
Proceedings of ACL-08: HLT, pages 148–155,
Columbus, Ohio, USA, June 2008. c©2008 Association for Computational Linguistics

Selecting Query Term Alterations for Web Search by Exploiting Query

Contexts

Guihong Cao Stephen Robertson Jian-Yun Nie
Dept. of Computer Science and

Operations Research

Microsoft Research at

Cambridge

Dept. of Computer Science and

Operations Research

University of Montreal, Canada Cambridge, UK University of Montreal, Canada
caogui@iro.umontreal.ca ser@microsoft.com nie@iro.umontreal.ca

Abstract

Query expansion by word alterations (alterna-

tive forms of a word) is often used in Web

search to replace word stemming. This allows

users to specify particular word forms in a

query. However, if many alterations are

added, query traffic will be greatly increased.

In this paper, we propose methods to select

only a few useful word alterations for query

expansion. The selection is made according to

the appropriateness of the alteration to the

query context (using a bigram language

model), or according to its expected impact

on the retrieval effectiveness (using a regres-

sion model). Our experiments on two TREC

collections will show that both methods only

select a few expansion terms, but the retrieval

effectiveness can be improved significantly.

1 Introduction

Word stemming is a basic NLP technique used in

most of Information Retrieval (IR) systems. It

transforms words into their root forms so as to in-

crease the chance to match similar words/terms

that are morphological variants. For example, with

stemming, “controlling” can match “controlled”

because both have the same root “control”. Most

stemmers, such as the Porter stemmer (Porter,

1980) and Krovetz stemmer (Krovetz, 1993), deal

with stemming by stripping word suffixes accord-

ing to a set of morphological rules. Rule-based ap-

proaches are intuitive and easy to implement.

However, while in general, most words can be

stemmed correctly; there is often erroneous stem-

ming that unifies unrelated words. For instance,

“jobs” is stemmed to “job” in both “find jobs in

Apple” and “Steve Jobs at Apple”. This is particu-

larly problematic in Web search, where users often

use special or new words in their queries. A stan-

dard stemmer such as Porter’s will wrongly stem

them.

To better determine stemming rules, Xu and

Croft (1998) propose a selective stemming method

based on corpus analysis. They refine the Porter

stemmer by means of word clustering: words are

first clustered according to their co-occurrences in

the text collection. Only word variants belonging

to the same cluster will be conflated.

Despite this improvement, the basic idea of

word stemming is to transform words in both doc-

uments and queries to a standard form. Once this is

done, there is no means for users to require a spe-

cific word form in a query – the word form will be

automatically transformed, otherwise, it will not

match documents. This approach does not seem to

be appropriate for Web search, where users often

specify particular word forms in their queries. An

example of this is a quoted query such as “Steve

Jobs”, or “US Policy”. If documents are stemmed,

many pages about job offerings or US police may

be returned (“policy” conflates with “police” in

Porter stemmer). Another drawback of stemming is

that it usually enhances recall, but may hurt preci-

sion (Kraaij and Pohlmann, 1996). However, gen-

eral Web search is basically a precision-oriented

task.

One alternative approach to word stemming is to

do query expansion at query time. The original

query terms are expanded by their related forms

having the same root. All expansions can be com-

bined by the Boolean operator “OR”. For example,

148

the query “controlling acid rain” can be expanded

to “(control OR controlling OR controller OR con-

trolled OR controls) (acid OR acidic OR acidify)

(rain OR raining OR rained OR rains)”. We will

call each such expansion term an alteration to the

original query term. Once a set of possible altera-

tions is determined, the simplest approach to per-

form expansion is to add all possible alterations.

We call this approach Naive Expansion. One can

easily show that stemming at indexing time is

equivalent to Naive Expansion at retrieval time.

This approach has been adopted by most commer-

cial search engines (Peng et al., 2007). However,

the expansion approaches proposed previously can

have several serious problems: First, they usually

do not consider expansion ambiguity – each query

term is usually expanded independently. However,

some expansion terms may not be appropriate. The

case of “Steve Jobs” is one such example, for

which the word “job” can be proposed as an ex-

pansion term. Second, as each query term may

have several alterations, the naïve approach using

all the alterations will create a very long query. As

a consequence, query traffic (the time required for

the evaluation of a query) is greatly increased.

Query traffic is a critical problem, as each search

engine serves millions of users at the same time. It

is important to limit the query traffic as much as

possible.

In practice, we can observe that some word al-

terations are irrelevant and undesirable (as in the

“Steve Jobs” case), and some other alterations have

little impact on the retrieval effectiveness (for ex-

ample, if we expand a word by a rarely used word

form). In this study, we will address these two

problems. Our goal is to select only appropriate

word alterations to be used in query expansion.

This is done for two purposes: On the one hand,

we want to limit query traffic as much as possible

when query expansion is performed. On the other

hand, we also want to remove irrelevant expansion

terms so that fewer irrelevant documents will be

retrieved, thereby improve the retrieval effective-

ness.

To deal with the two problems we mentioned

above, we will propose two methods to select al-

terations. In the first method, we make use of the

query context to select only the alterations that fit

the query. The query context is modeled by a bi-

gram language model. To reduce query traffic, we

select only one alteration for each query term,

which is the most coherent with the bigram model.

We call this model Bigram Expansion. Despite the

fact that this method adds far fewer expansion

terms than the naïve expansion, our experiments

will show that we can achieve comparable or even

better retrieval effectiveness.

Both the Naive Expansion and the Bigram Ex-

pansion determine word alterations solely accord-

ing to general knowledge about the language

(bigram model or morphological rules), and no

consideration about the possible effect of the ex-

pansion term is made. In practice, some alterations

will have virtually no impact on retrieval effec-

tiveness. They can be ignored. Therefore, in our

second method, we will try to predict whether an

alteration will have some positive impact on re-

trieval effectiveness. Only the alterations with pos-

itive impact will be retained. In this paper, we will

use a regression model to predict the impact on

retrieval effectiveness. Compared to the bigram

expansion method, the regression method results in

even fewer alterations, but experiments show that

the retrieval effectiveness is even better.

Experiments will be conducted on two TREC

collections, Gov2 data for Web Track and

TREC6&7&8 for ad-hoc retrieval. The results

show that the two methods we propose both out-

perform the original queries significantly with less

than two alterations per query on average. Com-

pared to the Naive Expansion method, the two me-

thods can perform at least equally well, while

query traffic is dramatically reduced.

In the following section, we provide a brief re-

view of related work. Section 3 shows how to gen-

erate alteration candidates using a similar approach

to Xu and Croft’s corpus analysis (1998). In sec-

tion 4 and 5, we describe the Bigram Expansion

method and Regression method respectively. Sec-

tion 6 presents some experiments on TREC

benchmarks to evaluate our methods. Section 7

concludes this paper and suggests some avenues

for future work.

2 Related Work

Many stemmers have been implemented and used

as standard processing in IR. Among them, the

Porter stemmer (Porter, 1980) is the most widely

used. It strips term suffixes step-by-step according

to a set of morphological rules. However, the Por-

ter stemmer sometimes wrongly transforms a term

into an unrelated root. For example, it will unify

149

“news” and “new”, “execute” and “executive”. On

the other hand, it may miss some conflations, such

as “mice” and “mouse”, “europe” and “european”.

Krovetz (1993) developed another stemmer, which

uses a machine-readable dictionary, to improve the

Porter stemmer. It avoids some of the Porter

stemmer’s wrong stripping, but does not produce

consistent improvement in IR experiments.

Both stemmers use generic rules for English to

strip each word in isolation. In practice, the re-

quired stemming may vary from one text collection

to another. Therefore, attempts have been made to

use corpus analysis to improve existing rule-based

stemmers. Xu and Croft (1998) create equivalence

clusters of words which are morphologically simi-

lar and occur in similar contexts.

As we stated earlier, the stemming-based IR ap-

proaches are not well suited to Web search. Query

expansion has been used as an alternative (Peng et

al. 2007). To limit the number of expansion terms,

and thus the query traffic, Peng et al. only use al-

terations for some of the query words: They seg-

ment each query into phrases and only the head

word in each phrase is expanded. The assumptions

are: 1)Queries issued in Web search often consist

of noun phrases. 2) Only the head word in the noun

phrase varies in form and needs to be expanded.

However, both assumptions may be questionable.

Their experiments did not show that the two as-

sumptions hold.

Stemming is related to query expansion or query

reformulation (Jones et al., 2006; Anick, 2003; Xu

and Croft, 1996), although the latter is not limited

to word variants. If the expansion terms used are

those that are variant forms of a word, then query

expansion can produce the same effect as word

stemming. However, if we add all possible word

alterations, query expansion/reformulation will run

the risk of adding many unrelated terms to the

original query, which may result in both heavy

traffic and topic drift. Therefore, we need a way to

select the most appropriate expansion terms. In

(Peng et al. 2007), a bigram language model is

used to determine the alteration of the head word

that best fits the query. In this paper, one of the

proposed methods will also use a bigram language

model of the query to determine the appropriate

alteration candidates. However, in our approach,

alterations are not limited to head words. In addi-

tion, we will also propose a supervised learning

method to predict if an alteration will have a posi-

tive impact on retrieval effectiveness. To our

knowledge, no previous method uses the same ap-

proach.

In the following sections, we will describe our

approach, which consists of two steps: the genera-

tion of alteration candidates, and the selection of

appropriate alterations for a query. The first step is

query-independent using corpus analysis, while the

second step is query-dependent. The selected word

alterations will be OR-ed with the original query

words.

3 Generating Alteration Candidates

Our method to generate alteration candidates can

be described as follows. First, we do word cluster-

ing using a Porter stemmer. All words in the vo-

cabulary sharing the same root form are grouped

together. Then we do corpus analysis to filter out

the words which are clustered incorrectly, accord-

ing to word distributional similarity, following (Xu

and Croft, 1998; Lin 1998). The rationale behind

this is that words sharing the same meaning tend to

occur in the same contexts.

The context of each word in the vocabulary is

represented by a vector containing the frequencies

of the context words which co-occur with the word

within a predefined window in a training corpus.

The window size is set empirically at 3 words and

the training corpus is about 1/10 of the GOV2 cor-

pus (see section 5 for details about the collection).

Similarity is measured by the cosine distance be-

tween two vectors. For each word, we select at

most 5 similar words as alteration candidates.

In the next sections, we will further consider ways

to select appropriate alterations according to the

query.

4 Bigram Expansion Model for Alteration

Selection

In this section, we try to select the most suitable

alterations according to the query context. The

query context is modeled by a bigram language

model as in (Peng et al. 2007).

Given a query described by a sequence of

words, we consider each of the query word as rep-

resenting a concept ci. In addition to the given

word form, ci can also be expressed by other alter-

native forms. However, the appropriate alterations

do not only depend on the original word of ci, but

also on other query words or their alterations.

150

Figure 1: Considering all Combinations to Calculate the

Plausibility of Alterations

Accordingly, a confidence weight is determined

for each alteration candidate. For example, in the

query “Steve Jobs at Apple”, the alteration “job” of

“jobs” should have a low confidence; while in the

query “finding jobs in Apple”, it should have a

high confidence.

One way to measure the confidence of an altera-

tion is the plausibility of its appearing in the query.

Since each concept may be expressed by several

alterations, we consider all the alterations of con-

text concepts when calculating the plausibility of a

given word. Suppose we have the query “control-

ling acid rain”. The second concept has two altera-

tions - “acidify” and “acidic”. For each of the

alterations, our method will consider all the com-

binations with other words, as illustrated in figure

1, where each combination is shown as a path.

More precisely, for a query of n words (or their

corresponding concepts), let ei,j∈ci, j=1,2,…,|ci| be

the alterations of concept ci. Then we have:

∑

∑ ∑ ∑ ∑

=

= = =− =+

−

−

+

+

=

||

1, ,,,2,1

||

1,1

||

1,2

||

1,1

||

1,1

),...,,...,,(...

......)(

21

1

1

2

2

1

1

1

1

n

n ni

i

i

i

i

c

jn jnjijj

c

j

c

j

c

ji

c

jiij

eeeeP

eP
 (1)

In equation 1,
ni jnjijj eeee ,,,2,1 ,...,,...,,

21

is a path

passing through ei,j. For simplicity, we abbreviate it

as e1e2…ei…en. In this work, we used bigram lan-

guage model to calculate the probability of each

path. Then we have:

∏ = −=
n

k kkni eePePeeeeP
2 1121)|()(),...,,...,,((2)

P(ek|ek-1) is estimated with a back-off bigram lan-

guage model (Goodman, 2001). In the experiments

with TREC6&7&8, we train the model with all

text collections; while in the experiments with

Gov2 data, we only used about 1/10 of the GOV2

data to train the bigram model because the whole

Gov2 collection is too large.

Directly calculating P(eij) by summing the prob-

abilities of all paths passing through eij is an NP

problem (Rabiner, 1989), and is intractable if the

query is long. Therefore, we use the forward-

backward algorithm (Bishop, 2006) to calculate

P(eij) in a more efficient way. After calculating

P(eij) for each ci, we select one alteration which

has the highest probability. We limit the number of

additional alterations to 1 in order to limit query

traffic. Our experiments will show that this is often

sufficient.

5 Regression Model for Alteration Selec-

tion

None of the previous selection methods considers

how well an alteration would perform in retrieval.

The Bigram Expansion model assumes that the

query replaced with better alterations should have

a higher likelihood. This approach belongs to the

family of unsupervised learning. In this section, we

introduce a method belonging to supervised learn-

ing family. This method develops a regression

model from a set of training data, and it is capable

of predicting the expected change in performance

when the original query is augmented by this al-

teration. The performance change is measured by

the difference in the Mean Average Precision

(MAP) between the augmented and the original

query. The training instances are defined by the

original query string, an original query term under

consideration and one alteration to the query term.

A set of features will be used, which will be de-

fined later in this section.

5.1 Linear Regression Model

The goal of the regression model is to predict the

performance change when a query term is aug-

mented with an alteration. There are several re-

gression models, ranging from the simplest linear

regression model to non-linear alternatives, such as

a neural network (Duda et al., 2001), a Regression

SVM (Bishop, 2006). For simplicity, we use linear

regression model here. We denote an instance in

the feature space as X, and the weights of features

are denoted as W. Then the linear regression model

is defined as:

f(X)=W
T
X (3)

where W
T
 is the transpose of W. However, we will

have a technical problem if we set the target value

to the performance change directly: The range of

controlling

control

controlled

controller

acidify

acidic

rain

rains

raining

151

values of f(X) is),(+∞−∞ , while the range of per-

formance change is [-1,1]. The two value ranges do

not match. This inconsistency may result in severe

problems when the scales of feature values vary

dramatically (Duda et al., 2001). To solve this

problem, we do a simple transformation on the per-

formance change. Let the change be]1,1[−∈y , then

the transformed performance change is:

]1,1[
1

1
log)(−∈

+−

++
= y

y

y
y

γ

γ
ϕ (4)

where γ is a very small positive real number (set to

be 1e-37 in the experiments), which acts as a

smoothing factor. The value of)(yϕ can be an arbi-

trary real number.)(yϕ is a monotonic function

defined in the range of [-1,1]. Moreover, the fixed

point of)(yϕ is 0, i.e., yy =)(ϕ when y=0. This

property is nice; it means that the expansion brings

positive improvement if and only if f(X)>0, which

makes it easy to determine which alteration is bet-

ter.

We train the regression model by minimizing

the mean square error. Suppose there are training

instances X1,X2,…,Xm, and the corresponding per-

formance change is yi, i=1,2,…,m. We calculate

the mean square error with the following equation:

∑ =
−=

m

i ii

T
yXWWerr

1

2))(()(ϕ (5)

Then the optimal weight is defined as:

∑ =
−=

=
m

i ii

T

W

W

yXW

WerrW

1

2

*

))((minarg

)(minarg

ϕ
 (6)

Because err(W) is a convex function of W, it has

a global minimum and obtains its minimum when

the gradient is zero (Bazaraa et al., 2006). Then we

have:

0))((
)(

1*

*

=−=
∂

∂
∑ =

m

i

T

iii

T XyXW
W

Werr
ϕ

So, ∑∑ ==
=

m

i

T

ii

m

i

T

ii

T
XyXXW

11

*)(ϕ

In fact, ∑ =

m

i

T

ii XX
1

 is a square matrix, we denote

it as XX
T
. Then we have:

[]∑ =

−=
m

i ii

T
XyXXW

1

1*)()(ϕ (7)

The matrix XX
T
 is an ll × square matrix, where l

is the number of features. In our experiments, we

only use three features. Therefore the optimal

weights can be calculated efficiently even we have

a large number of training instances.

5.2 Constructing Training Data

As a supervised learning method, the regression

model is trained with a set of training data. We

illustrate here the procedure to generate training

instances with an example.

Given a query “controlling acid rain”, we obtain

the MAP of the original query at first. Then we

augment the query with an alteration to the original

term (one term at a time) at each time. We retain

the MAP of the augmented query and compare it

with the original query to obtain the performance

change. For this query, we expand “controlling” by

“control” and get an augmented query “(control-

ling OR control) acid rain”. We can obtain the dif-

ference between the MAP of the augmented query

and that of the original query. By doing this, we

can generate a series of training instances consist-

ing of the original query string, the original query

term under consideration, its alteration and the per-

formance change, for example:

<controlling acid rain, controlling, control, 0.05>

Note that we use MAP to measure performance,

but we could well use other metrics such as NDCG

(Peng et al., 2007) or P@N (precision at top-N

documents).

5.3 Features Used for Regression Model

Three features are used. The first feature reflects to

what degree an alteration is coherent with the other

terms. For example, for the query “controlling acid

rain”, the coherence of the alteration “acidic” is

measured by the logarithm of its co-occurrence

with the other query terms within a predefined

window (90 words) in the corpus. That is:

log(count(controlling…acidic…rain|window)+0.5)

where “…” means there may be some words be-

tween two query terms. Word order is ignored.

The second feature is an extension to point-wise

mutual information (Rijsbergen, 1979), defined as

follows:










)()()(

)|......(
log

rainPacidicPgcontrollinP

windowrainacidicgcontrollinP

where P(controlling…acidic…rain|window) is the

co-occurrence probability of the trigram containing

acidic within a predefined window (50 words).

P(controlling), p(acidic), P(rain) are probabilities

of the three words in the collection. The three

words are defined as: the term under consideration,

the first term to the left of that term, and the first

term to the right. If a query contains less than 3

152

terms or the term under consideration is the begin-

ning/ending term in the query, we will set the

probability of the missed term/terms to be 1.

Therefore, it becomes point-wise mutual informa-

tion when the query contains only two terms. In

fact, this feature is supplemental to the first feature.

When the query is very long and the first feature

always obtains a value of log(0.5), so it does not

have any discriminative ability. On the other hand,

the second feature helps because it can capture

some co-occurrence information no matter how

long the query is.

The last feature is the bias, whose value is al-

ways set to be 1.0.

The regression model is trained in a leave-one-

out cross-validation manner on three collections;

each of them is used in turn as a test collection

while the two others are used for training. For

each incoming query, the regression model pre-

dicts the expected performance change when one

alteration is used. For each query term, we only

select the alteration with the largest positive per-

formance change. If none of its alterations produce

a positive performance change, we do not expand

the query term. This selection is therefore more

restrictive than the Bigram Expansion Model.

Nevertheless, our experiments show that it im-

proves retrieval effectiveness further.

6 Experiments

6.1 Experiment Settings

In this section, our aim is to evaluate the two con-

text-sensitive word alteration selection methods.

The ideal evaluation corpus should be composed of

some Web data. Unfortunately, such data are not

publicly available and the results also could not be

compared with other published results. Therefore,

we use two TREC collections. The first one is the

ad-hoc retrieval test collections used for

TREC6&7& 8. This collection is relative small and

homogeneous. The second one is the Gov2 data. It

is obtained by crawling the entire .gov domain and

has been used for three TREC Terabyte tracks

(TREC2004-2006). Table 1 shows some statistics

of the two collections. For each collection, we use

150 queries. Since the Regression model needs

some data for training, we divided the queries into

three parts, each containing 50 queries. We then

use leave-one-out cross-validation. The evaluation

metrics shown below are the average value of the

Name Description Size

(GB)

#Doc Query

TREC6

&7&8

TREC disk4&5,

Newpapers

1.7 500,447 301-450

Gov2 2004 crawl of entire

.gov domain

427 25,205,179 701-850

Table1: Overview of Test Collections

three-fold cross-validation. Because the queries in

Web are usually very short, we use only the title

field of each query.

To correspond to Web search practice, both

documents and queries are not stemmed. We do

not filter the stop words either.

Two main metrics are used: the Mean Average

Precision (MAP) for the top 1000 documents to

measure retrieval effectiveness, and the number of

terms in the query to reflect query traffic. In addi-

tion, we also provide precision for the top 30 doc-

uments (P@30) to show the impact on top ranked

documents. We also conducted t-tests to determine

whether the improvement is statistically significant.

The Indri 2.5 search engine (Strohman et al.,

2004) is used as our basic retrieval system. It pro-

vides for a rich query language allowing disjunc-

tive combinations of words in queries.

6.2 Experimental Results

The first baseline method we compare with only

uses the original query, which is named Original.

In addition to this, we also compare with the fol-

lowing methods:

Naïve Exp: The Naïve expansion model expands

each query term with all terms in the vocabu-

lary sharing the same root with it. This model is

equivalent to the traditional stemming method.

UMASS: This is the result reported in (Metzler et al.,

2006) using Porter stemming for both document

and query terms. This reflects a state-of-the-art

result using Porter stemming.

Similarity: We select the alterations (at most 5)

with the highest similarity to the original term.

This is the method described in section 3.

The two methods we propose in this paper are the

following ones:

Bigram Exp: the alteration is chosen by a Bigram

Expansion model.

Regression: the alteration is chosen by a Regres-

sion model.

153

Model P@30 #term MAP Imp.

Original 0.4701 158 0.2440 ----

UMASS ------- ------- 0.2666 9.26

Naïve Exp 0.4714 1345 0.2653 8.73

Similarity 0.4900 303 0.2689 10.20*

Bigram Exp 0.5007 303 0.2751 12.75**

Regression 0.5054 237 0.2773 13.65**

Table 2: Results of Query 701-750 Over Gov2 Data

Model P@30 #term MAP Imp.

Original 0.4907 158 0.2738 ----

UMASS ------- ------- 0.3251 18.73

Naive Exp 0.5213 1167 0.3224 17.75**

Similarity 0.5140 290 0.3043 11.14**

Bigram Exp. 0.5153 290 0.3107 13.47**

Regression 0.5140 256 0.3144 14.82**

Table 3: Results of Query 751-800 over Gov2 Data

Model P@30 #term MAP Imp.

Original 0.4710 154 0.2887 ----

UMASS ------- ------- 0.2996 3.78

Naïve Exp 0.4633 1225 0.2999 3.87

Similarity 0.4710 288 0.2976 3.08

Bigram Exp 0.4730 288 0.3137 8.66**

Regression 0.4748 237 0.3118 8.00*

Table 4: Results of Query 801-850 over Gov2 Data

Model P@30 #term MAP Imp.

Original 0.2673 137 0.1669 ----

Naïve Exp 0.3053 783 0.2146 28.57**

Similarity 0.3007 255 0.2020 21.03**

Bigram Exp 0.3033 255 0.2091 25.28**

Regression 0.3113 224 0.2161 29.48**

Table 5: Results of Query 301-350 over TREC6&7&8

Model P@30 #term MAP Imp.

Original 0.2820 126 0.1639 -----

Naive Exp 0.2787 736 0.1665 1.59

Similarity 0.2867 244 0.1650 0.67

Bigram Exp. 0.2800 244 0.1641 0.12

Regression 0.2867 214 0.1664 1.53

Table 6: Results of Query 351-400 over TREC6&7&8

Model P@30 #term MAP Imp.

Original 0.2833 124 0.1759 -----

Naïve Exp 0.3167 685 0.2138 21.55**

Similarity 0.3080 240 0.2066 17.45**

Bigram Exp 0.3133 240 0.2080 18.25**

Regression 0.3220 187 0.2144 21.88**

Table7: Results of Query 401-450 over TREC6&7&8

Tables 2, 3, 4 show the results of Gov2 data

while table 5, 6, 7 show the results of the

TREC6&7&8 collection. In the tables, the * mark

indicates that the improvement over the original

model is statistically significant with p-value<0.05,

and ** means the p-values<0.01.

From the tables, we see that both word stem-

ming (UMASS) and expansion with word altera-

tions can improve MAP for all six tasks. In most

cases (except in table 4 and 6), it also improve the

precision of top ranked documents. This shows the

usefulness of word stemming or word alteration

expansion for IR.

We can make several additional observations:

1). Stemming Vs Expansion. UMASS uses docu-

ment and query stemming while Naive Exp uses

expansion by word alteration. We stated that both

approaches are equivalent. The equivalence is

confirmed by our experiment results: for all Gov2

collections, these approaches perform equiva-

lently.

2). The Similarity model performs very well. Com-

pared with the Naïve Expansion model, it pro-

duces quite similar retrieval effectiveness, while

the query traffic is dramatically reduced. This

approach is similar to the work of Xu and Croft

(1998), and can be considered as another state-of-

the-art result.

3). In comparison, the Bigram Expansion model

performs better than the Similarity model. This

shows that it is useful to consider query context

in selecting word alterations.

4). The Regression model performs the best of all

the models. Compared with the Original query, it

adds fewer than 2 alterations for each query on

average (since each group has 50 queries); never-

theless we obtained improvements on all the six

collections. Moreover, the improvements on five

collections are statistically significant. It also per-

forms slightly better than the Similarity and Bi-

gram Expansion methods, but with fewer

alterations. This shows that the supervised learn-

ing approach, if used in the correct way, is supe-

rior to an unsupervised approach. Another

advantage over the two other models is that the

Regression model can reduce the number of al-

terations further. Because the Regression model

selects alterations according to their expected

improvement, the improvement of the alterations

to one query term can be compared with that of

the alterations to other query terms. Therefore,

we can select at most one optimal alteration for

the whole query. However, with the Similarity or

Bigram Expansion models, the selection value,

either similarity or query likelihood, cannot be

154

compared across the query terms. As a conse-

quence, more alterations need to be selected,

leading to heavier query traffic.

7 Conclusion

Traditional IR approaches stem terms in both doc-

uments and queries. This approach is appropriate

for general purpose IR, but is ill-suited for the spe-

cific retrieval needs in Web search such as quoted

queries or queries with a specific word form that

should not be stemmed. The current practice in

Web search is not to stem words in index, but ra-

ther to perform a form of expansion using word

alteration.

However, a naïve expansion will result in many

alterations and this will increase the query traffic.

This paper has proposed two alternative methods

to select precise alterations by considering the

query context. We seek to produce similar or better

improvements in retrieval effectiveness, while lim-

iting the query traffic.

In the first method proposed – the Bigram Ex-

pansion model, query context is modeled by a bi-

gram language model. For each query term, the

selected alteration is the one which maximizes the

query likelihood. In the second method - Regres-

sion model, we fit a regression model to calculate

the expected improvement when the original query

is expanded by an alteration. Only the alteration

that is expected to yield the largest improvement to

retrieval effectiveness is added.

The proposed methods were evaluated on two

TREC benchmarks: the ad-hoc retrieval test collec-

tion for TREC6&7&8 and the Gov2 data. Our ex-

perimental results show that both proposed

methods perform significantly better than the orig-

inal queries. Compared with traditional word

stemming or the naïve expansion approach, our

methods can not only improve retrieval effective-

ness, but also greatly reduce the query traffic.

This work shows that query expansion with

word alterations is a reasonable alternative to word

stemming. It is possible to limit the query traffic by

a query-dependent selection of word alterations.

Our work shows that both unsupervised and super-

vised learning can be used to perform alteration

selection.

Our methods can be further improved in several

aspects. For example, we could integrate other fea-

tures in the regression model, and use other non-

linear regression models, such as Bayesian regres-

sion models (e.g. Gaussian Process regression)

(Rasmussen and Williams, 2006). The additional

advantage of these models is that we can not only

obtain the expected improvement in retrieval effec-

tiveness for an alteration, but also the probability

of obtaining an improvement (i.e. the robustness of

the alteration).

Finally, it would be interesting to test the ap-

proaches using real Web data.

References

Anick, P. (2003) Using Terminological Feedback for

Web Search Refinement: a Log-based Study. In

SIGIR, pp. 88-95.

Bazaraa, M., Sherali, H., and Shett, C. (2006). Nonlin-

ear Programming, Theory and Algorithms. John

Wiley & Sons Inc.

Bishop, C. (2006). Pattern Recognition and Machine

Learning. Springer.

Duda, R., Hart, P., and Stork, D. (2001). Pattern Clas-

sification, John Wiley & Sons, Inc.

Goodman, J. (2001). A Bit of Progress in Language

Modeling. Technical report.

Jones, R., Rey, B., Madani, O., and Greiner, W. (2006).

Generating Query Substitutions. In WWW2006, pp.

387-396

Kraaij, W. and Pohlmann, R. (1996) Viewing Stemming

as Recall Enhancement. Proc. SIGIR, pp. 40-48.

Krovetz, R. (1993). Viewing Morphology as an Infer-

ence Process. Proc. ACM SIGIR, pp. 191-202.

Lin, D. (1998). Automatic Retrieval and Clustering of

Similar Words. In COLING-ACL, pp. 768-774.

Metzler, D., Strohman, T. and Croft, B. (2006). Indri

TREC Notebook 2006: Lessons learned from Three

Terabyte Tracks. In the Proceedings of TREC 2006.

Peng, F., Ahmed, N., Li, X., and Lu, Y. (2007). Context

Sensitive Stemming for Web Search. Proc. ACM

SIGIR, pp. 639-636 .

Porter, M. (1980) An Algorithm for Suffix Stripping.

Program, 14(3): 130-137.

Rabiner, L. (1989). A Tutorial on Hidden Markov Mod-

els and Selected Applications in Speech Recognition.

In Proceedings of IEEE Vol. 77(2), pp. 257-286.

Rijsbergen, V. (1979). Information Retrieval. Butter-

worths, second version.

Strohman, T., Metzler, D. and Turtle, H., and Croft, B.

(2004). Indri: A Language Model-based Search En-

gine for Complex Queries. In Proceedings of the In-

ternational conference on Intelligence Analysis.

Xu, J. and Croft, B. (1996). Query Expansion Using

Local and Global Document Analysis. Proc. ACM

SIGIR, pp. 4-11.

Xu, J. and Croft, B. (1998). Corpus-based Stemming

Using Co-occurrence of Word Variants. ACM

TOIS, 16(1): 61-81.

155

