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Abstract

This paper proposes a framework for repre-
senting the meaning of phrases and sentences
in vector space. Central to our approach is
vector composition which we operationalize
in terms of additive and multiplicative func-
tions. Under this framework, we introduce a
wide range of composition models which we
evaluate empirically on a sentence similarity
task. Experimental results demonstrate that
the multiplicative models are superior to the
additive alternatives when compared against
human judgments.

1 Introduction

Vector-based models of word meaning (Lund and
Burgess, 1996; Landauer and Dumais, 1997) have
become increasingly popular in natural language
processing (NLP) and cognitive science. The ap-
peal of these models lies in their ability to rep-
resent meaning simply by using distributional in-
formation under the assumption that words occur-
ring within similar contexts are semantically similar
(Harris, 1968).

A variety of NLP tasks have made good use
of vector-based models. Examples include au-
tomatic thesaurus extraction (Grefenstette, 1994),
word sense discrimination (Schütze, 1998) and dis-
ambiguation (McCarthy et al., 2004), collocation ex-
traction (Schone and Jurafsky, 2001), text segmen-
tation (Choi et al., 2001) , and notably information
retrieval (Salton et al., 1975). In cognitive science
vector-based models have been successful in simu-
lating semantic priming (Lund and Burgess, 1996;
Landauer and Dumais, 1997) and text comprehen-
sion (Landauer and Dumais, 1997; Foltz et al.,

1998). Moreover, the vector similarities within such
semantic spaces have been shown to substantially
correlate with human similarity judgments (McDon-
ald, 2000) and word association norms (Denhire and
Lemaire, 2004).

Despite their widespread use, vector-based mod-
els are typically directed at representing words in
isolation and methods for constructing representa-
tions for phrases or sentences have received little
attention in the literature. In fact, the common-
est method for combining the vectors is to average
them. Vector averaging is unfortunately insensitive
to word order, and more generally syntactic struc-
ture, giving the same representation to any construc-
tions that happen to share the same vocabulary. This
is illustrated in the example below taken from Lan-
dauer et al. (1997). Sentences (1-a) and (1-b) con-
tain exactly the same set of words but their meaning
is entirely different.

(1) a. It was not the sales manager who hit the
bottle that day, but the office worker with
the serious drinking problem.

b. That day the office manager, who was
drinking, hit the problem sales worker with
a bottle, but it was not serious.

While vector addition has been effective in some
applications such as essay grading (Landauer and
Dumais, 1997) and coherence assessment (Foltz
et al., 1998), there is ample empirical evidence
that syntactic relations across and within sentences
are crucial for sentence and discourse processing
(Neville et al., 1991; West and Stanovich, 1986)
and modulate cognitive behavior in sentence prim-
ing (Till et al., 1988) and inference tasks (Heit and
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Rubinstein, 1994).
Computational models of semantics which use

symbolic logic representations (Montague, 1974)
can account naturally for the meaning of phrases or
sentences. Central in these models is the notion of
compositionality — the meaning of complex expres-
sions is determined by the meanings of their con-
stituent expressions and the rules used to combine
them. Here, semantic analysis is guided by syntactic
structure, and therefore sentences (1-a) and (1-b) re-
ceive distinct representations. The downside of this
approach is that differences in meaning are qualita-
tive rather than quantitative, and degrees of similar-
ity cannot be expressed easily.

In this paper we examine models of semantic
composition that are empirically grounded and can
represent similarity relations. We present a gen-
eral framework for vector-based composition which
allows us to consider different classes of models.
Specifically, we present both additive and multi-
plicative models of vector combination and assess
their performance on a sentence similarity rating ex-
periment. Our results show that the multiplicative
models are superior and correlate significantly with
behavioral data.

2 Related Work

The problem of vector composition has received
some attention in the connectionist literature, partic-
ularly in response to criticisms of the ability of con-
nectionist representations to handle complex struc-
tures (Fodor and Pylyshyn, 1988). While neural net-
works can readily represent single distinct objects,
in the case of multiple objects there are fundamen-
tal difficulties in keeping track of which features are
bound to which objects. For the hierarchical struc-
ture of natural language this binding problem be-
comes particularly acute. For example, simplistic
approaches to handling sentences such asJohn loves
Mary and Mary loves Johntypically fail to make
valid representations in one of two ways. Either
there is a failure to distinguish between these two
structures, because the network fails to keep track
of the fact thatJohn is subject in one and object
in the other, or there is a failure to recognize that
both structures involve the same participants, be-
causeJohnas a subject has a distinct representation
from Johnas an object. In contrast, symbolic repre-
sentations can naturally handle the binding of con-
stituents to their roles, in a systematic manner that

avoids both these problems.
Smolensky (1990) proposed the use of tensor

products as a means of binding one vector to an-
other. The tensor productu⊗ v is a matrix whose
components are all the possible productsuiv j of the
components of vectorsu andv. A major difficulty
with tensor products is their dimensionality which is
higher than the dimensionality of the original vec-
tors (precisely, the tensor product has dimensional-
ity m× n). To overcome this problem, other tech-
niques have been proposed in which the binding of
two vectors results in a vector which has the same
dimensionality as its components. Holographic re-
duced representations (Plate, 1991) are one imple-
mentation of this idea where the tensor product is
projected back onto the space of its components.

The projection is defined in terms ofcircular con-
volution a mathematical function that compresses
the tensor product of two vectors. The compression
is achieved by summing along the transdiagonal el-
ements of the tensor product. Noisy versions of the
original vectors can be recovered by means ofcir-
cular correlationwhich is the approximate inverse
of circular convolution. The success of circular cor-
relation crucially depends on the components of the
n-dimensional vectorsu andv being randomly dis-
tributed with mean 0 and variance1n. This poses
problems for modeling linguistic data which is typi-
cally represented by vectors with non-random struc-
ture.

Vector addition is by far the most common
method for representing the meaning of linguistic
sequences. For example, assuming that individual
words are represented by vectors, we can compute
the meaning of a sentence by taking their mean
(Foltz et al., 1998; Landauer and Dumais, 1997).
Vector addition does not increase the dimensional-
ity of the resulting vector. However, since it is order
independent, it cannot capture meaning differences
that are modulated by differences in syntactic struc-
ture. Kintsch (2001) proposes a variation on the vec-
tor addition theme in an attempt to model how the
meaning of a predicate (e.g.,run) varies depending
on the arguments it operates upon (e.g,the horse ran
vs. the color ran). The idea is to add not only the
vectors representing the predicate and its argument
but also the neighbors associated with both of them.
The neighbors, Kintsch argues, can ‘strengthen fea-
tures of the predicate that are appropriate for the ar-
gument of the predication’.
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animal stable village gallop jokey
horse 0 6 2 10 4
run 1 8 4 4 0

Figure 1: A hypothetical semantic space forhorseand
run

Unfortunately, comparisons across vector compo-
sition models have been few and far between in the
literature. The merits of different approaches are il-
lustrated with a few hand picked examples and pa-
rameter values and large scale evaluations are uni-
formly absent (see Frank et al. (2007) for a criticism
of Kintsch’s (2001) evaluation standards). Our work
proposes a framework for vector composition which
allows the derivation of different types of models
and licenses two fundamental composition opera-
tions, multiplication and addition (and their combi-
nation). Under this framework, we introduce novel
composition models which we compare empirically
against previous work using a rigorous evaluation
methodology.

3 Composition Models

We formulate semantic composition as a function
of two vectors, u and v. We assume that indi-
vidual words are represented by vectors acquired
from a corpus following any of the parametrisa-
tions that have been suggested in the literature.1 We
briefly note here that a word’s vector typically rep-
resents its co-occurrence with neighboring words.
The construction of the semantic space depends on
the definition of linguistic context (e.g., neighbour-
ing words can be documents or collocations), the
number of components used (e.g., thek most fre-
quent words in a corpus), and their values (e.g., as
raw co-occurrence frequencies or ratios of probabil-
ities). A hypothetical semantic space is illustrated in
Figure 1. Here, the space has only five dimensions,
and the matrix cells denote the co-occurrence of the
target words (horseandrun) with the context words
animal, stable, and so on.

Let p denote the composition of two vectorsu
and v, representing a pair of constituents which
stand in some syntactic relationR. Let K stand for
any additional knowledge or information which is
needed to construct the semantics of their composi-

1A detailed treatment of existing semantic space models is
outside the scope of the present paper. We refer the interested
reader to Pad́o and Lapata (2007) for a comprehensive overview.

tion. We define a general class of models for this
process of composition as:

p = f (u,v,R,K) (1)

The expression above allows us to derive models for
which p is constructed in a distinct space fromu
and v, as is the case for tensor products. It also
allows us to derive models in which composition
makes use of background knowledgeK and mod-
els in which composition has a dependence, via the
argumentR, on syntax.

To derive specific models from this general frame-
work requires the identification of appropriate con-
straints to narrow the space of functions being con-
sidered. One particularly useful constraint is to
hold R fixed by focusing on a single well defined
linguistic structure, for example the verb-subject re-
lation. Another simplification concernsK which can
be ignored so as to explore what can be achieved in
the absence of additional knowledge. This reduces
the class of models to:

p = f (u,v) (2)

However, this still leaves the particular form of the
function f unspecified. Now, if we assume thatp
lies in the same space asu andv, avoiding the issues
of dimensionality associated with tensor products,
and thatf is a linear function, for simplicity, of the
cartesian product ofu andv, then we generate a class
of additivemodels:

p = Au+Bv (3)

where A and B are matrices which determine the
contributions made byu andv to the productp. In
contrast, if we assume thatf is a linear function of
the tensor product ofu andv, then we obtainmulti-
plicativemodels:

p = Cuv (4)

whereC is a tensor of rank 3, which projects the
tensor product ofu andv onto the space ofp.

Further constraints can be introduced to reduce
the free parameters in these models. So, if we as-
sume that only theith components ofu andv con-
tribute to theith component ofp, that these com-
ponents are not dependent oni, and that the func-
tion is symmetric with regard to the interchange ofu
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andv, we obtain a simpler instantiation of an addi-
tive model:

pi = ui +vi (5)

Analogously, under the same assumptions, we ob-
tain the following simpler multiplicative model:

pi = ui ·vi (6)

For example, according to (5), the addition of the
two vectors representinghorse and run in Fig-
ure 1 would yieldhorse+ run = [1 14 6 14 4].
Whereas their product, as given by (6), is
horse · run = [0 48 8 40 0].

Although the composition model in (5) is com-
monly used in the literature, from a linguistic per-
spective, the model in (6) is more appealing. Sim-
ply adding the vectorsu andv lumps their contents
together rather than allowing the content of one vec-
tor to pick out the relevant content of the other. In-
stead, it could be argued that the contribution of the
ith component ofu should be scaled according to its
relevance tov, and vice versa. In effect, this is what
model (6) achieves.

As a result of the assumption of symmetry, both
these models are ‘bag of words’ models and word
order insensitive. Relaxing the assumption of sym-
metry in the case of the simple additive model pro-
duces a model which weighs the contribution of the
two components differently:

pi = αui +βvi (7)

This allows additive models to become more
syntax aware, since semantically important con-
stituents can participate more actively in the com-
position. As an example if we setα to 0.4
and β to 0.6, then horse = [0 2.4 0.8 4 1.6]
and run = [0.6 4.8 2.4 2.4 0], and their sum
horse+ run = [0.6 5.6 3.2 6.4 1.6].

An extreme form of this differential in the contri-
bution of constituents is where one of the vectors,
sayu, contributes nothing at all to the combination:

pi = v j (8)

Admittedly the model in (8) is impoverished and
rather simplistic, however it can serve as a simple
baseline against which to compare more sophisti-
cated models.

The models considered so far assume that com-
ponents do not ‘interfere’ with each other, i.e., that

only theith components ofu andv contribute to the
ith component ofp. Another class of models can be
derived by relaxing this constraint. To give a con-
crete example, circular convolution is an instance of
the general multiplicative model which breaks this
constraint by allowingu j to contribute topi :

pi = ∑
j

u j ·vi− j (9)

It is also possible to re-introduce the dependence
on K into the model of vector composition. For ad-
ditive models, a natural way to achieve this is to in-
clude further vectors into the summation. These vec-
tors are not arbitrary and ideally they must exhibit
some relation to the words of the construction under
consideration. When modeling predicate-argument
structures, Kintsch (2001) proposes including one or
more distributional neighbors,n, of the predicate:

p = u+v+∑n (10)

Note that considerable latitude is allowed in select-
ing the appropriate neighbors. Kintsch (2001) con-
siders only themmost similar neighbors to the pred-
icate, from which he subsequently selectsk, those
most similar to its argument. So, if in the composi-
tion of horsewith run, the chosen neighbor isride,
ride = [2 15 7 9 1], then this produces the repre-
sentationhorse+ run+ ride = [3 29 13 23 5]. In
contrast to the simple additive model, this extended
model is sensitive to syntactic structure, sincen is
chosen from among the neighbors of the predicate,
distinguishing it from the argument.

Although we have presented multiplicative and
additive models separately, there is nothing inherent
in our formulation that disallows their combination.
The proposal is not merely notational. One poten-
tial drawback of multiplicative models is the effect
of components with value zero. Since the product
of zero with any number is itself zero, the presence
of zeroes in either of the vectors leads to informa-
tion being essentially thrown away. Combining the
multiplicative model with an additive model, which
does not suffer from this problem, could mitigate
this problem:

pi = αui +βvi + γuivi (11)

whereα, β, andγ are weighting constants.
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4 Evaluation Set-up

We evaluated the models presented in Section 3
on a sentence similarity task initially proposed by
Kintsch (2001). In his study, Kintsch builds a model
of how a verb’s meaning is modified in the context of
its subject. He argues that the subjects ofran in The
color ran andThe horse ranselect different senses
of ran. This change in the verb’s sense is equated to
a shift in its position in semantic space. To quantify
this shift, Kintsch proposes measuring similarity rel-
ative to other verbs acting as landmarks, for example
gallop anddissolve. The idea here is that an appro-
priate composition model when applied tohorseand
ran will yield a vector closer to the landmarkgallop
thandissolve. Conversely, whencolor is combined
with ran, the resulting vector will be closer todis-
solve thangallop.

Focusing on a single compositional structure,
namely intransitive verbs and their subjects, is a
good point of departure for studying vector combi-
nation. Any adequate model of composition must be
able to represent argument-verb meaning. Moreover
by using a minimal structure we factor out inessen-
tial degrees of freedom and are able to assess the
merits of different models on an equal footing. Un-
fortunately, Kintsch (2001) demonstrates how his
own composition algorithm works intuitively on a
few hand selected examples but does not provide a
comprehensive test set. In order to establish an inde-
pendent measure of sentence similarity, we assem-
bled a set of experimental materials and elicited sim-
ilarity ratings from human subjects. In the following
we describe our data collection procedure and give
details on how our composition models were con-
structed and evaluated.

Materials and Design Our materials consisted
of sentences with an an intransitive verb and its sub-
ject. We first compiled a list of intransitive verbs
from CELEX2. All occurrences of these verbs with
a subject noun were next extracted from a RASP
parsed (Briscoe and Carroll, 2002) version of the
British National Corpus (BNC). Verbs and nouns
that were attested less than fifty times in the BNC
were removed as they would result in unreliable vec-
tors. Each reference subject-verb tuple (e.g.,horse
ran) was paired with two landmarks, each a syn-
onym of the verb. The landmarks were chosen so
as to represent distinct verb senses, one compatible

2http://www.ru.nl/celex/

with the reference (e.g.,horse galloped) and one in-
compatible (e.g.,horse dissolved). Landmarks were
taken from WordNet (Fellbaum, 1998). Specifically,
they belonged to different synsets and were maxi-
mally dissimilar as measured by the Jiang and Con-
rath (1997) measure.3

Our initial set of candidate materials consisted
of 20 verbs, each paired with 10 nouns, and 2 land-
marks (400 pairs of sentences in total). These were
further pretested to allow the selection of a subset
of items showing clear variations in sense as we
wanted to have a balanced set of similar and dis-
similar sentences. In the pretest, subjects saw a
reference sentence containing a subject-verb tuple
and its landmarks and were asked to choose which
landmark was most similar to the reference or nei-
ther. Our items were converted into simple sentences
(all in past tense) by adding articles where appropri-
ate. The stimuli were administered to four separate
groups; each group saw one set of 100 sentences.
The pretest was completed by 53 participants.

For each reference verb, the subjects’ responses
were entered into a contingency table, whose rows
corresponded to nouns and columns to each possi-
ble answer (i.e., one of the two landmarks). Each
cell recorded the number of times our subjects se-
lected the landmark as compatible with the noun or
not. We used Fisher’s exact test to determine which
verbs and nouns showed the greatest variation in
landmark preference and items withp-values greater
than 0.001 were discarded. This yielded a reduced
set of experimental items (120 in total) consisting of
15 reference verbs, each with 4 nouns, and 2 land-
marks.

Procedure and Subjects Participants first saw
a set of instructions that explained the sentence sim-
ilarity task and provided several examples. Then
the experimental items were presented; each con-
tained two sentences, one with the reference verb
and one with its landmark. Examples of our items
are given in Table 1. Here,burn is a high similarity
landmark (High) for the referenceThe fire glowed,
whereasbeam is a low similarity landmark (Low).
The opposite is the case for the referenceThe face

3We assessed a wide range of semantic similarity measures
using the WordNet similarity package (Pedersen et al., 2004).
Most of them yielded similar results. We selected Jiang and
Conrath’s measure since it has been shown to perform consis-
tently well across several cognitive and NLP tasks (Budanitsky
and Hirst, 2001).
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Noun Reference High Low

The fire glowed burned beamed
The face glowed beamed burned

The child strayed roamed digressed
The discussion strayed digressed roamed

The sales slumped declined slouched
The shoulders slumped slouched declined

Table 1: Example Stimuli with High and Low similarity
landmarks

glowed. Sentence pairs were presented serially in
random order. Participants were asked to rate how
similar the two sentences were on a scale of one
to seven. The study was conducted remotely over
the Internet using Webexp4, a software package de-
signed for conducting psycholinguistic studies over
the web. 49 unpaid volunteers completed the exper-
iment, all native speakers of English.

Analysis of Similarity Ratings The reliability
of the collected judgments is important for our eval-
uation experiments; we therefore performed several
tests to validate the quality of the ratings. First, we
examined whether participants gave high ratings to
high similarity sentence pairs and low ratings to low
similarity ones. Figure 2 presents a box-and-whisker
plot of the distribution of the ratings. As we can see
sentences with high similarity landmarks are per-
ceived as more similar to the reference sentence. A
Wilcoxon rank sum test confirmed that the differ-
ence is statistically significant (p < 0.01). We also
measured how well humans agree in their ratings.
We employed leave-one-out resampling (Weiss and
Kulikowski, 1991), by correlating the data obtained
from each participant with the ratings obtained from
all other participants. We used Spearman’sρ, a non
parametric correlation coefficient, to avoid making
any assumptions about the distribution of the simi-
larity ratings. The average inter-subject agreement5

wasρ = 0.40. We believe that this level of agree-
ment is satisfactory given that naive subjects are
asked to provide judgments on fine-grained seman-
tic distinctions (see Table 1). More evidence that
this is not an easy task comes from Figure 2 where
we observe some overlap in the ratings for High and
Low similarity items.

4http://www.webexp.info/
5Note that Spearman’s rho tends to yield lower coefficients

compared to parametric alternatives such as Pearson’sr.
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Figure 2: Distribution of elicited ratings for High and
Low similarity items

Model Parameters Irrespectively of their form,
all composition models discussed here are based on
a semantic space for representing the meanings of
individual words. The semantic space we used in
our experiments was built on a lemmatised version
of the BNC. Following previous work (Bullinaria
and Levy, 2007), we optimized its parameters on a
word-based semantic similarity task. The task in-
volves examining the degree of linear relationship
between the human judgments for two individual
words and vector-based similarity values. We ex-
perimented with a variety of dimensions (ranging
from 50 to 500,000), vector component definitions
(e.g., pointwise mutual information or log likelihood
ratio) and similarity measures (e.g., cosine or confu-
sion probability). We used WordSim353, a bench-
mark dataset (Finkelstein et al., 2002), consisting of
relatedness judgments (on a scale of 0 to 10) for 353
word pairs.

We obtained best results with a model using a
context window of five words on either side of the
target word, the cosine measure, and 2,000 vector
components. The latter were the most common con-
text words (excluding a stop list of function words).
These components were set to the ratio of the proba-
bility of the context word given the target word to
the probability of the context word overall. This
configuration gave high correlations with the Word-
Sim353 similarity judgments using the cosine mea-
sure. In addition, Bullinaria and Levy (2007) found
that these parameters perform well on a number of
other tasks such as the synonymy task from theTest
of English as a Foreign Language(TOEFL).

Our composition models have no additional pa-
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rameters beyond the semantic space just described,
with three exceptions. First, the additive model
in (7) weighs differentially the contribution of the
two constituents. In our case, these are the sub-
ject noun and the intransitive verb. To this end,
we optimized the weights on a small held-out set.
Specifically, we considered eleven models, varying
in their weightings, in steps of 10%, from 100%
noun through 50% of both verb and noun to 100%
verb. For the best performing model the weight
for the verb was 80% and for the noun 20%. Sec-
ondly, we optimized the weightings in the combined
model (11) with a similar grid search over its three
parameters. This yielded a weighted sum consisting
of 95% verb, 0% noun and 5% of their multiplica-
tive combination. Finally, Kintsch’s (2001) additive
model has two extra parameters. Them neighbors
most similar to the predicate, and thek of m neigh-
bors closest to its argument. In our experiments we
selected parameters that Kintsch reports as optimal.
Specifically,mwas set to 20 andm to 1.

Evaluation Methodology We evaluated the
proposed composition models in two ways. First,
we used the models to estimate the cosine simi-
larity between the reference sentence and its land-
marks. We expect better models to yield a pattern of
similarity scores like those observed in the human
ratings (see Figure 2). A more scrupulous evalua-
tion requires directly correlating all the individual
participants’ similarity judgments with those of the
models.6 We used Spearman’sρ for our correlation
analyses. Again, better models should correlate bet-
ter with the experimental data. We assume that the
inter-subject agreement can serve as an upper bound
for comparing the fit of our models against the hu-
man judgments.

5 Results

Our experiments assessed the performance of seven
composition models. These included three additive
models, i.e., simple addition (equation (5), Add),
weighted addition (equation (7), WeightAdd), and
Kintsch’s (2001) model (equation (10), Kintsch), a
multiplicative model (equation (6), Multiply), and
also a model which combines multiplication with

6We avoided correlating the model predictions with aver-
aged participant judgments as this is inappropriate given the or-
dinal nature of the scale of these judgments and also leads to a
dependence between the number of participants and the magni-
tude of the correlation coefficient.

Model High Low ρ
NonComp 0.27 0.26 0.08**

Add 0.59 0.59 0.04*
WeightAdd 0.35 0.34 0.09**
Kintsch 0.47 0.45 0.09**
Multiply 0.42 0.28 0.17**
Combined 0.38 0.28 0.19**
UpperBound 4.94 3.25 0.40**

Table 2: Model means for High and Low similarity
items and correlation coefficients with human judgments
(*: p < 0.05, **: p < 0.01)

addition (equation (11), Combined). As a baseline
we simply estimated the similarity between the ref-
erence verb and its landmarks without taking the
subject noun into account (equation (8), NonComp).
Table 2 shows the average model ratings for High
and Low similarity items. For comparison, we also
show the human ratings for these items (Upper-
Bound). Here, we are interested in relative dif-
ferences, since the two types of ratings correspond
to different scales. Model similarities have been
estimated using cosine which ranges from 0 to 1,
whereas our subjects rated the sentences on a scale
from 1 to 7.

The simple additive model fails to distinguish be-
tween High and Low Similarity items. We observe
a similar pattern for the non compositional base-
line model, the weighted additive model and Kintsch
(2001). The multiplicative and combined models
yield means closer to the human ratings. The dif-
ference between High and Low similarity values es-
timated by these models are statistically significant
(p < 0.01 using the Wilcoxon rank sum test). Fig-
ure 3 shows the distribution of estimated similarities
under the multiplicative model.

The results of our correlation analysis are also
given in Table 2. As can be seen, all models are sig-
nificantly correlated with the human ratings. In or-
der to establish which ones fit our data better, we ex-
amined whether the correlation coefficients achieved
differ significantly using at-test (Cohen and Cohen,
1983). The lowest correlation (ρ = 0.04) is observed
for the simple additive model which is not signif-
icantly different from the non-compositional base-
line model. The weighted additive model (ρ = 0.09)
is not significantly different from the baseline either
or Kintsch (2001) (ρ = 0.09). Given that the basis
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Figure 3: Distribution of predicted similarities for the
vector multiplication model on High and Low similarity
items

of Kintsch’s model is the summation of the verb, a
neighbor close to the verb and the noun, it is not
surprising that it produces results similar to a sum-
mation which weights the verb more heavily than
the noun. The multiplicative model yields a better
fit with the experimental data,ρ = 0.17. The com-
bined model is best overall withρ = 0.19. However,
the difference between the two models is not statis-
tically significant. Also note that in contrast to the
combined model, the multiplicative model does not
have any free parameters and hence does not require
optimization for this particular task.

6 Discussion

In this paper we presented a general framework for
vector-based semantic composition. We formulated
composition as a function of two vectors and intro-
duced several models based on addition and multi-
plication. Despite the popularity of additive mod-
els, our experimental results showed the superior-
ity of models utilizing multiplicative combinations,
at least for the sentence similarity task attempted
here. We conjecture that the additive models are
not sensitive to the fine-grained meaning distinc-
tions involved in our materials. Previous applica-
tions of vector addition to document indexing (Deer-
wester et al., 1990) or essay grading (Landauer et al.,
1997) were more concerned with modeling the gist
of a document rather than the meaning of its sen-
tences. Importantly, additive models capture com-
position by consideringall vector components rep-
resenting the meaning of the verb and its subject,

whereas multiplicative models consider a subset,
namely non-zero components. The resulting vector
is sparser but expresses more succinctly the meaning
of the predicate-argument structure, and thus allows
semantic similarity to be modelled more accurately.

Further research is needed to gain a deeper un-
derstanding of vector composition, both in terms of
modeling a wider range of structures (e.g., adjective-
noun, noun-noun) and also in terms of exploring the
space of models more fully. We anticipate that more
substantial correlations can be achieved by imple-
menting more sophisticated models from within the
framework outlined here. In particular, the general
class of multiplicative models (see equation (4)) ap-
pears to be a fruitful area to explore. Future direc-
tions include constraining the number of free param-
eters in linguistically plausible ways and scaling to
larger datasets.

The applications of the framework discussed here
are many and varied both for cognitive science and
NLP. We intend to assess the potential of our com-
position models on context sensitive semantic prim-
ing (Till et al., 1988) and inductive inference (Heit
and Rubinstein, 1994). NLP tasks that could benefit
from composition models include paraphrase iden-
tification and context-dependent language modeling
(Coccaro and Jurafsky, 1998).
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