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Abstract

We present a novel hierarchical prior struc-
ture for supervised transfer learning in named
entity recognition, motivated by the common
structure of feature spaces for this task across
natural language data sets. The problem of
transfer learning, where information gained in
one learning task is used to improve perfor-
mance in another related task, is an important
new area of research. In the subproblem of do-
main adaptation, a model trained over a source
domain is generalized to perform well on a re-
lated target domain, where the two domains’
data are distributed similarly, but not identi-
cally. We introduce the concept of groups
of closely-related domains, calledgenres, and
show how inter-genre adaptation is related to
domain adaptation. We also examine multi-
task learning, where two domains may be re-
lated, but where the concept to be learned in
each case is distinct. We show that our prior
conveys useful information across domains,
genres and tasks, while remaining robust to
spurious signals not related to the target do-
main and concept. We further show that our
model generalizes a class of similar hierarchi-
cal priors, smoothed to varying degrees, and
lay the groundwork for future exploration in
this area.

1 Introduction

1.1 Problem definition

Consider the task ofnamed entity recognition
(NER). Specifically, you are given a corpus of news
articles in which all tokens have been labeled as ei-
ther belonging to personal name mentions or not.
The standard supervised machine learning problem
is to learn a classifier over this training data that will
successfully label unseen test data drawn from the
same distribution as the training data, where “same
distribution” could mean anything from having the
train and test articles written by the same author to

having them written in the same language. Having
successfully trained a named entity classifier on this
news data, now consider the problem of learning to
classify tokens as names in e-mail data. An intuitive
solution might be to simply retrain the classifier,de
novo, on the e-mail data. Practically, however, large,
labeled datasets are often expensive to build and this
solution would not scale across a large number of
different datasets.

Clearly the problems of identifying names in
news articles and e-mails are closely related, and
learning to do well on one should help your per-
formance on the other. At the same time, however,
there are serious differences between the two prob-
lems that need to be addressed. For instance, cap-
italization, which will certainly be a useful feature
in the news problem, may prove less informative in
the e-mail data since the rules of capitalization are
followed less strictly in that domain.

These are the problems we address in this paper.
In particular, we develop a novel prior for named
entity recognition that exploits the hierarchical fea-
ture space often found in natural language domains
(§1.2) and allows for the transfer of information
from labeled datasets in other domains (§1.3). §2
introduces themaximum entropy(maxent) andcon-
ditional random field(CRF) learning techniques em-
ployed, along with specifications for the design and
training of our hierarchical prior. Finally, in§3 we
present an empirical investigation of our prior’s per-
formance against a number of baselines, demonstrat-
ing both its effectiveness and robustness.

1.2 Hierarchical feature trees

In many NER problems, features are often con-
structed as a series of transformations of the input
training data, performed in sequence. Thus, if our
task is to identify tokens as either being(O)utsideor
(I)nsideperson names, and we are given the labeled
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sample training sentence:

O O O O O I
Give the book to Professor Caldwell

(1)
one such useful feature might be:Is the token one
slot to the left of the current tokenProfessor?
We can represent this symbolically asL.1.Professor
where we describe the whole space of useful features
of this form as:{direction = (L)eft, (C)urrent,
(R)ight}.{distance = 1, 2, 3, ...}.{value = Pro-
fessor, book, ...}. We can conceptualize this struc-
ture as a tree, where each slot in the symbolic name
of a feature is a branch and each period between slots
represents another level, going from root to leaf as
read left to right. Thus a subsection of the entire fea-
ture tree for the tokenCaldwell could be drawn
as in Figure 1 (zoomed in on the section of the tree
where theL.1.Professorfeature resides).

direction
L

C
R

distance
1

2
...

... ...

value
Professor

book
...

... ...

true false ...

Figure 1: Graphical representation of a hierarchical fea-
ture tree for tokenCaldwell in example Sentence 1.

Representing feature spaces with this kind of tree,
besides often coinciding with the explicit language
used by common natural language toolkits (Cohen,
2004), has the added benefit of allowing a model to
easily back-off, or smooth, to decreasing levels of
specificity. For example, the leaf level of the fea-
ture tree for our sample Sentence 1 tells us that the
word Professor is important, with respect to la-
beling person names, when located one slot to the
left of the current word being classified. This may
be useful in the context of an academic corpus, but
might be less useful in a medical domain where the
word Professor occurs less often. Instead, we
might want to learn the related featureL.1.Dr. In
fact, it might be useful to generalize across multiple
domains the fact that the word immediately preced-
ing the current word is often important with respect

LeftToken.*
LeftToken.IsWord.*
LeftToken.IsWord.IsTitle.*
LeftToken.IsWord.IsTitle.equals.*
LeftToken.IsWord.IsTitle.equals.mr

Table 1: A few examples of the feature hierarchy

to the named entity status of the current word. This
is easily accomplished by backing up one level from
a leaf in the tree structure to its parent, to represent
a class of features such asL.1.*. It has been shown
empirically that, while the significance ofparticular
features might vary between domains and tasks, cer-
tain generalizedclassesof features retain their im-
portance across domains (Minkov et al., 2005). By
backing-off in this way, we can use the feature hier-
archy as a prior for transferring beliefs about the sig-
nificance of entireclassesof features across domains
and tasks. Some examples illustrating this idea are
shown in table 1.

1.3 Transfer learning

When only the type of data being examined is al-
lowed to vary (from news articles to e-mails, for
example), the problem is calleddomain adapta-
tion (Dauḿe III and Marcu, 2006). When the task
being learned varies (say, from identifying person
names to identifying protein names), the problem
is calledmulti-task learning(Caruana, 1997). Both
of these are considered specific types of the over-
arching transfer learningproblem, and both seem
to require a way of altering the classifier learned
on the first problem (called thesource domain, or
source task) to fit the specifics of the second prob-
lem (called thetarget domain, or target task).

More formally, given an examplex and a class
label y, the standard statistical classification task
is to assign a probability,p(y|x), to x of belong-
ing to classy. In the binary classification case the
labels areY ∈ {0, 1}. In the case we examine,
each examplexi is represented as a vector of bi-
nary features(f1(xi), · · · , fF (xi)) whereF is the
number of features. The data consists of two dis-
joint subsets: the training set(Xtrain, Ytrain) =
{(x1, y1) · · · , (xN , yN )}, available to the model for
its training and the test setXtest = (x1, · · · , xM ),
upon which we want to use our trained classifier to
make predictions.
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In the paradigm of inductive learning,
(Xtrain, Ytrain) are known, while bothXtest and
Ytest are completely hidden during training time. In
this casesXtest andXtrain are both assumed to have
been drawn from the same distribution,D. In the
setting oftransfer learning, however, we would like
to apply our trained classifier to examples drawn
from a distribution different from the one upon
which it was trained. We therefore assume there
are two different distributions,Dsource andDtarget,
from which data may be drawn. Given this notation
we can then precisely state the transfer learning
problem as trying to assign labelsY target

test to test
data Xtarget

test drawn from Dtarget, given training
data(Xsource

train , Y source
train ) drawn fromDsource.

In this paper we focus on two subproblems of
transfer learning:
• domain adaptation, where we assumeY (the set

of possible labels) is the same for bothDsource

and Dtarget, while Dsource and Dtarget them-
selves are allowed to vary between domains.
• multi-task learning (Ando and Zhang, 2005;

Caruana, 1997; Sutton and McCallum, 2005;
Zhang et al., 2005) in which the task (and label
set) is allowed to vary from source to target.

Domain adaptation can be further distinguished by
the degree of relatedness between the source and tar-
get domains. For example, in this work we group
data collected in the same medium (e.g., all anno-
tated e-mails or all annotated news articles) as be-
longing to the samegenre. Although the specific
boundary between domain and genre for a particu-
lar set of data is often subjective, it is nevertheless a
useful distinction to draw.

One common way of addressing the transfer
learning problem is to use aprior which, in conjunc-
tion with a probabilistic model, allows one to spec-
ify a priori beliefs about a distribution, thus bias-
ing the results a learning algorithm would have pro-
duced had it only been allowed to see the training
data (Raina et al., 2006). In the example from§1.1,
our belief that capitalization is less strict in e-mails
than in news articles could be encoded in a prior that
biased the importance of thecapitalization
feature to be lower for e-mails than news articles.
In the next section we address the problem of how
to come up with a suitable prior for transfer learning
across named entity recognition problems.

2 Models considered

2.1 Basic Conditional Random Fields

In this work, we will base our work on Condi-
tional Random Fields (CRF’s) (Lafferty et al., 2001),
which are now one of the most preferred sequential
models for many natural language processing tasks.

The parametric form of the CRF for a sentence of
lengthn is given as follows:

pΛ(Y = y|x) =
1

Z(x)
exp(

n
∑

i=1

F
∑

j=1

fj(x, yi)λj)

(2)
whereZ(x) is the normalization term. CRF learns a
model consisting of a set of weightsΛ = {λ1...λF }
over the features so as to maximize the conditional
likelihood of the training data, p(Ytrain|Xtrain),
given the modelpΛ.

2.2 CRF with Gaussian priors

To avoid overfitting the training data, theseλ’s are
often further constrained by the use of a Gaussian
prior (Chen and Rosenfeld, 1999) with diagonal co-
variance,N (µ, σ2), which tries to maximize:

argmax
Λ

N
∑

k=1

(

log pΛ(yk|xk)

)

− β

F
∑

j

(λj − µj)
2

2σ2
j

whereβ > 0 is a parameter controlling the amount
of regularization, andN is the number of sentences
in the training set.

2.3 Source trained priors

One recently proposed method (Chelba and Acero,
2004) for transfer learning in Maximum Entropy
models1 involves modifying theµ’s of this Gaussian
prior. First a model of the source domain,Λsource,
is learned by training on{Xsource

train , Y source
train }. Then a

model of the target domain is trained over a limited

set of labeled target data
{

Xtarget
train , Y target

train

}

, but in-

stead of regularizing thisΛtarget to be near zero (i.e.
settingµ = 0), Λtarget is instead regularized to-
wards the previously learned source valuesΛsource

(by settingµ = Λsource, while σ2 remains 1) and
thus minimizing(Λtarget − Λsource)2.

1Maximum Entropy models are special cases of CRFs that
use the I.I.D. assumption. The method under discussion can
also be extended to CRF directly.
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Note that, since this model requiresY target
train in or-

der to learnΛtarget, it, in effect, requires two distinct
labeled training datasets: one on which totrain the
prior, and another on which to learn the model’s fi-
nal weights (which we calltuning), using the previ-
ously trained prior for regularization. If we are un-
able to find a match between features in the training
and tuning datasets (for instance, if a word appears
in the tuning corpus but not the training), we back-
off to a standardN (0, 1) prior for that feature.
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Figure 2: Graphical representation of the hierarchical
transfer model.

2.4 New model: Hierarchical prior model

In this section, we will present a new model that
learns simultaneously from multiple domains, by
taking advantage of our feature hierarchy.

We will assume that there areD domains on
which we are learning simultaneously. Let there be
Md training data in each domaind. For our experi-
ments with non-identically distributed, independent
data, we use conditional random fields (cf.§2.1).
However, this model can be extended to any dis-
criminative probabilistic model such as the MaxEnt
model. LetΛ(d) = (λ

(d)
1 , · · · , λ

(d)
Fd

) be the param-
eters of the discriminative model in the domaind
whereFd represents the number of features in the
domaind.

Further, we will also assume that the features of
different domains share a common hierarchy repre-
sented by a treeT , whose leaf nodes are the features
themselves (cf. Figure 1). The model parameters
Λ(d), then, form the parameters of the leaves of this
hierarchy. Each non-leaf noden ∈ non-leaf(T ) of

the tree is also associated with a hyper-parameterzn.
Note that since the hierarchy is a tree, each noden
has only one parent, represented by pa(n). Simi-
larly, we represent the set of children nodes of a node
n as ch(n).

The entire graphical model for an example con-
sisting of three domains is shown in Figure 2.
The conditional likelihood of the entire training
data(y,x) = {(y

(d)
1 ,x

(d)
1 ), · · · , (y

(d)
Md

,x
(d)
Md

)}Dd=1 is
given by:

P (y|x,w, z) =

{

D
∏

d=1

Md
∏

k=1

P (y
(d)
k |x

(d)
k , Λ(d))

}

×







D
∏

d=1

Fd
∏

f=1

N (λ
(d)
f |zpa(f (d)), 1)







×







∏

n∈Tnonleaf

N (zn|zpa(n), 1)







(3)

where the terms in the first line of eq. (3) represent
the likelihood of data in each domain given their cor-
responding model parameters, the second line repre-
sents the likelihood of each model parameter in each
domain given the hyper-parameter of its parent in the
tree hierarchy of features and the last term goes over
the entire treeT except the leaf nodes. Note that in
the last term, the hyper-parameters are shared across
the domains, so there is no product overd.

We perform a MAP estimation for each model pa-
rameter as well as the hyper-parameters. Accord-
ingly, the estimates are given as follows:

λ
(d)
f =

Md
∑

i=1

∂

∂λ
(d)
f

(

log P (yd
i |x

(d)
i , Λ(d))

)

+ zpa(f (d))

zn =
zpa(n) +

∑

i∈ch(n)(λ|z)i

1 + |ch(n)|
(4)

where we used the notation(λ|z)i because nodei,
the child node ofn, could be a parameter node or
a hyper-parameter node depending on the position
of the noden in the hierarchy. Essentially, in this
model, the weights of the leaf nodes (model param-
eters) depend on the log-likelihood as well as the
prior weight of its parent. Additionally, the weight
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of each hyper-parameter node in the tree is com-
puted as the average of all its children nodes and its
parent, resulting in asmoothingeffect, both up and
down the tree.

2.5 An approximate Hierarchical prior model

The Hierarchical prior model is a theoretically well
founded model for transfer learning through feature
heirarchy. However, our preliminary experiments
indicated that its performance on real-life data sets is
not as good as expected. Although a more thorough
investigation needs to be carried out, our analysis in-
dicates that the main reason for this phenomenon is
over-smoothing. In other words, by letting the infor-
mation propagate from the leaf nodes in the hierar-
chy all the way to the root node, the model loses its
ability to discriminate between its features.

As a solution to this problem, we propose an
approximate version of this model that weds ideas
from the exact heirarchical prior model and the
Chelba model.

As with the Chelba prior method in§2.3, this ap-
proximate hierarchical method also requires two dis-
tinct data sets, one for training the prior and another
for tuning the final weights. Unlike Chelba, we
smooth the weights of the priors using the feature-
tree hierarchy presented in§1.1, like the hierarchical
prior model.

For smoothing of each feature weight, we chose to
back-off in the tree as little as possible until we had a
large enough sample of prior data (measured asM ,
the number of subtrees below the current node) on
which to form a reliable estimate of the mean and
variance of each feature or class of features. For
example, if the tuning data set is as in Sentence
1, but the prior contains no instances of the word
Professor, then we would back-off and compute
the prior mean and variance on the next higher level
in the tree. Thus the prior forL.1.Professorwould
beN (mean(L.1.*), variance(L.1.*)), where mean()
and variance() ofL.1.* are the sample mean and
variance of all the features in the prior dataset that
match the patternL.1.* – or, put another way, all the
siblings ofL.1.Professorin the feature tree. If fewer
thanM such siblings exist, we continue backing-off,
up the tree, until an ancestor with sufficient descen-
dants is found. A detailed description of the approx-
imate hierarchical algorithm is shown in table 2.

Input : Dsource = (Xsource
train , Y source

train )

Dtarget = (Xtarget
train , Y target

train );
Feature setsFsource, F target;
Feature HierarchiesHsource,Htarget

Minimum membership sizeM
Train CRF usingDsource to obtain
feature weightsΛsource

For each featuref ∈ F target

Initialize: noden = f
While (n /∈ Hsource

or |Leaves(Hsource(n))| ≤M)
andn 6= root(Htarget)

n← Pa(Htarget(n))
Computeµf andσf using the sample
{λsource

i | i ∈ Leaves(Hsource(n))}
Train Gaussian prior CRF usingDtarget as data
and{µf} and{σf} as Gaussian prior parameters.
Output :Parameters of the new CRFΛtarget.

Table 2: Algorithm for approximate hierarchical prior:
Pa(Hsource(n)) is the parent of noden in feature hierar-
chyHsource; |Leaves(Hsource(n))| indicates the num-
ber of leaf nodes (basic features) under a noden in the
hierarchyHsource.

It is important to note that this smoothed tree is
an approximation of the exact model presented in
§2.4 and thus an important parameter of this method
in practice is the degree to which one chooses to
smooth up or down the tree. One of the benefits
of this model is that the semantics of the hierarchy
(how to define a feature, a parent, how and when
to back-off and up the tree, etc.) can be specified
by the user, in reference to the specific datasets and
tasks under consideration. For our experiments, the
semantics of the tree are as presented in§1.1.

The Chelba method can be thought of as a hier-
archical prior in which no smoothing is performed
on the tree at all. Only the leaf nodes of the
prior’s feature tree are considered, and, if no match
can be found between the tuning and prior’s train-
ing datasets’ features, aN (0, 1) prior is used in-
stead. However, in the new approximate hierarchical
model, even if a certain feature in the tuning dataset
does not have an analog in the training dataset, we
can always back-off until an appropriate match is
found, even to the level of the root.

Henceforth, we will use only the approximate hi-
erarchical model in our experiments and discussion.
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Table 3: Summary of data used in experiments
Corpus Genre Task

UTexas Bio Protein
Yapex Bio Protein
MUC6 News Person
MUC7 News Person

CSPACE E-mail Person

3 Investigation

3.1 Data, domains and tasks

For our experiments, we have chosen five differ-
ent corpora (summarized in Table 3). Although
each corpus can be considered its owndomain(due
to variations in annotation standards, specific task,
date of collection, etc), they can also be roughly
grouped into three differentgenres. These are:ab-
stracts from biological journals[UT (Bunescu et al.,
2004), Yapex (Franźen et al., 2002)];news articles
[MUC6 (Fisher et al., 1995), MUC7 (Borthwick et
al., 1998)]; andpersonal e-mails[CSPACE (Kraut
et al., 2004)]. Each corpus, depending on itsgenre,
is labeled with one of two name-findingtasks:
• protein names in biological abstracts
• person names in news articles and e-mails

We chose this array of corpora so that we could
evaluate our hierarchical prior’s ability to generalize
across and incorporate information from a variety of
domains, genres and tasks.

In each case, each item (abstract, article or e-mail)
was tokenized and each token was hand-labeled as
either being part of a name (protein or person) or
not, respectively. We used a standard natural lan-
guage toolkit (Cohen, 2004) to compute tens of
thousands of binary features on each of these to-
kens, encoding such information as capitalization
patterns and contextual information from surround-
ing words. This toolkit produces features of the type
described in§1.2 and thus was amenable to our hi-
erarchical prior model. In particular, we chose to
use the simplest default, out-of-the-box feature gen-
erator and purposefully did not use specifically en-
gineered features, dictionaries, or other techniques
commonly employed to boost performance on such
tasks. The goal of our experiments was to see to
what degree named entity recognition problems nat-
urally conformed to hierarchical methods, and not
just to achieve the highest performance possible.

0.1
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0.3

0.4

0.5

0.6

0.7

0 20 40 60 80 100

F
1

Percent of target-domain data used for tuning

Intra-genre transfer performance evaluated on MUC6

(a) GAUSS: tuned on MUC6
(b) CAT: tuned on MUC6+7

(c) HIER: MUC6+7 prior, tuned on MUC6
(d) CHELBA: MUC6+7 prior, tuned on MUC6

Figure 3: Adding a relevant HIER prior helps compared
to the GAUSS baseline ((c)> (a)), while simply CAT’ing
or using CHELBA can hurt ((d) ≈ (b) < (a), except with
very little data), and never beats HIER ((c) > (b) ≈ (d)).

3.2 Experiments & results

We evaluated the performance of various transfer
learning methods on the data and tasks described
in §3.1. Specifically, we compared our approximate
hierarchical prior model (HIER), implemented as a
CRF, against three baselines:
• GAUSS: CRF model tuned on a single domain’s

data, using a standardN (0, 1) prior
• CAT: CRF model tuned on a concatenation of

multiple domains’ data, using aN (0, 1) prior
• CHELBA: CRF model tuned on one domain’s

data, using a prior trained on a different, related
domain’s data (cf.§2.3)

We use token-levelF1 as our main evaluation mea-
sure, combining precision and recall into one metric.

3.2.1 Intra-genre, same-task transfer learning

Figure 3 shows the results of an experiment in
learning to recognize person names in MUC6 news
articles. In this experiment we examined the effect
of adding extra data from a different, but related do-
main from the same genre, namely, MUC7. Line
a shows the F1 performance of a CRF model tuned
only on the target MUC6 domain (GAUSS) across a
range of tuning data sizes. Lineb shows the same
experiment, but this time the CRF model has been
tuned on a dataset comprised of a simple concate-
nation of the training MUC6 data from (a), along
with a different training set from MUC7 (CAT). We
can see that adding extra data in this way, though
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Inter-genre transfer performance evaluated on MUC6

(e) HIER: MUC6+7 prior, tuned on MUC6
(f) CAT: tuned on all domains
(g) HIER: all domains prior, tuned on MUC6
(h) CHELBA: all domains prior, tuned on MUC6

Figure 4: Transfer aware priors CHELBA and HIER ef-
fectively filter irrelevant data. Adding more irrelevant
data to the priors doesn’t hurt ((e) ≈ (g) ≈ (h)), while
simply CAT’ing it, in this case, is disastrous ((f) << (e).

the data is closely related both in domain and task,
has actually hurt the performance of our recognizer
for training sizes of moderate to large size. This is
most likely because, although the MUC6 and MUC7
datasets are closely related, they are still drawn from
different distributions and thus cannot be intermin-
gled indiscriminately. Linec shows the same com-
bination of MUC6 and MUC7, only this time the
datasets have been combined using the HIER prior.
In this case, the performance actually does improve,
both with respect to the single-dataset trained base-
line (a) and the naively trained double-dataset (b).
Finally, line d shows the results of the CHELBA
prior. Curiously, though the domains are closely re-
lated, it does more poorly than even the non-transfer
GAUSS. One possible explanation is that, although
much of the vocabulary is shared across domains,
the interpretation of the features of these words may
differ. Since CHELBA doesn’t model the hierarchy
among features like HIER, it is unable to smooth
away these discrepancies. In contrast, we see that
our HIER prior is able to successfully combine the
relevant parts of data across domains while filtering
the irrelevant, and possibly detrimental, ones. This
experiment was repeated for other sets of intra-genre
tasks, and the results are summarized in§3.2.3.

3.2.2 Inter-genre, multi-task transfer learning

In Figure 4 we see that the properties of the hi-
erarchical prior hold even when transferring across

tasks. Here again we are trying to learn to recognize
person names in MUC6 e-mails, but this time, in-
stead of adding only other datasets similarly labeled
with person names, we are additionally adding bi-
ological corpora (UT & YAPEX), labeled not with
person names but with protein names instead, along
with the CSPACE e-mail and MUC7 news article
corpora. The robustness of our prior prevents a
model trained on all five domains (g) from degrading
away from the intra-genre, same-task baseline (e),
unlike the model trained on concatenated data (f ).
CHELBA (h) performs similarly well in this case,
perhaps because the domains are so different that al-
most none of the features match between prior and
tuning data, and thus CHELBA backs-off to a stan-
dardN (0, 1) prior.

This robustness in the face of less similarly related
data is very important since these types of transfer
methods are most useful when one possesses only
very little target domain data. In this situation, it
is often difficult to accurately estimate performance
and so one would like assurance than any transfer
method being applied will not have negative effects.

3.2.3 Comparison of HIER prior to baselines

Each scatter plot in Figure 5 shows the relative
performance of a baseline method against HIER.
Each point represents the results of two experi-
ments: the y-coordinate is the F1 score of the base-
line method (shown on the y-axis), while the x-
coordinate represents the score of the HIER method
in the same experiment. Thus, points lying be-
low the y = x line represent experiments for which
HIER received a higher F1 value than did the base-
line. While all three plots show HIER outperform-
ing each of the three baselines, not surprisingly,
the non-transfer GAUSS method suffers the worst,
followed by the naive concatenation (CAT) base-
line. Both methods fail to make any explicit dis-
tinction between the source and target domains and
thus suffer when the domains differ even slightly
from each other. Although the differences are
more subtle, the right-most plot of Figure 5 sug-
gests HIER is likewise able to outperform the non-
hierarchical CHELBA prior in certain transfer sce-
narios. CHELBA is able to avoid suffering as much
as the other baselines when faced with large differ-
ence between domains, but is still unable to capture
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Figure 5: Comparative performance of baseline methods (GAUSS, CAT, CHELBA) vs. HIER prior, as trained on nine
prior datasets (both pure and concatenated) of various sample sizes, evaluated on MUC6 and CSPACE datasets. Points
below the y = x line indicate HIER outperforming baselines.

as many dependencies between domains as HIER.

4 Conclusions, related & future work

In this work we have introduced hierarchical feature
tree priors for use in transfer learning on named en-
tity extraction tasks. We have provided evidence that
motivates these models on intuitive, theoretical and
empirical grounds, and have gone on to demonstrate
their effectiveness in relation to other, competitive
transfer methods. Specifically, we have shown that
hierarchical priors allow the user enough flexibil-
ity to customize their semantics to a specific prob-
lem, while providing enough structure to resist un-
intended negative effects when used inappropriately.
Thus hierarchical priors seem a natural, effective
and robust choice for transferring learning across
NER datasets and tasks.

Some of the first formulations of the transfer
learning problem were presented over 10 years
ago (Thrun, 1996; Baxter, 1997). Other techniques
have tried to quantify the generalizability of cer-
tain features across domains (Daumé III and Marcu,
2006; Jiang and Zhai, 2006), or tried to exploit the
common structure of related problems (Ben-David
et al., 2007; Scḧolkopf et al., 2005). Most of
this prior work deals with supervised transfer learn-
ing, and thus requires labeled source domain data,
though there are examples of unsupervised (Arnold

et al., 2007), semi-supervised (Grandvalet and Ben-
gio, 2005; Blitzer et al., 2006), and transductive ap-
proaches (Taskar et al., 2003).

Recent work using so-called meta-level priors to
transfer information across tasks (Lee et al., 2007),
while related, does not take into explicit account the
hierarchical structure of these meta-level features of-
ten found in NLP tasks. Dauḿe allows an extra de-
gree of freedom among the features of his domains,
implicitly creating a two-level feature hierarchy with
one branch forgeneralfeatures, and another fordo-
main specificones, but does not extend his hierar-
chy further (Dauḿe III, 2007)). Similarly, work on
hierarchical penalization (Szafranski et al., 2007) in
two-level trees tries to produce models that rely only
on a relatively small number of groups of variable,
as structured by the tree, as opposed to transferring
knowledge between branches themselves.

Our future work is focused on designing an al-
gorithm to optimally choose a smoothing regime
for the learned feature trees so as to better exploit
the similarities between domains while neutralizing
their differences. Along these lines, we are working
on methods to reduce the amount of labeled target
domain data needed to tune the prior-based mod-
els, looking forward to semi-supervised and unsu-
pervised transfer methods.
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