
Proceedings of ACL-08: HLT, pages 148–155,
Columbus, Ohio, USA, June 2008. c©2008 Association for Computational Linguistics

Selecting Query Term Alterations for Web Search by Exploiting Query 

Contexts 

 

Guihong Cao Stephen Robertson Jian-Yun Nie 
Dept. of Computer Science and 

Operations Research 

Microsoft Research at 

Cambridge 

Dept. of Computer Science and 

Operations Research 

University of Montreal, Canada Cambridge, UK University of Montreal, Canada 
caogui@iro.umontreal.ca ser@microsoft.com nie@iro.umontreal.ca 

 

  

 

 

Abstract 

Query expansion by word alterations (alterna-

tive forms of a word) is often used in Web 

search to replace word stemming. This allows 

users to specify particular word forms in a 

query. However, if many alterations are 

added, query traffic will be greatly increased. 

In this paper, we propose methods to select 

only a few useful word alterations for query 

expansion. The selection is made according to 

the appropriateness of the alteration to the 

query context (using a bigram language 

model), or according to its expected impact 

on the retrieval effectiveness (using a regres-

sion model). Our experiments on two TREC 

collections will show that both methods only 

select a few expansion terms, but the retrieval 

effectiveness can be improved significantly. 

1 Introduction 

Word stemming is a basic NLP technique used in 

most of Information Retrieval (IR) systems. It 

transforms words into their root forms so as to in-

crease the chance to match similar words/terms 

that are morphological variants. For example, with 

stemming, “controlling” can match “controlled” 

because both have the same root “control”. Most 

stemmers, such as the Porter stemmer (Porter, 

1980) and Krovetz stemmer (Krovetz, 1993), deal 

with stemming by stripping word suffixes accord-

ing to a set of morphological rules. Rule-based ap-

proaches are intuitive and easy to implement. 

However, while in general, most words can be 

stemmed correctly; there is often erroneous stem-

ming that unifies unrelated words. For instance, 

“jobs” is stemmed to “job” in both “find jobs in 

Apple” and “Steve Jobs at Apple”. This is particu-

larly problematic in Web search, where users often 

use special or new words in their queries. A stan-

dard stemmer such as Porter’s will wrongly stem 

them.  

To better determine stemming rules, Xu and 

Croft (1998) propose a selective stemming method 

based on corpus analysis. They refine the Porter 

stemmer by means of word clustering: words are 

first clustered according to their co-occurrences in 

the text collection. Only word variants belonging 

to the same cluster will be conflated.  

Despite this improvement, the basic idea of 

word stemming is to transform words in both doc-

uments and queries to a standard form. Once this is 

done, there is no means for users to require a spe-

cific word form in a query – the word form will be 

automatically transformed, otherwise, it will not 

match documents. This approach does not seem to 

be appropriate for Web search, where users often 

specify particular word forms in their queries. An 

example of this is a quoted query such as “Steve 

Jobs”, or “US Policy”. If documents are stemmed, 

many pages about job offerings or US police may 

be returned (“policy” conflates with “police” in 

Porter stemmer). Another drawback of stemming is 

that it usually enhances recall, but may hurt preci-

sion (Kraaij and Pohlmann, 1996). However, gen-

eral Web search is basically a precision-oriented 

task.  

One alternative approach to word stemming is to 

do query expansion at query time.  The original 

query terms are expanded by their related forms 

having the same root. All expansions can be com-

bined by the Boolean operator “OR”.  For example, 
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the query “controlling acid rain” can be expanded 

to “(control OR controlling OR controller OR con-

trolled OR controls) (acid OR acidic OR acidify) 

(rain OR raining OR rained OR rains)”. We will 

call each such expansion term an alteration to the 

original query term. Once a set of possible altera-

tions is determined, the simplest approach to per-

form expansion is to add all possible alterations. 

We call this approach Naive Expansion. One can 

easily show that stemming at indexing time is 

equivalent to Naive Expansion at retrieval time. 

This approach has been adopted by most commer-

cial search engines (Peng et al., 2007). However, 

the expansion approaches proposed previously can 

have several serious problems: First, they usually 

do not consider expansion ambiguity – each query 

term is usually expanded independently. However, 

some expansion terms may not be appropriate. The 

case of “Steve Jobs” is one such example, for 

which the word “job” can be proposed as an ex-

pansion term. Second, as each query term may 

have several alterations, the naïve approach using 

all the alterations will create a very long query. As 

a consequence, query traffic (the time required for 

the evaluation of a query) is greatly increased. 

Query traffic is a critical problem, as each search 

engine serves millions of users at the same time. It 

is important to limit the query traffic as much as 

possible. 

In practice, we can observe that some word al-

terations are irrelevant and undesirable (as in the 

“Steve Jobs” case), and some other alterations have 

little impact on the retrieval effectiveness (for ex-

ample, if we expand a word by a rarely used word 

form). In this study, we will address these two 

problems. Our goal is to select only appropriate 

word alterations to be used in query expansion. 

This is done for two purposes: On the one hand, 

we want to limit query traffic as much as possible 

when query expansion is performed. On the other 

hand, we also want to remove irrelevant expansion 

terms so that fewer irrelevant documents will be 

retrieved, thereby improve the retrieval effective-

ness. 

To deal with the two problems we mentioned 

above, we will propose two methods to select al-

terations. In the first method, we make use of the 

query context to select only the alterations that fit 

the query. The query context is modeled by a bi-

gram language model. To reduce query traffic, we 

select only one alteration for each query term, 

which is the most coherent with the bigram model. 

We call this model Bigram Expansion. Despite the 

fact that this method adds far fewer expansion 

terms than the naïve expansion, our experiments 

will show that we can achieve comparable or even 

better retrieval effectiveness. 

Both the Naive Expansion and the Bigram Ex-

pansion determine word alterations solely accord-

ing to general knowledge about the language 

(bigram model or morphological rules), and no 

consideration about the possible effect of the ex-

pansion term is made. In practice, some alterations 

will have virtually no impact on retrieval effec-

tiveness. They can be ignored. Therefore, in our 

second method, we will try to predict whether an 

alteration will have some positive impact on re-

trieval effectiveness. Only the alterations with pos-

itive impact will be retained. In this paper, we will 

use a regression model to predict the impact on 

retrieval effectiveness. Compared to the bigram 

expansion method, the regression method results in 

even fewer alterations, but experiments show that 

the retrieval effectiveness is even better.  

Experiments will be conducted on two TREC 

collections, Gov2 data for Web Track and 

TREC6&7&8 for ad-hoc retrieval. The results 

show that the two methods we propose both out-

perform the original queries significantly with less 

than two alterations per query on average. Com-

pared to the Naive Expansion method, the two me-

thods can perform at least equally well, while 

query traffic is dramatically reduced.  

In the following section, we provide a brief re-

view of related work. Section 3 shows how to gen-

erate alteration candidates using a similar approach 

to Xu and Croft’s corpus analysis (1998). In sec-

tion 4 and 5, we describe the Bigram Expansion 

method and Regression method respectively. Sec-

tion 6 presents some experiments on TREC 

benchmarks to evaluate our methods. Section 7 

concludes this paper and suggests some avenues 

for future work.  

2 Related Work 

Many stemmers have been implemented and used 

as standard processing in IR. Among them, the 

Porter stemmer (Porter, 1980) is the most widely 

used. It strips term suffixes step-by-step according 

to a set of morphological rules. However, the Por-

ter stemmer sometimes wrongly transforms a term 

into an unrelated root. For example, it will unify 
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“news” and “new”, “execute” and “executive”. On 

the other hand, it may miss some conflations, such 

as “mice” and “mouse”, “europe” and “european”. 

Krovetz (1993) developed another stemmer, which 

uses a machine-readable dictionary, to improve the 

Porter stemmer. It avoids some of the Porter 

stemmer’s wrong stripping, but does not produce 

consistent improvement in IR experiments.  

Both stemmers use generic rules for English to 

strip each word in isolation. In practice, the re-

quired stemming may vary from one text collection 

to another. Therefore, attempts have been made to 

use corpus analysis to improve existing rule-based 

stemmers. Xu and Croft (1998) create equivalence 

clusters of words which are morphologically simi-

lar and occur in similar contexts. 

As we stated earlier, the stemming-based IR ap-

proaches are not well suited to Web search. Query 

expansion has been used as an alternative (Peng et 

al. 2007). To limit the number of expansion terms, 

and thus the query traffic, Peng et al. only use al-

terations for some of the query words: They seg-

ment each query into phrases and only the head 

word in each phrase is expanded. The assumptions 

are: 1)Queries issued in Web search often consist 

of noun phrases. 2) Only the head word in the noun 

phrase varies in form and needs to be expanded. 

However, both assumptions may be questionable. 

Their experiments did not show that the two as-

sumptions hold.  

Stemming is related to query expansion or query 

reformulation (Jones et al., 2006; Anick, 2003; Xu 

and Croft, 1996), although the latter is not limited 

to word variants. If the expansion terms used are 

those that are variant forms of a word, then query 

expansion can produce the same effect as word 

stemming. However, if we add all possible word 

alterations, query expansion/reformulation will run 

the risk of adding many unrelated terms to the 

original query, which may result in both heavy 

traffic and topic drift. Therefore, we need a way to 

select the most appropriate expansion terms. In 

(Peng et al. 2007), a bigram language model is 

used to determine the alteration of the head word 

that best fits the query. In this paper, one of the 

proposed methods will also use a bigram language 

model of the query to determine the appropriate 

alteration candidates. However, in our approach, 

alterations are not limited to head words. In addi-

tion, we will also propose a supervised learning 

method to predict if an alteration will have a posi-

tive impact on retrieval effectiveness. To our 

knowledge, no previous method uses the same ap-

proach. 

In the following sections, we will describe our 

approach, which consists of two steps: the genera-

tion of alteration candidates, and the selection of 

appropriate alterations for a query. The first step is 

query-independent using corpus analysis, while the 

second step is query-dependent. The selected word 

alterations will be OR-ed with the original query 

words. 

3  Generating Alteration Candidates 

Our method to generate alteration candidates can 

be described as follows. First, we do word cluster-

ing using a Porter stemmer. All words in the vo-

cabulary sharing the same root form are grouped 

together. Then we do corpus analysis to filter out 

the words which are clustered incorrectly, accord-

ing to word distributional similarity, following (Xu 

and Croft, 1998; Lin 1998). The rationale behind 

this is that words sharing the same meaning tend to 

occur in the same contexts.  

The context of each word in the vocabulary is 

represented by a vector containing the frequencies 

of the context words which co-occur with the word 

within a predefined window in a training corpus. 

The window size is set empirically at 3 words and 

the training corpus is about 1/10 of the GOV2 cor-

pus (see section 5 for details about the collection). 

Similarity is measured by the cosine distance be-

tween two vectors. For each word, we select at 

most 5 similar words as alteration candidates.  

In the next sections, we will further consider ways 

to select appropriate alterations according to the 

query. 

4 Bigram Expansion Model for Alteration 

Selection 

In this section, we try to select the most suitable 

alterations according to the query context. The 

query context is modeled by a bigram language 

model as in (Peng et al. 2007).  

Given a query described by a sequence of 

words, we consider each of the query word as rep-

resenting a concept ci. In addition to the given 

word form, ci can also be expressed by other alter-

native forms. However, the appropriate alterations 

do not only depend on the original word of ci, but 

also on other query words or their alterations.  
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Figure 1: Considering all Combinations to Calculate the 

Plausibility of Alterations 

 

Accordingly, a confidence weight is determined 

for each alteration candidate. For example, in the 

query “Steve Jobs at Apple”, the alteration “job” of 

“jobs” should have a low confidence; while in the 

query “finding jobs in Apple”, it should have a 

high confidence.  

One way to measure the confidence of an altera-

tion is the plausibility of its appearing in the query. 

Since each concept may be expressed by several 

alterations, we consider all the alterations of con-

text concepts when calculating the plausibility of a 

given word. Suppose we have the query “control-

ling acid rain”. The second concept has two altera-

tions - “acidify” and “acidic”. For each of the 

alterations, our method will consider all the com-

binations with other words, as illustrated in figure 

1, where each combination is shown as a path. 

More precisely, for a query of n words (or their 

corresponding concepts), let ei,j∈ci, j=1,2,…,|ci| be 

the alterations of concept ci. Then we have: 
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In equation 1, 
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21

is a path 

passing through ei,j. For simplicity, we abbreviate it 

as e1e2…ei…en. In this work, we used bigram lan-

guage model to calculate the probability of each 

path. Then we have: 

∏ = −=
n

k kkni eePePeeeeP
2 1121 )|()(),...,,...,,(               (2) 

P(ek|ek-1) is estimated with a back-off bigram lan-

guage model (Goodman, 2001). In the experiments 

with TREC6&7&8, we train the model with all 

text collections; while in the experiments with 

Gov2 data, we only used about 1/10 of the GOV2 

data to train the bigram model because the whole 

Gov2 collection is too large.   

Directly calculating P(eij) by summing the prob-

abilities of all paths passing through eij is an NP 

problem (Rabiner, 1989), and is intractable if the 

query is long. Therefore, we use the forward-

backward algorithm (Bishop, 2006) to calculate 

P(eij) in a more efficient way. After calculating 

P(eij) for each ci, we select one alteration which 

has the highest probability. We limit the number of 

additional alterations to 1 in order to limit query 

traffic. Our experiments will show that this is often 

sufficient. 

5 Regression Model for Alteration Selec-

tion 

None of the previous selection methods considers 

how well an alteration would perform in retrieval. 

The Bigram Expansion model assumes that the 

query replaced with better alterations should have 

a higher likelihood. This approach belongs to the 

family of unsupervised learning. In this section, we 

introduce a method belonging to supervised learn-

ing family. This method develops a regression 

model from a set of training data, and it is capable 

of predicting the expected change in performance 

when the original query is augmented by this al-

teration. The performance change is measured by 

the difference in the Mean Average Precision 

(MAP) between the augmented and the original 

query. The training instances are defined by the 

original query string, an original query term under 

consideration and one alteration to the query term. 

A set of features will be used, which will be de-

fined later in this section.  

5.1 Linear Regression Model  

The goal of the regression model is to predict the 

performance change when a query term is aug-

mented with an alteration. There are several re-

gression models, ranging from the simplest linear 

regression model to non-linear alternatives, such as 

a neural network (Duda et al., 2001), a Regression 

SVM (Bishop, 2006). For simplicity, we use linear 

regression model here. We denote an instance in 

the feature space as X, and the weights of features 

are denoted as W. Then the linear regression model 

is defined as: 

f(X)=W
T
X                                                             (3) 

where W
T
 is the transpose of W. However, we will 

have a technical problem if we set the target value 

to the performance change directly: The range of 

controlling 

control 

controlled 

controller 

acidify 

acidic 

rain 

rains 

raining 
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values of f(X) is ),( +∞−∞ , while the range of per-

formance change is [-1,1]. The two value ranges do 

not match. This inconsistency may result in severe 

problems when the scales of feature values vary 

dramatically (Duda et al., 2001). To solve this 

problem, we do a simple transformation on the per-

formance change. Let the change be ]1,1[−∈y , then 

the transformed performance change is: 

]1,1[     
1

1
log)( −∈

+−

++
= y

y

y
y

γ

γ
ϕ                            (4) 

where γ is a very small positive real number (set to 

be 1e-37 in the experiments), which acts as a 

smoothing factor. The value of )(yϕ can be an arbi-

trary real number.  )(yϕ  is a monotonic function 

defined in the range of [-1,1]. Moreover, the fixed 

point of )(yϕ is 0, i.e., yy =)(ϕ when y=0. This 

property is nice; it means that the expansion brings 

positive improvement if and only if f(X)>0, which 

makes it easy to determine which alteration is bet-

ter.  

We train the regression model by minimizing 

the mean square error. Suppose there are training 

instances X1,X2,…,Xm, and the corresponding per-

formance change is yi, i=1,2,…,m. We calculate 

the mean square error with the following equation: 
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Because err(W) is a convex function of W, it has 

a global minimum and obtains its minimum when 

the gradient is zero (Bazaraa et al., 2006). Then we 

have: 
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 is a square matrix, we denote 

it as XX
T
. Then we have: 
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The matrix  XX
T
 is an ll × square matrix, where l 

is the number of features. In our experiments, we 

only use three features. Therefore the optimal 

weights can be calculated efficiently even we have 

a large number of training instances. 

5.2 Constructing Training Data 

As a supervised learning method, the regression 

model is trained with a set of training data. We 

illustrate here the procedure to generate training 

instances with an example.  

Given a query “controlling acid rain”, we obtain 

the MAP of the original query at first. Then we 

augment the query with an alteration to the original 

term (one term at a time) at each time. We retain 

the MAP of the augmented query and compare it 

with the original query to obtain the performance 

change. For this query, we expand “controlling” by 

“control” and get an augmented query “(control-

ling OR control) acid rain”. We can obtain the dif-

ference between the MAP of the augmented query 

and that of the original query. By doing this, we 

can generate a series of training instances consist-

ing of the original query string, the original query 

term under consideration, its alteration and the per-

formance change, for example: 

<controlling acid rain, controlling, control,  0.05> 

Note that we use MAP to measure performance, 

but we could well use other metrics such as NDCG 

(Peng et al., 2007) or P@N (precision at top-N 

documents).  

5.3 Features Used for Regression Model 

Three features are used. The first feature reflects to 

what degree an alteration is coherent with the other 

terms. For example, for the query “controlling acid 

rain”, the coherence of the alteration “acidic” is 

measured by the logarithm of its co-occurrence 

with the other query terms within a predefined 

window (90 words) in the corpus. That is: 

log(count(controlling…acidic…rain|window)+0.5) 

where “…” means there may be some words be-

tween two query terms. Word order is ignored.  

The second feature is an extension to point-wise 

mutual information (Rijsbergen, 1979), defined as 

follows: 










)()()(

)|......(
log

rainPacidicPgcontrollinP

windowrainacidicgcontrollinP
 

where P(controlling…acidic…rain|window) is the 

co-occurrence probability of the trigram containing 

acidic within a predefined window (50 words). 

P(controlling), p(acidic), P(rain) are probabilities 

of the three words in the collection. The three 

words are defined as: the term under consideration, 

the first term to the left of that term, and the first 

term to the right. If a query contains less than 3 
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terms or the term under consideration is the begin-

ning/ending term in the query, we will set the 

probability of the missed term/terms to be 1. 

Therefore, it becomes point-wise mutual informa-

tion when the query contains only two terms. In 

fact, this feature is supplemental to the first feature. 

When the query is very long and the first feature 

always obtains a value of log(0.5), so it does not 

have any discriminative ability. On the other hand, 

the second feature helps because it can capture 

some co-occurrence information no matter how 

long the query is.  

The last feature is the bias, whose value is al-

ways set to be 1.0.   

The regression model is trained in a leave-one-

out cross-validation manner on three collections; 

each of them is used in turn as a test collection 

while the two others are used for training.  For 

each incoming query, the regression model pre-

dicts the expected performance change when one 

alteration is used. For each query term, we only 

select the alteration with the largest positive per-

formance change. If none of its alterations produce 

a positive performance change, we do not expand 

the query term. This selection is therefore more 

restrictive than the Bigram Expansion Model. 

Nevertheless, our experiments show that it im-

proves retrieval effectiveness further. 

6 Experiments 

6.1 Experiment Settings 

In this section, our aim is to evaluate the two con-

text-sensitive word alteration selection methods. 

The ideal evaluation corpus should be composed of 

some Web data. Unfortunately, such data are not 

publicly available and the results also could not be 

compared with other published results. Therefore, 

we use two TREC collections. The first one is the 

ad-hoc retrieval test collections used for 

TREC6&7& 8. This collection is relative small and 

homogeneous. The second one is the Gov2 data. It 

is obtained by crawling the entire .gov domain and 

has been used for three TREC Terabyte tracks 

(TREC2004-2006). Table 1 shows some statistics 

of the two collections. For each collection, we use 

150 queries. Since the Regression model needs 

some data for training, we divided the queries into 

three parts, each containing 50 queries. We then 

use leave-one-out cross-validation. The evaluation 

metrics shown below are the average value of the  

 
Name Description Size 

(GB) 

#Doc Query 

TREC6 

&7&8 

TREC disk4&5, 

Newpapers 

1.7 500,447 301-450 

Gov2 2004 crawl of entire 

.gov domain 

427 25,205,179 701-850 

Table1: Overview of Test Collections 

 

three-fold cross-validation. Because the queries in 

Web are usually very short, we use only the title 

field of each query.  

To correspond to Web search practice, both 

documents and queries are not stemmed. We do 

not filter the stop words either.  

Two main metrics are used: the Mean Average 

Precision (MAP) for the top 1000 documents to 

measure retrieval effectiveness, and the number of 

terms in the query to reflect query traffic. In addi-

tion, we also provide precision for the top 30 doc-

uments (P@30) to show the impact on top ranked 

documents. We also conducted t-tests to determine 

whether the improvement is statistically significant. 

The Indri 2.5 search engine (Strohman et al., 

2004) is used as our basic retrieval system. It pro-

vides for a rich query language allowing disjunc-

tive combinations of words in queries.  

6.2 Experimental Results 

The first baseline method we compare with only 

uses the original query, which is named Original. 

In addition to this, we also compare with the fol-

lowing methods: 

Naïve Exp: The Naïve expansion model expands 

each query term with all terms in the vocabu-

lary sharing the same root with it. This model is 

equivalent to the traditional stemming method. 

UMASS: This is the result reported in (Metzler et al., 

2006) using Porter stemming for both document 

and query terms. This reflects a state-of-the-art 

result using Porter stemming. 

Similarity: We select the alterations (at most 5) 

with the highest similarity to the original term. 

This is the method described in section 3.  

The two methods we propose in this paper are the 

following ones: 

Bigram Exp: the alteration is chosen by a Bigram 

Expansion model. 

Regression: the alteration is chosen by a Regres-

sion model.  
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Model P@30 #term MAP Imp. 

Original 0.4701 158 0.2440 ---- 

UMASS ------- ------- 0.2666 9.26 

Naïve Exp 0.4714 1345 0.2653 8.73 

Similarity 0.4900 303 0.2689 10.20* 

Bigram Exp 0.5007 303 0.2751 12.75** 

Regression 0.5054 237 0.2773 13.65** 

Table 2: Results of Query 701-750 Over Gov2 Data 

 
Model P@30 #term MAP Imp. 

Original 0.4907 158 0.2738 ---- 

UMASS ------- ------- 0.3251 18.73 

Naive Exp 0.5213 1167 0.3224 17.75** 

Similarity 0.5140 290 0.3043 11.14** 

Bigram Exp. 0.5153 290 0.3107 13.47** 

Regression 0.5140 256 0.3144 14.82** 

Table 3: Results of Query 751-800 over Gov2 Data 

 
Model P@30 #term MAP Imp. 

Original 0.4710 154 0.2887 ---- 

UMASS ------- ------- 0.2996 3.78 

Naïve Exp 0.4633 1225 0.2999 3.87 

Similarity 0.4710 288 0.2976 3.08 

Bigram Exp 0.4730 288 0.3137 8.66** 

Regression 0.4748 237 0.3118 8.00* 

Table 4: Results of Query 801-850 over Gov2 Data 

 
Model P@30 #term MAP Imp. 

Original 0.2673 137 0.1669 ---- 

Naïve Exp 0.3053 783 0.2146 28.57** 

Similarity 0.3007 255 0.2020 21.03** 

Bigram Exp 0.3033 255 0.2091 25.28** 

Regression 0.3113 224 0.2161 29.48** 

Table 5: Results of Query 301-350 over TREC6&7&8 

 
Model P@30 #term MAP Imp. 

Original 0.2820 126 0.1639 ----- 

Naive Exp 0.2787 736 0.1665 1.59 

Similarity 0.2867 244 0.1650 0.67 

Bigram Exp. 0.2800 244 0.1641 0.12 

Regression 0.2867 214 0.1664 1.53 

Table 6: Results of Query 351-400 over TREC6&7&8 

 
Model P@30 #term MAP Imp. 

Original 0.2833 124 0.1759 ----- 

Naïve Exp 0.3167 685 0.2138 21.55** 

Similarity 0.3080 240 0.2066 17.45** 

Bigram Exp 0.3133 240 0.2080 18.25** 

Regression 0.3220 187 0.2144 21.88** 

Table7: Results of Query 401-450 over TREC6&7&8 

 

Tables 2, 3, 4 show the results of Gov2 data 

while table 5, 6, 7 show the results of the 

TREC6&7&8 collection. In the tables, the * mark 

indicates that the improvement over the original 

model is statistically significant with p-value<0.05, 

and ** means the p-values<0.01.  

From the tables, we see that both word stem-

ming (UMASS) and expansion with word altera-

tions can improve MAP for all six tasks. In most 

cases (except in table 4 and 6), it also improve the 

precision of top ranked documents. This shows the 

usefulness of word stemming or word alteration 

expansion for IR. 

We can make several additional observations: 

1). Stemming Vs Expansion. UMASS uses docu-

ment and query stemming while Naive Exp uses 

expansion by word alteration. We stated that both 

approaches are equivalent. The equivalence is 

confirmed by our experiment results: for all Gov2 

collections, these approaches perform equiva-

lently.  

2). The Similarity model performs very well. Com-

pared with the Naïve Expansion model, it pro-

duces quite similar retrieval effectiveness, while 

the query traffic is dramatically reduced. This 

approach is similar to the work of Xu and Croft 

(1998), and can be considered as another state-of-

the-art result. 

3). In comparison, the Bigram Expansion model 

performs better than the Similarity model. This 

shows that it is useful to consider query context 

in selecting word alterations. 

4). The Regression model performs the best of all 

the models. Compared with the Original query, it 

adds fewer than 2 alterations for each query on 

average (since each group has 50 queries); never-

theless we obtained improvements on all the six 

collections. Moreover, the improvements on five 

collections are statistically significant. It also per-

forms slightly better than the Similarity and Bi-

gram Expansion methods, but with fewer 

alterations. This shows that the supervised learn-

ing approach, if used in the correct way, is supe-

rior to an unsupervised approach. Another 

advantage over the two other models is that the 

Regression model can reduce the number of al-

terations further. Because the Regression model 

selects alterations according to their expected 

improvement, the improvement of the alterations 

to one query term can be compared with that of 

the alterations to other query terms. Therefore, 

we can select at most one optimal alteration for 

the whole query. However, with the Similarity or 

Bigram Expansion models, the selection value, 

either similarity or query likelihood, cannot be 
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compared across the query terms. As a conse-

quence, more alterations need to be selected, 

leading to heavier query traffic.  

7 Conclusion  

Traditional IR approaches stem terms in both doc-

uments and queries. This approach is appropriate 

for general purpose IR, but is ill-suited for the spe-

cific retrieval needs in Web search such as quoted 

queries or queries with a specific word form that 

should not be stemmed. The current practice in 

Web search is not to stem words in index, but ra-

ther to perform a form of expansion using word 

alteration. 

However, a naïve expansion will result in many 

alterations and this will increase the query traffic. 

This paper has proposed two alternative methods 

to select precise alterations by considering the 

query context. We seek to produce similar or better 

improvements in retrieval effectiveness, while lim-

iting the query traffic. 

In the first method proposed – the Bigram Ex-

pansion model, query context is modeled by a bi-

gram language model. For each query term, the 

selected alteration is the one which maximizes the 

query likelihood. In the second method - Regres-

sion model, we fit a regression model to calculate 

the expected improvement when the original query 

is expanded by an alteration. Only the alteration 

that is expected to yield the largest improvement to 

retrieval effectiveness is added. 

The proposed methods were evaluated on two 

TREC benchmarks: the ad-hoc retrieval test collec-

tion for TREC6&7&8 and the Gov2 data. Our ex-

perimental results show that both proposed 

methods perform significantly better than the orig-

inal queries. Compared with traditional word 

stemming or the naïve expansion approach, our 

methods can not only  improve retrieval effective-

ness, but also greatly reduce the query traffic. 

This work shows that query expansion with 

word alterations is a reasonable alternative to word 

stemming. It is possible to limit the query traffic by 

a query-dependent selection of word alterations. 

Our work shows that both unsupervised and super-

vised learning can be used to perform alteration 

selection. 

Our methods can be further improved in several 

aspects. For example, we could integrate other fea-

tures in the regression model, and use other non-

linear regression models, such as Bayesian regres-

sion models (e.g. Gaussian Process regression) 

(Rasmussen and Williams, 2006). The additional 

advantage of these models is that we can not only 

obtain the expected improvement in retrieval effec-

tiveness for an alteration, but also the probability 

of obtaining an improvement (i.e. the robustness of 

the alteration).  

Finally, it would be interesting to test the ap-

proaches using real Web data. 
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