F-SCORE \ PREC\ RECALL \ F-SCORE

Original 83.92| 83.06 83.49 Original 86.86| 81.61 84.15
NP corrected| 83.62| 82.65 83.14 NP corrected| 87.97| 82.54 85.17
Table 6: Parsing results with automatiosandNE tags Table 7: DepBank gold-standard evaluation

| PREC| RECALL | F-SCORE
Original 82.57| 81.29 81.92

One problem with the evaluation in the previous sec- NP corrected 83.53| 82.15 | 82.84
tion, is that the original CCGbank is not expected to ©riginal, NER 82.87| 8149 | 82.17
recover internalp structure, making its task eas- NP COrrectedNER | 84.12| 82.75 | 83.43
ier and inflating its performance. To remove this

variable, we carry out a second evaluation against Table 8: DepBank evaluation results
the Briscoe and Carroll (2006) reannotation of Dep- ]

Bank (King et al., 2003), as described in Clark and Conclusion

Curran (2007a). Parser output is made similar to thene first contribution of this paper is the application
grammatical relationsRrs) of the Briscoe and Car- ¢ the Vadas and Curran (2007a) data to Combina-
roll (2006) data, however, the conversion remaing,, categorial Grammar. Our experimental results
complex. Clark and Curran (2007a) report an UpP§{aye shown that this more accurate representation
bound on performance, using gold-standard CCGst ccahank'snp structure increases parser perfor-
bank dependencies, of 84.76% F-score. mance. Our second major contribution is the intro-

This evaluation is particularly relevant faPs, as  duction of novelNER features, a source of semantic
the Briscoe and Carroll (2006) corphasbeen an- information previously unused in parsing.

notated for internakpP structure. With our new ver- As a result of this WOFk, internalip structure is
sion of CCGbank, the parser will be able to recovefiow recoverable by the&C parser, a result demon-
theseGRs correctly, where before this was unlikely. strated by our total performance increase of 1.51%
Firstly, we show the figures achieved using goldF-score. Even when parsing raw text, without gold
standard CCGbank derivations in Table 7. Inkire  standardpos and NER tags, our approach has re-
corrected version of the corpus, performance has isulted in performance gains.
creased by 1.02% F-score. This is a reversal of the In addition, we have made possible further in-
results in Section 5, and demonstrates that correcteases tolP structure accuracy. New features can
NP structure improves parsing performance, ratharow be implemented and evaluated icaG pars-
than reduces it. Because of this increase to the ujmg context. For example, bigram counts from a very
per bound of performance, we are now even closdgirge corpus have already been usediimbracket-
to a true formalism-independent evaluation. ing, and could easily be applied to parsing. Sim-
We now move to evaluating the&C parser it- ilarly, additional supertagging features can now be
self and the improvement gained by tRER fea- created to deal with the increased amblgUItY\IH’S
tures. Table 8 show our results, with the cor- DownstreanNLP components can now exploit the
rected version outperforming original CCGbank byerucial information inNp structure.
0.92%. Using theNER features has also caused an
increase in F-score, giving a total improvement oP‘
1.51%. These results demonstrate how successigle would like to thank Mark Steedman and
the correcting ofips in CCGbank has been. Matthew Honnibal for help with converting ther
Furthermore, the performance increase of 0.59%ata toccG; and the anonymous reviewers for their
on theNP corrected corpus is more than the 0.25%elpful feedback. This work has been supported by
increase on the original. This demonstrates ket the Australian Research Council under Discovery
features are particularly helpful fowp structure. Project DP0665973.
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