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Abstract 1998). Moreover, the vector similarities within such
i semantic spaces have been shown to substantially
This paper proposes a framework for repre- o4 ate with human similarity judgments (McDon-

senting the meaning of phrases and sentences
in vector space. Central to our approach is
vector composition which we operationalize

ald, 2000) and word association norms (Denhire and
Lemaire, 2004).

in terms of add_itive and multiplicc_'sltive func- Despite their widespread use, vector-based mod-
tions. Under this framework, we introduce a  ¢ls are typically directed at representing words in
wide range of composition models which we isolation and methods for constructing representa-

evaluate empirically on a sentence similarity . . .
task. Experimental results demonstrate that tions for phrases or sentences have received little

the multiplicative models are superior to the attention in the Iitera_ltL_Jre. In fact, th_e common-
additive alternatives when compared against €St method for combining the vectors is to average
human judgments. them. Vector averaging is unfortunately insensitive
to word order, and more generally syntactic struc-
ture, giving the same representation to any construc-
tions that happen to share the same vocabulary. This
Vector-based models of word meaning (Lund andk illustrated in the example below taken from Lan-
Burgess, 1996, Landauer and Dumais, 1997) hawauer et al. (1997). Sentences (1-a) and (1-b) con-
become increasingly popular in natural languageain exactly the same set of words but their meaning
processing (NLP) and cognitive science. The afs entirely different.

peal of these models lies in their ability to rep-

resent meaning simply by using distributional in{1) a. It was not the sales manager who hit the

1 Introduction

formation under the assumption that words occur- bottle that day, but the office worker with

ring within similar contexts are semantically similar the serious drinking problem.

(Harris, 1968). b. That day the office manager, who was
A variety of NLP tasks have made good use drinking, hit the problem sales worker with

of vector-based models. Examples include au- a bottle, but it was not serious.

tomatic thesaurus extraction (Grefenstette, 1994),

word sense discrimination (Satze, 1998) and dis-  While vector addition has been effective in some

ambiguation (McCarthy et al., 2004), collocation exapplications such as essay grading (Landauer and
traction (Schone and Jurafsky, 2001), text segmeiumais, 1997) and coherence assessment (Foltz
tation (Choi et al., 2001) , and notably informationet al., 1998), there is ample empirical evidence

retrieval (Salton et al., 1975). In cognitive sciencehat syntactic relations across and within sentences
vector-based models have been successful in simare crucial for sentence and discourse processing
lating semantic priming (Lund and Burgess, 1996{Neville et al., 1991; West and Stanovich, 1986)

Landauer and Dumais, 1997) and text compreheand modulate cognitive behavior in sentence prim-

sion (Landauer and Dumais, 1997; Foltz et aling (Till et al., 1988) and inference tasks (Heit and
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Rubinstein, 1994). avoids both these problems.

Computational models of semantics which use Smolensky (1990) proposed the use of tensor
symbolic logic representations (Montague, 1974products as a means of binding one vector to an-
can account naturally for the meaning of phrases @ther. The tensor product® v is a matrix whose
sentences. Central in these models is the notion gbmponents are all the possible produgig of the
compositionality — the meaning of complex exprescomponents of vectorsi andv. A major difficulty
sions is determined by the meanings of their conith tensor products is their dimensionality which is
stituent expressions and the rules used to combimggher than the dimensionality of the original vec-
them. Here, semantic analysis is guided by syntactigrs (precisely, the tensor product has dimensional-
structure, and therefore sentences (1-a) and (1-b) igy mx n). To overcome this problem, other tech-
ceive distinct representations. The downside of thigiques have been proposed in which the binding of
approach is that differences in meaning are qualitawo vectors results in a vector which has the same
tive rather than quantitative, and degrees of similagimensionality as its components. Holographic re-
ity cannot be expressed easily. duced representations (Plate, 1991) are one imple-

In this paper we examine models of semantignentation of this idea where the tensor product is
composition that are empirically grounded and caprojected back onto the space of its components.
represent similarity relations. We pres_e_nt a gen- The projection is defined in terms oifcular con-
eral framework for vector-based composition whichg|ytion a mathematical function that compresses
allows us to consider different classes of modelgpe tensor product of two vectors. The compression
Specifically, we present both additive and multijg 5chieved by summing along the transdiagonal el-
plicative models of vector combination and asseS$ments of the tensor product. Noisy versions of the
their performance on a sentence similarity rating ©Xsriginal vectors can be recovered by meansiof
periment. Our results show that the multiplicativeey|ar correlationwhich is the approximate inverse
models are superior and correlate significantly withyt circular convolution. The success of circular cor-

behavioral data. relation crucially depends on the components of the
n-dimensional vectors andv being randomly dis-
2 Related Work tributed with mean 0 and variange This poses

The problem of vector composition has receivedroblems for modeling linguistic data which is typi-
some attention in the connectionist literature, particcally represented by vectors with non-random struc-
ularly in response to criticisms of the ability of con-ture.

nectionist representations to handle complex struc- Vector addition is by far the most common
tures (Fodor and Pylyshyn, 1988). While neural netmethod for representing the meaning of linguistic
works can readily represent single distinct objectsequences. For example, assuming that individual
in the case of multiple objects there are fundamerwords are represented by vectors, we can compute
tal difficulties in keeping track of which features arethe meaning of a sentence by taking their mean
bound to which objects. For the hierarchical strucf(Foltz et al., 1998; Landauer and Dumais, 1997).
ture of natural language this binding problem beVector addition does not increase the dimensional-
comes particularly acute. For example, simplistidty of the resulting vector. However, since it is order
approaches to handling sentences sucloas loves independent, it cannot capture meaning differences
Mary and Mary loves Johntypically fail to make that are modulated by differences in syntactic struc-
valid representations in one of two ways. Eitheture. Kintsch (2001) proposes a variation on the vec-
there is a failure to distinguish between these twtor addition theme in an attempt to model how the
structures, because the network fails to keep tragkeaning of a predicate (e.gyn) varies depending

of the fact thatJohnis subject in one and object on the arguments it operates upon (&t horse ran

in the other, or there is a failure to recognize thavs. the color ran. The idea is to add not only the
both structures involve the same participants, barectors representing the predicate and its argument
causeJohnas a subject has a distinct representatiobut also the neighbors associated with both of them.
from Johnas an object. In contrast, symbolic repre-The neighbors, Kintsch argues, can ‘strengthen fea-
sentations can naturally handle the binding of cortures of the predicate that are appropriate for the ar-
stituents to their roles, in a systematic manner thaument of the predication’.
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| animal stable village gallop jokey tion. We define a general class of models for this

horse| O 6 2 10 4 process of composition as:
run 1 8 4 4 0

: . : p=f(uv,RK) 1)
Figure 1: A hypothetical semantic space fosrseand

run The expression above allows us to derive models for

which p is constructed in a distinct space fram

Unfortunately, comparisons across vector compand v, as is the case for tensor products. It also
sition models have been few and far between in thallows us to derive models in which composition
literature. The merits of different approaches are ilmakes use of background knowledgeand mod-
lustrated with a few hand picked examples and paels in which composition has a dependence, via the
rameter values and large scale evaluations are ugirgumenR, on syntax.
formly absent (see Frank et al. (2007) for a criticism To derive specific models from this general frame-
of Kintsch’s (2001) evaluation standards). Our workvork requires the identification of appropriate con-
proposes a framework for vector composition whictstraints to narrow the space of functions being con-
allows the derivation of different types of modelssidered. One particularly useful constraint is to
and licenses two fundamental composition operdiold R fixed by focusing on a single well defined
tions, multiplication and addition (and their combi-linguistic structure, for example the verb-subject re-
nation). Under this framework, we introduce novelation. Another simplification concerdéwhich can
composition models which we compare empiricallybe ignored so as to explore what can be achieved in
against previous work using a rigorous evaluatiotthe absence of additional knowledge. This reduces
methodology. the class of models to:

3 Composition Models p=f(u,v) (2)

We formulate semantic composition as a funCtlorI]-|owever, this still leaves the particular form of the

of wo vectors,u andv. We assume that indi- function f unspecified. Now, if we assume that

vidual words are represented by vectors vaUireﬁatlasinthe same space asindv, avoiding the issues

from a corpus following any of the parametrisa- ¢ .. : : . :
: ; : of dimensionality associated with tensor products,
tions that have been suggested in the literatuée Y P

: , : and thatf is a linear function, for simplicity, of the
briefly note here that a word's vector typically reP-cartesian product af andv, then we generate a class

resents its co-occurrence with 'nelghborlng Wordsof additivemodels:
The construction of the semantic space depends on
the definition of linguistic context (e.g., neighbour-

ing words can be documents or collocations), the

number of components used (e.g., kienost fre- \yhere A and B are matrices which determine the
quent words in a corpus), a_nd their yalues (e.g., Fontributions made by andv to the producp. In
raw co-occurrence frequencies or ratios of pmbab'lcontrast, if we assume thétis a linear function of

ities). A hypothetical semantic space is illustrated ifhe tensor product af andv, then we obtaimulti-
Figure 1. Here, the space has only five dimenSionBiicativemodels:

and the matrix cells denote the co-occurrence of the
target words florseandrun) with the context words p = Cuv (4)
animal stable and so on.

Let p denote the composition of two vectouss whereC is a tensor of rank 3, which projects the
and v, representing a pair of constituents whichiensor product ofi andv onto the space dd.
stand in some syntactic relatidt LetK stand for  Further constraints can be introduced to reduce
any additional knowledge or information which isthe free parameters in these models. So, if we as-
needed to construct the semantics of their composiume that only théth components ofi andv con-

1A detailed treatment of existing semantic space models ignbme to theith component op, that these com-

outside the scope of the present paper. We refer the interestQ@n‘?mS are no_t dgpendent prand _that the func-
reader to Paland Lapata (2007) for a comprehensive overviewtion is symmetric with regard to the interchangeuof

p =Au-+Bv 3)
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andv, we obtain a simpler instantiation of an addi-only theith components ofi andv contribute to the
tive model: ith component op. Another class of models can be
pi = Ui + Vi (5) derived by relaxing this constraint. To give a con-

rete example, circular convolution is an instance of

Analogously, under the same assumptions, we of}- L . .
. . . Lo ) e general multiplicative model which breaks this
tain the following simpler multiplicative model: . . : _
constraint by allowingi; to contribute top;:

P = Ui-Vi (6)
Pi=)Uj-Vij (9)
For example, according to (5), the addition of the ]
two vectors representingiorse and run in Fig-
ure 1 would yieldhorse+run=[1 14 6 14 4 It is also possible to re-introduce the dependence
Whereas their product, as given by (6), isonK intothe model of vector composition. For ad-
horse-run=[0 48 8 40 (. ditive models, a natural way to achieve this is to in-

Although the composition model in (5) is com-clude further vectors into the summation. These vec-

monly used in the literature, from a linguistic per-tors are not arbitrary and ideally they must exhibit
spective, the model in (6) is more appealing. Simsome relation to the words of the construction under
ply adding the vectors andv lumps their contents consideration. When modeling predicate-argument
together rather than allowing the content of one vetructures, Kintsch (2001) proposes including one or
tor to pick out the relevant content of the other. Infmore distributional neighbors, of the predicate:
stead, it could be argued that the contribution of the

ith component ofi should be scaled according to its p=u+v+ z n (10)
relevance tw, and vice versa. In effect, this is what
model (6) achieves. Note that considerable latitude is allowed in select-

As a result of the assumption of symmetry, botling the appropriate neighbors. Kintsch (2001) con-
these models are ‘bag of words’ models and wordiders only then most similar neighbors to the pred-
order insensitive. Relaxing the assumption of symieate, from which he subsequently selekishose
metry in the case of the simple additive model promost similar to its argument. So, if in the composi-
duces a model which weighs the contribution of th&ion of horsewith run, the chosen neighbor isde,

two components differently: ride=[2 15 7 9 1, then this produces the repre-
sentatiorhorse+run+ride=[3 29 13 23 & In
pi = au; +Bvi (7)  contrast to the simple additive model, this extended

model is sensitive to syntactic structure, sinces

This allows ado_lltlve models_ to t_)ecome MOr&hosen from among the neighbors of the predicate,
syntax aware, since semantically important Condistinguishing it from the argument
stituents can participate more actively in the com- '

position. As an example if we set to 0.4
and B to 0.6, thenhorse=[0 24 0.8 4 16|
and run=[0.6 48 24 24 0, and their sum

Although we have presented multiplicative and
additive models separately, there is nothing inherent
in our formulation that disallows their combination.
- The proposal is not merely notational. One poten-
horse+run=[0.6 56 32 64 16]. tial drawback of multiplicative models is the effect

o s o o g oy 1 COTPEnen Wi vl Zer Sico he prodc
) . .~ of zero with any number is itself zero, the presence
sayu, contributes nothing at all to the combination:

of zeroes in either of the vectors leads to informa-
P =V 8) tion _be_ing_essentially 'Fhrown away. Combining_the
multiplicative model with an additive model, which

Admittedly the model in (8) is impoverished anddoes not suffer from this problem, could mitigate

rather simplistic, however it can serve as a simpléis problem:

baseline against which to compare more sophisti-

cated models. Pi = O + Bvi + YU Vi (11)
The models considered so far assume that com-

ponents do not ‘interfere’ with each other, i.e., thatvherea, (3, andy are weighting constants.
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4 Evaluation Set-up with the reference (e.ghorse gallopepland one in-
. . compatible (e.g.horse dissolved Landmarks were
We evaluated the models presented in Section tﬁken from WordNet (Fellbaum, 1998). Specifically,

on a sentence similarity task initially proposed b he : -

. ) : : y belonged to different synsets and were maxi-
Kintsch (2001). In his study, Kintsch builds a mode ally dissimilar as measured by the Jiang and Con-
of how a verb’s meaning is modified in the context o ath (1997) measur®

its subject. He argues that the subjectsanfin The
color ranand The horse rarselect different senses
of ran This change in the verb’s sense is equated

Our initial set of candidate materials consisted
tOf 20 verbs, each paired with 10 nouns, and 2 land-
ey Lo .  Rarks (400 pairs of sentences in total). These were
a shift in its position in semantic space. To quanti

this shift, Kintsch proposes measuring similarit rel_urther pretested to allow the selection of a subset
ative to c;therverbz aEtin as Iandmar?(s forexgm IOf items showing clear variations in sense as we

. g : ' Panted to have a balanced set of similar and dis-
gallop anddissolve The idea here is that an appro-

riate composition model when apoliedfiorseand similar sentences. In the pretest, subjects saw a
P - comp pp reference sentence containing a subject-verb tuple
ranwill yield a vector closer to the landmadallop

. . . and its landmarks and were asked to choose which
thandissolve Conversely, wherolor is combined - )
with ran the resulting vector will be closer tdis- landmark was most similar to the reference or nei-

n 9 ther. Our items were converted into simple sentences
solvethangallop

Focusing on a sinale compositional Structure(aII in past tense) by adding articles where appropri-
Ing on 9 posit . . ate. The stimuli were administered to four separate
namely intransitive verbs and their subjects, is

ood point of departure for studying vector combi—%rOUpS; each group saw one set of 100 sentences.
9 P P ying The pretest was completed by 53 participants.

nation. Any adequate model of composition must be .
y q P For each reference verb, the subjects’ responses

able to represent argument-verb meaning. Moreovg\;ere entered into a contingency table, whose rows
by using a minimal structure we factor out inessen- gency ; :
rresponded to nouns and columns to each possi-

tial degrees of freedom and are able to assess tﬁ?e answer (i.e., one of the two landmarks). Each
merits of different models on an equal footing. Un- o )

fortunately, Kintsch (2001) demonstrates how hi?eecligg(;ﬁgd;igsﬁa?;?Sbggr%f g?belz \?vﬁ[]stﬁgjﬁgtjnsg;
own composition algorithm works intuitively on a P

not. We used Fisher’s exact test to determine which

few hand selected examples but does not provide a

comprehensive test set. In order to establish an indr\é?rbS and nouns showed the greatest variation in

ndmark preferen nd items wiskval reater
pendent measure of sentence similarity, we asse dmark preference and items witfvalues greate

bled a set of experimental materials and elicited simj;'an 0-001 were discarded. This yielded a reduced

ilarity ratings from human subjects. In the foIIowingSet of experimental items (120 in total) consisting of

we describe our data collection procedure and giv%—:‘5 reference verbs, each with 4 nouns, and 2 land-

details on how our composition models were Conr_narks.
structed and evaluated. Procedure and Subjects  Participants first saw

Materials and Design Our materials consisted @ Set of instructions that explained the sentence sim-

of sentences with an an intransitive verb and its su§arity task and provided several examples. Then
ject. We first compiled a list of intransitive verbsth€ experimental items were presented; each con-
from CELEX2. All occurrences of these verbs with fained two sentences, one with the reference verb
a subject noun were next extracted from a RASPNd one with its landmark. Examples of our items
parsed (Briscoe and Carroll, 2002) version of th&'€ given in Table 1. Heregurnis a high similarity
British National Corpus (BNC). Verbs and nouns@ndmark (High) for the referencehe fire glowed
that were attested less than fifty times in the BN¢Vhereasbeamis a low similarity landmark (Low).
were removed as they would result in unreliable vecT € OPPosite is the case for the refererldee face

tors. Each reference subject-verb tuple (ehgrse ——5———— _ o
We assessed a wide range of semantic similarity measures

ran) was paired with two landmarks, each a SYNusing the WordNet similarity package (Pedersen et al., 2004).

onym of the verb. The landmarks were chosen SQost of them yielded similar results. We selected Jiang and

as to represent distinct verb senses, one compatilgtenrath’s measure since it has been shown to perform consis-
- tently well across several cognitive and NLP tasks (Budanitsky
http://wwv. ru.nl/cel ex/ and Hirst, 2001).

240



] Noun Reference High Low | 7]

The fire glowed burned beamed 6
The face glowed beamed burned

The child strayed roamed digressed 5
The discussion strayed  digressed roamed 4-
The sales slumped declined slouched 3
The shoulders slumped slouched declingd 5]

Table 1: Example Stimuli with High and Low similarity 14
landmarks

| |
High Low

glowed Sentence pairs were presented serially igigyre 2: Distribution of elicited ratings for High and
random order. Participants were asked to rate hows similarity items

similar the two sentences were on a scale of one
to seven. The study was conducted remotely over

the Internet using Webe&pa software package de- Modd Parameters Irrespectively of their form,

signed for conducting psycholinguistic studies over " :
: all composition models discussed here are based on

the web. 49 unpaid volunteers completed the exper- . . :
semantic space for representing the meanings of

I
) : : a
iment, all native speakers of English. individual words. The semantic space we used in

Analysis of Similarity Ratings ~ The reliability our experiments was built on a lemmatised version
of the collected judgments is important for our evalof the BNC. Following previous work (Bullinaria
uation experiments; we therefore performed severaind Levy, 2007), we optimized its parameters on a
tests to validate the quality of the ratings. First, wavord-based semantic similarity task. The task in-
examined whether participants gave high ratings teolves examining the degree of linear relationship
high similarity sentence pairs and low ratings to lonbetween the human judgments for two individual
similarity ones. Figure 2 presents a box-and-whiskewords and vector-based similarity values. We ex-
plot of the distribution of the ratings. As we can segerimented with a variety of dimensions (ranging
sentences with high similarity landmarks are perfrom 50 to 500,000), vector component definitions
ceived as more similar to the reference sentence. @.g., pointwise mutual information or log likelihood
Wilcoxon rank sum test confirmed that the differ-ratio) and similarity measures (e.g., cosine or confu-
ence is statistically significanp(< 0.01). We also sion probability). We used WordSim353, a bench-
measured how well humans agree in their ratingsnark dataset (Finkelstein et al., 2002), consisting of
We employed leave-one-out resampling (Weiss anglatedness judgments (on a scale of 0 to 10) for 353
Kulikowski, 1991), by correlating the data obtainedvord pairs.
from each participant with the ratings obtained from \ve optained best results with a model using a
all other participants. We used Spearmgpy's non  context window of five words on either side of the
parametric correlation coefficient, to avoid makingarget word, the cosine measure, and 2,000 vector
any assumptions about the distribution of the simigomponents. The latter were the most common con-
larity ratings. The average inter-subject agreementext words (excluding a stop list of function words).
wasp = 0.40. We believe that this level of agree-These components were set to the ratio of the proba-
ment is satisfactory given that naive subjects argjjity of the context word given the target word to
asked to provide judgments on fine-grained semaghe probability of the context word overall. This
tic distinctions (see Table 1). More evidence thagonfiguration gave high correlations with the Word-
this is not an easy task comes from Figure 2 whergjm3s3 similarity judgments using the cosine mea-
we observe some overlap in the ratings for High andyre. In addition, Bullinaria and Levy (2007) found
Low similarity items. that these parameters perform well on a number of
ST _ other tasks such as the synonymy task fromTiast
http: // waw. webexp. i nf o/

5Note that Spearman’s rho tends to yield lower coefficients?f English as a.F.orelgn Languag{é’OEFL).. ]
compared to parametric alternatives such as Pearson’s Our composition models have no additional pa-
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rameters beyond the semantic space just described, | Model High Low p |

with three exceptions. First, the additive model | NonComp 0.27 0.26 0.08*%
in (7) weighs differentially the contribution of the Add 059 059 0.04*

two constituents. In our case, these are the sub- WeightAdd  0.35 0.34 0.09*4
ject noun and the intransitive verb. To this end, Kintsch 047 045 0.09*
we optimized the weights on a small held-out set. Multiply 042 028 0.17*

Specifically, we considered eleven models, varying Combined 0.38 0.28 0.19*F
in their weightings, in steps of 10%, from 100% UpperBound 4.94 3.25 0.40*

noun through 50% of both verb and noun to 100%
verb. For the best performing model the weighffable 2: Model means for High and Low similarity
for the verb was 80% and for the noun 20%. Sedtems and correlation coefficients with human judgments
ondly, we optimized the weightings in the combined™ P < 0.05,** p<0.01)

model (11) with a similar grid search over its three

parameters. This yielded a weighted sum consisting

of 95% verb, 0% noun and 5% of their multiplica-addition (equation (11), Combined). As a baseline
tive combination. Finally, Kintsch’s (2001) additivewe simply estimated the similarity between the ref-
model has two extra parameters. Tineneighbors erence verb and its landmarks without taking the
most similar to the predicate, and tk@f mneigh-  subject noun into account (equation (8), NonComp).
bors closest to its argument. In our experiments WEable 2 shows the average model ratings for High
selected parameters that Kintsch reports as optimalnd Low similarity items. For comparison, we also
Specificallymwas set to 20 anthto 1. show the human ratings for these items (Upper-

Evaluation M ethodology We evaluated the Bound). Here, we are interested in relative dif-
proposed composition models in two ways. Firstferences, since the two types of ratings correspond
we used the models to estimate the Cosine S”’ntio diﬁerent Sca|eS. MOdeI Similal‘ities have been
larity between the reference sentence and its lan§Stimated using cosine which ranges from 0 to 1,
marks. We expect better models to yield a pattern dg¥hereas our subjects rated the sentences on a scale
similarity scores like those observed in the humaffom 1to 7.

ratings (see Figure 2). A more scrupulous evalua- The simple additive model fails to distinguish be-
tion requires directly correlating all the individual tween High and Low Similarity items. We observe
participants’ similarity judgments with those of thea similar pattern for the non compositional base-
models® We used Spearmansfor our correlation line model, the weighted additive model and Kintsch
analyses. Again, better models should correlate bg2001). The multiplicative and combined models
ter with the experimental data. We assume that thgeld means closer to the human ratings. The dif-
inter-subject agreement can serve as an upper boutadence between High and Low similarity values es-
for comparing the fit of our models against the hutimated by these models are statistically significant

man judgments. (p < 0.01 using the Wilcoxon rank sum test). Fig-
ure 3 shows the distribution of estimated similarities
5 Results under the multiplicative model.

Our experiments assessed the performance of sevenf he results of our correlation analysis are also
composition models. These included three additiv@iven in Table 2. As can be seen, all models are sig-
models, i.e., simple addition (equation (5), Add)nificantly correlated with the human ratings. In or-
weighted addition (equation (7), WeightAdd), ancfer to establish which ones fit our data better, we ex-
Kintsch’s (2001) model (equation (10), Kintsch), 22mined whether the correlation coefficients achieved
also a model which combines multiplication with1983). The lowest correlatiop = 0.04) is observed
YT —— _ o _ for the simple additive model which is not signif-
We avoided correlating the model predictions with avericgntly different from the non-compositional base-

aged participant judgments as this is inappropriate given the oy- . .
dinal nature of the scale of these judgments and also leads fc(lge model. The weighted additive model < 0.09)

dependence between the number of participants and the magl§-Not significantly different from the baseline either
tude of the correlation coefficient. or Kintsch (2001) ¢ = 0.09). Given that the basis
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1 whereas multiplicative models consider a subset,
namely non-zero components. The resulting vector
0.6 is sparser but expresses more succinctly the meaning
of the predicate-argument structure, and thus allows

0.6 semantic similarity to be modelled more accurately.
Further research is needed to gain a deeper un-

0.4 derstanding of vector composition, both in terms of
modeling a wider range of structures (e.g., adjective-

0.2 noun, noun-noun) and also in terms of exploring the

J space of models more fully. We anticipate that more

0 | l substantial correlations can be achieved by imple-

High Low menting more sophisticated models from within the

framework outlined here. In particular, the general
Figure 3: Distribution of predicted similarities for the class of multiplicative models (see equation (4)) ap-
vector multiplication model on High and Low similarity pears to be a fruitful area to explore. Future direc-
items tions include constraining the number of free param-
eters in linguistically plausible ways and scaling to
. , . . larger datasets.
of Kintsch’s model is the summation of the verb, & o anpjications of the framework discussed here
neighbor close to the verb and the noun, it iS N0Le many and varied both for cognitive science and
surprising that it produces results similar to a SUMR P, We intend to assess the potential of our com-

mation which weights the verb more heavily thar})osition models on context sensitive semantic prim-

the noun. The multiplicative model yields a bettef,, j| et a1, 1988) and inductive inference (Heit

ﬁF with the e|>_<perimenta| clllata_p =0.17. The com- 4 Rubinstein, 1994). NLP tasks that could benefit
bined model is best overall with=0.19. However, ., composition models include paraphrase iden-

t_he diﬁgrer_u;e hetween the two m_odels Is not StaLti?l’fication and context-dependent language modeling
tically significant. Also note that in contrast to the{Coccaro and Jurafsky, 1998)

combined model, the multiplicative model does no
have any free parameters and hence does not require
optimization for this particular task. References
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