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Abstract

Among syntax-based translation models, the
tree-basedapproach, which takes as input a
parse tree of the source sentence, is a promis-
ing direction being faster and simpler than
its string-based counterpart. However, current
tree-based systems suffer from a major draw-
back: they only use the 1-best parse to direct
the translation, which potentially introduces
translation mistakes due to parsing errors. We
propose aforest-basedapproach that trans-
lates a packed forest of exponentially many
parses, which encodes many more alternatives
than standardi-best lists. Large-scale exper-
iments show an absolute improvement of 1.7
BLEU points over the 1-best baseline. This
result is also 0.8 points higher than decoding
with 30-best parses, and takes even less time.
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time, see (Huang et al., 2006)), do not require a
binary-branching grammar as in string-based mod-
els (Zhang et al., 2006), and can have separate gram-
mars for parsing and translation, say, a context-free
grammar for the former and a tree substitution gram-
mar for the latter (Huang et al., 2006). However, de-
spite these advantages, current tree-based systems
suffer from a major drawback: they only use the 1-
best parse tree to direct the translation, which po-
tentially introduces translation mistakes due to pars-
ing errors (Quirk and Corston-Oliver, 2006). This
situation becomes worse with resource-poor source
languages without enough Treebank data to train a
high-accuracy parser.

One obvious solution to this problem is to take as
input k-best parses, instead of a single tree. This
best list postpones some disambiguation to the de-
coder, which may recover from parsing errors by
getting a better translation from a non 1-best parse.

1 Introduction However, ak-best list, with its limited scope, of-

Syntax-based machine translation has witnesséd’ has too fewlvarlatlons anollltoo m_anlyll redunc(ijan-
promising improvements in recent years. Depenoc-'es’ fct;r examp ?' a 5%' be_st Ist tyg!ca_Y encodes
ing on the type of input, these efforts can be dj& combination o 5 or inary ambiguities (since

5 6
vided into two broad categories: ttstring-based 2 < 50_ < 2°), and many subtrees are repez_:lted
systems whose input is a string to be simultandcross different parses (Huang, 2008). It is thus inef-

ously parsed and translated by a synchronous graﬁllqiem either to decode separately with each of these
mar (Wu, 1997; Chiang, 2005; Galley et al 2006)very similar trees. Longer sentences will also aggra-
and thetree-basedystems whose input is already Jvate this situation as the number of parses grows ex-

parse tree to be directly converted into a target tre%onen.tlally with the sentence length.
or string (Lin, 2004; Ding and Palmer, 2005; Quirk Ve instead propose a new approdiiest-based

et al., 2005; Liu et al., 2006; Huang et al., 2006)§ramslation (Section 3), where_the decoder tréans-
Compared with their string-based counterparts, tred?t€S apacked foresof exponentially many parses,

based systems offer some attractive features: they ithere has been some confusion in the MT literature regard-
are much faster in decoding (linear time vs. cubithg the termforest the word “forest” in “forest-to-string rules”
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which compactly encodes many more alternatives yi NR juxing le NN

than k-best parses. This scheme can be seen as L !

: ) Shalong huitan
a compromise between the string-based and tree-
based methods, while combining the advantages of r |

both: decoding is still fast, yet does not commit tq

i - : NPB VP
a single parse. Large-scale experiments (Section 4) | L
show an improvement of 1.7 BLEU points over the NR PP VPB
1-best baseline, which is also 0.8 points higher than | P T

decoding witt30-best trees, and takes even lesstime  Bush P NPB VV AS NPB

thanks to the sharing of common subtrees. I L [ [

yu NR juxing le NN
[

2 Tree-based systems I
Shalong_ _huitan

Currenttree-basedsystems perform translation in NP
two separate steps: parsing and decoding. A parser ry I rg |l e
first parses the source language input into a 1-best 7 AN

tree T, and the decoder then searches for the bed) Bush  held NPE  With NpB

derivation (a sequence of translation steps)that | |

converts source treé€ into a target-language string NN NR
among all possible derivatiors: huiltén Srﬁléng
d* = arg gleach(d|T). (1) sl rs |

We will now proceed with a running example(e) Bush [held a tall [with Sharon]

translating from Chinese to English:
Figure 2: An example derivation of tree-to-string trans-

(2) Ziﬁ\ﬁ_, %—f //J/jE %éﬁ T /ﬁ\ﬁé lation. Shaded regions denote parts of the tree that is
Bush yu Stalong juxingle  hultan  pattern-matched with the rule being applied.

Bush with/and Sharon hold pass.talks

Bush held a tali with Sharon which results in two unfinished subtrees in (c). Then

Figure 2 shows how this process works. The Chitule 72 grabs theBusH subtree and transliterate it
nese sentence (a) is first parsed into tree (b), which -
will be converted into an English string in 5 steps(2) NPB(NR@usH)) — Bush.
First, at the root node, we apply rutg¢ preserving

. , Similarly, rulers shown in Figure 1 is applied to
top-level word-order between English and Chlneset Y "3 9 pp

he VP subtree, which swaps the two NPBs, yielding
(r1) IP@1:NPBz9:VP) — 21 29 the situation in (d). This rule is particularly interest-

(Liu et al., 2007) was a misnomer which actually refers to asel{19 since it has multiple levels on the source side,

of several unrelated subtrees over disjoint spans, and should Y¥PiCh has more expressive power than synchronous
be confused with the standard conceppatked forest context-free grammars where rules are flat.

193



More formally, a (tree-to-stringyandlation rule  example, consider the Chinese sentence in Exam-
(Huang et al., 2006) is a tuple, s, ¢), wheret isthe ple (2) above, which has (at least) two readings de-
source-side tree, whose internal nodes are labeled pgnding on the part-of-speech of the wgtd which
nonterminal symbols itV, and whose frontier nodes can be either a preposition (P “with”) or a conjunc-
are labeled by source-side terminalsnor vari- tion (CC “and”). The parse tree for the preposition
ablesfromaset = {z1,z2,...}; s € (YUA)*is case is shown in Figure 2(b) as the 1-best parse,
the target-side string wher® is the target language while for the conjunction case, the two proper nouns
terminal set; an@ is a mapping fromX’ to nonter- (Bush andShalong) are combined to form a coordi-
minals in N. Each variabler; € X occursexactly nated NP
oncein t an_dexactly oncén_s._We denot_eR to be NPBy; CCio NPB,s
the translation rule set. A similar formalism appears : NP : : *)
in another form in (Liu et al., 2006). These rules are 0.3
in the reverse direction of the original string-to-tre§yhjich functions as the subject of the sentence. In

transducer rules defined by Galley et al. (2004).  this case the Chinese sentence is translated into
Finally, from step (d) we apply rules, andr;

(3) “[Bush and Sharon] held a talk”.

(ra) NPB(NN(huitan) — a talk Shown in Figure 3(a), these two parse trees can

be represented as a single forest by sharing common
subtrees such as NgBB and VPB ¢. Such a forest
has a structure oflaypergraph(Klein and Manning,
3(901; Huang and Chiang, 2005), where items like
NPy 3 are calledhodes and deductive steps like (*)
correspond tdyperedges
3 Forest-based trandation More formally, aforest is a pair(V, E), whereV/

is the set ohodes, andFE the set ohyperedges. For
We now extend the tree-based idea from the prevé given sentence,; = w; ... w;, each node € V
ous section to the case of forest-based translatios.in the form of X; ;, which denotes the recogni-
Again, there are two steps, parsing and decodingion of nonterminalX spanning the substring from
In the former, a (modified) parser will parse the in{ositionsi throughj (that is,w; 1 ... w;). Each hy-
put sentence and output a packed forest (Section 3gredge: € E is a pair(tails(e), head(e)), where
rather than just the 1-best tree. Such a forest is ustiead(e) € V' is theconsequent nodi the deduc-
ally huge in size, so we use tif@rest pruning algo- tive step, andails(e) € V* is the list ofantecedent
rithm (Section 3.4) to reduce it to a reasonable sizéiodes For example, the hyperedge for deduction (*)
The pruned parse forest will then be used to direds notated:
the translation.

In the decoding step, we first convert the parse for- {(NPBo1, CCi2, NPBy3), NPys3).

est into a@ranslation foresusing the translation rule There is also a distinguisheot node TOP in

set, by similar techniques 9f pattern-matching from,, forest, denoting the goal item in parsing, which
tree-based decoding (Section 3.2). Then the deco grsimply S, where S is the start symbol ahib the
searches for the best derivation on the tranSIatiO&Jntence Iéngth

forest and outputs the target string (Section 3.3).
3.2 Trandation Forest

Given a parse forest and a translation rule/@etve
Informally, a packed parse forest, farestin short, can generate &ranslation forestwhich has a simi-
is a compact representation of all the derivationkr hypergraph structure. Basically, just as the depth-
(i.e., parse trees) for a given sentence under fast traversal procedure in tree-based decoding (Fig-
context-free grammar (Billot and Lang, 1989). Fowre 2), we visit in top-down order each nodée the

(r5) NPB(NREShalong)) — Sharon

which perform phrasal translations for the two re
maining subtrees, respectively, and get the Chine
translation in (e).

3.1 ParseForest
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e T6 IP(z1:NP z2:VPB) — 21 22
(© es3 r3  VP(PP(PyU) z1:NPB) VPB(VV(juxing) AS(le) x2:NPB)) — heldz, with z;
ey 7 VP(PP(PY':I) a:lNPB) $2VPB) — X9 with T
es rg NP(z1:NPB CC{l) z2:NPB) — x; andzs
€g T9 VPB(VV(] UXing) AS(le) (ElNPB) — heldz;

Figure 3: (a) the parse forest of the example sentence; bgfidredges denote the 1-best parse in Figure 2(b) while
dashed hyperedges denote the alternative parse due totided(fg. (b) the corresponding translation forest after
applying the translation rules (lexical rules not showhg; derivation shown in bold solid lines,(andes) corresponds

to the derivation in Figure 2; the one shown in dashed lingse, andeg) uses the alternative parse and corresponds
to the translation in Example (3). (c) the correspondent&dsn translation hyperedges and translation rules.

parse forest, and try to pattern-match each transla-More formally, we define a functiomatch(r,v)

tion ruler against the local sub-forest under nade which attempts to pattern-match rulet nodev in

For example, in Figure 3(a), at node VR two rules  the parse forest, and in case of success, returns a
rg andr; both matches the local subforest, and willist of descendent nodes ofthat are matched to the
thus generate twtranslation hyperedges; ande,  variables inr, or returns an empty list if the match
(see Figure 3(b-c)). fails. Note that this procedure is recursive and may
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Pseudocode 1 The conversion algorithm. up the computation. An +LM item of nodehas the

1: Input: parse foresfi, and rule seR form (v>*?), wherea andb are the target-language
2: Output: translation foresti; boundary wordsFor example(VP }%* Sharo js an

3: for each node < V,, in top-down ordedo +LM item with its translation starting with “held”

4 for each translation rule € R do and ending with “Sharon”. This scheme can be eas-
5: vars < match(r,v) > variables ily extended to work with a generalgram by stor-

6: if vars is not emptythen ing n — 1 words at both ends (Chiang, 2007).

7 e «— (vars, v, s(r)) For k-best search after getting 1-best derivation,
8 add translation hyperedgeo H, we use the lazy Algorithm 3 of Huang and Chiang

(2005) that works backwards from the root node,
incrementally computing the second, third, through
involve multiple parse hyperedges. For example, thefth best alternatives. However, this time we work
on a finer-grained forest, calléghnslation+LMfor-
est, resulting from the intersection of the translation
&rest and the LM, with its nodes being the +LM

ems during cube pruning. Although this new forest

prohibitively large, Algorithm 3 is very efficient

with minimal overhead on top of 1-best.

match(rg,VPL@-) = (NPBQ,S; NPB5,6)’

which covers three parse hyperedges, while nod
in gray do not pattern-match any rule (although the
are involved in the matching of other nodes, wher
they matchinterior nodesof the source-side tree
fragments in a rule). We can thus constructatransla4  Forest Pruning Algorithm
ion h f f h , ,
tion hyperedge rom_match(r,v) tov for each node We use the pruning algorithm of (Jonathan Graehl,
v and ruler. In addition, we also need to keep track . o

. o o p.c.; Huang, 2008) that is very similar to the method
of thetarget strings(r) specified by rule-, which in- . . .

. . based on marginal probability (Charniak and John-

cludes target-language terminals and variables. Fggn 2005), except that it prunes hyperedges as well
examples(rs) = “held z2 with z;”. The subtrans- ' ’ P P yp g

lations of the matched variable nodes will be sub®S Nodes. Basically, we use an Inside-Outside algo-

. . . rithm to compute the Viterbi inside costv) and the
stituted for the variables in(r) to get a complete .~ :
. ; Viterbi outside costy(v) for each node, and then
translation for node. So a translation hyperedge

is atriple(tails(e), head(e), s) wheres is the target compute themerit a/3(c) for each hyperedge:
string from the rule, for example,

aBle) = alhead(e)) + Y Blw) (4)
€3 = <(NPB2,5, NPBE),()‘), VPLG, “held z5 with 1,‘1”>. u;Etails(e)

Intuitively, this merit is the cost of the best derivation
that traverses, and the differencé(e) = af(e) —

3.3 Decoding Algorithms B(TOP) can be seen as the distance away from the
Og‘lobally best derivation. We prune away a hyper-
gee if §(e) > p for a thresholdp. Nodes with
incoming hyperedges pruned are also pruned.

This procedure is summarized in Pseudocode 1.

The decoder performs two tasks on the translati

forest: 1-best search with integrated language mod%?j

(LM), and k-best search with LM to be used in min-al

imum error rate training. Both_tasks can be done efy Experiments

ficiently by forest-based algorithms basediehest

parsing (Huang and Chiang, 2005). We can extend the simple model in Equation 1 to a
For 1-best search, we use tbagbe pruningiech- log-linear one (Liu et al., 2006; Huang et al., 2006):

nigue (Chiang, 2007; Huang and Chiang, 2007)

which approximately intersects the translation forest = arg Ijleagfp(d R SO

with the LM. Basically, cube pruning works bottom (5)

up in a forest, keeping at mokt+LM items at each whereT is the 1-best parse)'!? is the penalty term

node, and uses the best-first expansion idea from tha the number of rules in a derivatioRy,, (s) is the

Algorithm 2 of Huang and Chiang (2005) to speedanguage model ane's!*! is the length penalty term
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on target translation. The derivation probability con- 0.250
ditioned on 1-best tree?(d | T'), should now be 0.248 F Xp=12 A
replaced byP(d | H,) whereH,, is the parse forest, 0.246 L / a
which decomposes into the product of probabilities, (244 - / .
of translation rules € d: S 0242 | Xp=5 k=30 -
5 0.240 - k=100
m
=
M

P(d | Hy) =[] P(r) 6) 0.238 |- 1

red 0.236 7]

) _ 0234 k-best trees —+— _|

where eactP(r) is the product of five probabilities: 0232 - forests decoding ---%-—-
A \ 0230 | | | | | | | |
P(r)=P(t|s)™ Puex(t]s)™ 0 5 10 15 20 25 30 35

7
P(s | t))\G Plex(s | t)/\7 . P(t | Hp) ’\8‘ 0 average decoding time (secs/sentence)

Here t and s are the source-side tree and targe Figure 4: Comparison of decoding on forests with decod-
. . . ing onk-best trees.

side string of ruler, respectively,P(¢ | s) and

P(s | t) are the two translation probabilities, and

Plex(-) are the lexical probabilities. The only extraNIST MT Evaluation test set as our test set (1082

term in forest-based decoding ¢ | H,) denot- sentences), with on average 28.28 and 26.31 words

ing the source side parsing probability of the currerper sentence, respectively. We evaluate the transla-

translation ruler in the parse forest, which is thetion quality using thecase-sensitiv8LEU-4 met-

product of probabilities of each parse hyperedge ric (Papineni et al., 2002). We use the standard min-

covered in the pattern-match bégainst, (which imum error-rate training (Och, 2003) to tune the fea-

can be recorded at conversion time): ture weights to maximize the system’s BLEU score
on the dev set. On dev and test sets, we prune the
P(t| Hy) = 11 P(ey). (8) Chinese parse forests by the forest pruning algo-
ep€H,, €, covered byt rithm in Section 3.4 with a threshold pf= 12, and
then convert them into translation forests using the
4.1 Datapreparation algorithm in Section 3.2. To increase the coverage

Our experiments are on Chinese-to-English transl&f the rule set, we also introducedefault transla-
tion, and we use the Chinese parser of Xiong et alion hyperedgédor each parse hyperedge by mono-
(2005) to parse the source side of the bitext. Followtonically translating each tail node, so that we can
ing Huang (2008), we modify the parser to output &lways at least get a complete translation in the end.
packed forest for each sentence.

Our training corpus consists of 31,011 sentenc%‘2 Results
pairs with 0.8M Chinese words and 0.9M EnglishThe BLEU score of the baseline 1-best decoding is
words. We first word-align them by GIZA++ refined 0.2325, which is consistent with the result of 0.2302
by “diagand” from Koehn et al. (2003), and applyin (Liu et al., 2007) on the same training, develop-
the tree-to-string rule extraction algorithm (Galley etnent and test sets, and with the same rule extrac-
al., 2006; Liu et al., 2006), which resulted in 346Ktion procedure. The corresponding BLEU score of
translation rules. Note that our rule extraction is stilPharaoh (Koehn, 2004) is 0.2182 on this dataset.
done on 1-best parses, while decoding iskeinest Figure 4 compares forest decoding with decoding
parses or packed forests. We also use the SRI Laon k-best trees in terms of speed and quality. Us-
guage Modeling Toolkit (Stolcke, 2002) to train aing more than one parse tree apparently improves the
trigram language model with Kneser-Ney smoothBLEU score, but at the cost of much slower decod-
ing on the English side of the bitext. ing, since each of the top+rees has to be decoded

We use the 2002 NIST MT Evaluation test set asdividually although they share many common sub-
our development set (878 sentences) and the 2008es. Forest decoding, by contrast, is much faster
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E approach, ruleset| TR | TR+BP

forest decoding 1-best tree 0.2666| 0.2939

S

“ 20 act franc o -

5 30-best trees 30-best trees | 0.2755| 0.3084

2 s i forest p = 12) | 0.2839 | 0.3149

Q

S 10 ] Table 1: BLEU score results from training on large data.
o

3

5 5 . : . . .

& tinct weights tuned by minimum error rate training.
A~ 0 L1 The dev and test sets remain the same as above.

0 10 20 30 40 50 60 70 80 90 100 Furthermore, we also make use of bilingual
phrases to improve the coverage of the ruleset. Fol-
lowing Liu et al. (2006), we prepare a phrase-table
Figure 5: Percentage of theth best parse tree being from 3 phrase-extractor, e.g. Pharaoh, and at decod-
picked in decoding. 32% of the distribution for forest des ime for each node, we construct on-the-fly flat
coding is beyond top-100 and is not shown on this plot. .
translation rules from phrases that match the source-
side span of the node. These phrases are cajled

and produces consistently better BLEU scores. Wittactic phraseswhich are consistent with syntactic
pruning thresholdp = 12, it achieved a BLEU constituents (Chiang, 2005), and have been shown to
score of 0.2485, which is an absolute improvemerite helpful in tree-based systems (Galley et al., 2006;
of 1.6% points over the 1-best baseline, and is statikiu et al., 2006).
tically significant using theign-tesif Collins et al. The final results are shown in Table 1, where TR
(2005) f < 0.01). denotes translation rule only, and TR+BP denotes

We also investigate the question of how often th&he inclusion of bilingual phrases. The BLEU score
ith-best parse tree is picked to direct the translatiopf forest decoder with TR is 0.2839, whichis a 1.7%
(i = 1,2,...), in both k-best and forest decoding points improvement over the 1-best baseline, and
schemes. A packed forest can be roughly viewed 4Ris difference is statistically significant  0.01).
a (virtual) co-best list, and we can thus ask how of-Using bilingual phrases further improves the BLEU
ten is a parse beyond tdpused by a forest, which score by 3.1% points, which is 2.1% points higher
relates to the fundamental limitation bfbest lists. than the respective 1-best baseline. We suspect this
Figure 5 shows that, the 1-best parse is still preferrda@rger improvement is due to the alternative con-
25% of the time among 30-best trees, and 23% @tituents in the forest, which activates many syntac-
the time by the forest decoder. These ratios decreae phrases suppressed by the 1-best parse.
dramatically ag increases, but the forest curve has a .
much longer tail in largé. Indeed, 40% of the trees © Conclusion and future work

preferred by a forest is beoyond top-30, 32% is be,We have presented a novel forest-based translation
yond top-100, and even 20% beyond top-1000. Thig,.,4ch which uses a packed forest rather than the

confirms the fact that we need exponentially lakge 1-best parse tree (drbest parse trees) to direct the

best lists with the explosion of alternatives, whereag,sjation. Forest provides a compact data-structure
a forest can encode these information compactly. for efficient handling of exponentially many tree

structures, and is shown to be a promising direc-

tion with state-of-the-art translation results and rea-

We also conduct experiments on a larger datasetpnable decoding speed. This work can thus be
which contains 2.2M training sentence pairs. Beviewed as a compromise between string-based and
sides the trigram language model trained on the Eree-based paradigms, with a good trade-off between
glish side of these bitext, we also use another trspeed and accuarcy. For future work, we would like

gram model trained on the first 1/3 of the Xinhuao use packed forests not only in decoding, but also
portion of Gigaword corpus. The two LMs have dis-for translation rule extraction during training.

i (rank of the parse tree picked by the decoder)

4.3 Scalingtolargedata
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