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Abstract then heuristically combining these alignments. Fi-
nally, the set of phrases consistent with the word
alignments are extracted from every sentence pair;
these form the basis of the decoding process. While
this approach has been very successful, poor word-
level alignments are nonetheless a common source
of error in machine translation systems.

A natural solution to several of these issues is
unite the word-level and phrase-level models into

one learning procedure. Ideally, such a procedure

We combine the strengths of Bayesian mod-
eling and synchronous grammar in unsu-
pervised learning of basic translation phrase
pairs. The structured space of a synchronous
grammar is a natural fit for phrase pair proba-
bility estimation, though the search space can
be prohibitively large. Therefore we explore

efficient algorithms for pruning this space that

lead to empirically effective results. Incorpo-

rating a sparse prior using Variational Bayes,

biases the models toward generalizable, parsi-
monious parameter sets, leading to significant
improvements in word alignment. This pref-
erence for sparse solutions together with ef-
fective pruning methods forms a phrase align-
ment regimen that produces better end-to-end
translations than standard word alignment ap-
proaches.

would remedy the deficiencies of word-level align-
ment models, including the strong restrictions on
the form of the alignment, and the strong inde-
pendence assumption between words. Furthermore
it would obviate the need for heuristic combina-
tion of word alignments. A unified procedure may
also improve the identification of non-compositional

phrasal translations, and the attachment decisions
for unaligned words.

In this direction, Expectation Maximization at
Most state-of-the-art statistical machine translathe phrase level was proposed by Marcu and Wong
tion systems are based on large phrase tables €2002), who, however, experienced two major dif-
tracted from parallel text using word-level align-ficulties: computational complexity and controlling
ments. These word-level alignments are most opverfitting. Computational complexity arises from
ten obtained using Expectation Maximization on théhe exponentially large number of decompositions
conditional generative models of Brown et al. (1993pf a sentence pair into phrase pairs; overfitting is a
and Vogel et al. (1996). As these word-level alignproblem because as EM attempts to maximize the
ment models restrict the word alignment complextkelihood of its training data, it prefers to directly
ity by requiring each target word to align to zeroexplain a sentence pair with a single phrase pair.
or one source words, results are improved by align- In this paper, we attempt to address these two is-
ing both source-to-target as well as target-to-sourcseyes in order to apply EM above the word level.

1 Introduction
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We attack computational complexity by adoptingvhereP,, is for the inverted rulef; for the straight
the polynomial-time Inversion Transduction Gram+ule, P for the third rule, satisfying®y + P+ Pc =
mar framework, and by only learning smaibn- 1, and

compositional phrases. We address the tendency of

EM to overfit by using Bayesian methods, where fc = (P(e/f), P(e'/f),...),

sparse priors assign greater mass to parameter vec- _ ) o

tors with fewer non-zero values therefore favoring'Nere> e/ P’(e/f) = 1is a multinomial distribu-
shorter, more frequent phrases. We test our modéPn Over phrase pairs. _
by extracting longer phrases from our model’s align- _Th's IS our model in a nutshell. We can train
ments using traditional phrase extraction, and finf{iS model using a two-dimensional extension of the
that a phrase table based on our system improves MAside-outside algorithm on bilingual data, assuming

results over a phrase table extracted from tradition§V€"Y Phrase pair that can appear as a leaf in a parse
word-level alignments. tree of the grammar a valid candidate. However, it is

easy to show that the maximum likelihood training
2 Phrasal Inversion Transduction will lead to the saturated solution wheRe: = 1 —
Grammar each sentence pair is generated by a single phrase

We use a phrasal extension of Inversion Transduslo;Jlnning the whole sentence. From the computa-
P fional point of view, the full EM algorithm runs in

tion Grammar (Wu, 1997) as the ggneratlve frameO(nﬁ) wheren is the average length of the two in-
work. Our ITG has two nonterminals:X and C . :

. . gut sentences, which is too slow in practice.
C, where X represents compositional phrase pair

. : The key is to control the number of parameters,
that can have recursive structures ards the pre- . .
. . . and therefore the size of the set of candidate phrases.
terminal over terminal phrase pairs. There are thr

rules with.Y on the left-hand side: P\R/e deal with this proplem in two dlref:tlons. Flrst
we change the objective function by incorporating

X - [XX], a prior over the phrasal parameters. This has the
X — (XX), effect of preferring parameter vectors #lg: with
X o C fewer non-zero values. Our second approach was

to constrain the search space using simpler align-
The first two rules are the straight rule and inment models, which has the further benefit of signif-
verted rule respectively. They split the left-hand sidéantly speeding up training. First we train a lower
constituent which represents a phrase pair into twWevel word alignment model, then we place hard con-
smaller phrase pairs on the right-hand side and ordstraints on the phrasal alignment space using confi-
them according to one of the two possible permutagent word links from this simpler model. Combining
tions. The rewriting process continues until the thirdhe two approaches, we have a staged training pro-
rule is invoked. C' is our unique pre-terminal for cedure going from the simplest unconstrained word
generating terminal multi-word pairs: based model to a constrained Bayesian word-level
C — eff. ITG model, and finally proceeding to a constrained

Bayesian phrasal model.

We parameterize our probabilistic model in the o
manner of a PCFG: we associate a multinomial dis3 Variational Bayesfor ITG
trlbuthn W'.th gac_h np nterminal, where each OlJt'Goldwater and Griffiths (2007) and Johnson (2007)
come in this distribution corresponds to an expan-

. . . show that modifying an HMM to include a sparse
sion of that nonterminal. Specifically, we place one © odifying P

: e prior over its parameters and using Bayesian esti-
multinomial distributionfx over the three expan- . . )
. . . . mation leads to improved accuracy for unsupervised
sions of the nonterminal’, and another multinomial

distributiond: over the expansions . Thus, the part-of-speech tagging. In this section, we describe
parameters |Cn our model can be Iisted. as ' a Bayesian estimator for ITG: we select parame-

ters that optimize the probability of the data given
Ox = (Py, Py, Po), a prior. The traditional estimation method for word
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alignment models is the EM algorithm (Brown et Having defined the Bayesian model, it remains
al., 1993) which iteratively updates parameters tto decide the inference procedure. We chose Vari-
maximize the likelihood of the data. The drawbaclational Bayes, for its procedural similarity to EM
of maximum likelihood is obvious for phrase-basednd ease of implementation. Another potential op-
models. If we do not put any constraint on the distion would be Gibbs sampling (or some other sam-
tribution of phrases, EM overfits the data by mempling technique). However, in experiments in un-
orizing every sentence pair. A sparse prior over aupervised POS tag learning using HMM structured
multinomial distribution such as the distribution ofmodels, Johnson (2007) shows that VB is more ef-
phrase pairs may bias the estimator toward skewdective than Gibbs sampling in approaching distribu-
distributions that generalize better. In the context afons that agree with the Zipf’s law, which is promi-
phrasal models, this means learning the more repreent in natural languages.
sentative phrases in the space of all possible phrasesKurihara and Sato (2006) describe VB for PCFGs,
The Dirichlet distribution, which is parameter-showing the only need is to change the M step of
ized by a vector of real values often interpreted athe EM algorithm. As in the case of maximum like-
pseudo-counts, is a natural choice for the prior, fdihood estimation, Bayesian estimation for ITGs is
two main reasons. First, the Dirichletésnjugate very similar to PCFGs, which follows due to the
to the multinomial distribution, meaning that if we strong isomorphism between the two models. Spe-
select a Dirichlet prior and a multinomial likelihood cific to our ITG case, the M step becomes:
function, the posterior distribution will again be a
Dirichlet. This makes parameter estimation quite pu+y _ exp(Y(EX — [X X]) + ax))
simple. Second, Dirichlet distributions with small, l exp(Y(E(X) + sax))
non-_zero.parameters place more probability mass on i1 exp($(BE(X — (X X))+ ax))
multinomials on the edges or faces of the probabil- P<> = exp(W(E(X) + sax)) )
ity simplex, distributions with fewer non-zero pa- X
rameters. Starting from the model from Section 2, ~i+1) _ exp(Y(E(X — C) + ax))
we propose the following Bayesian extension, where ¢ T exp(p(B(X) 4 sax))
A ~ Dir(B) means the random variabl is dis-
tributed according to a Dirichlet with parametr  j(1+1) (¢ /g exp(¢Y(E(e/f) + ac))
exp(Y(E(C) +mac))’

where is thedigamma function (Beal, 2003),s =

3 is the number of right-hand-sides far, andm is

the number of observed phrase pairs in the data. The
X X] sole difference between EM and VB with a sparse
(X X)| X ~ Multi(fx), prior « is that the raw fractional counts are re-

C placed byexp (¢ (c + «)), an operation that resem-
bles smoothing. As pointed out by Johnson (2007),
in effect this expression adds ta small value that
asymptotically approaches— 0.5 asc approaches

The parametersy andac control the sparsity of °°: and0 asc approaches. For small values of
the two distributions in our model. One is the distri-* the_ net _effect is the _OpPOS'te of typical smooth-
bution of the three possible branching choices. THEY: smcg ittends to redistribute probably mass away
other is the distribution of the phrase pairs¢ is from unlikely events onto more likely ones.

crucial, since the multinomial it is controlling has a4
high dimension. By adjusting to a very small
number, we hope to place more posterior mass diG is slow mainly because it considers every pair of
parsimonious solutions with fewer but more confispans in two sentences as a possible chart element.

dent and general phrase pairs. In reality, the set of useful chart elements is much

Ox ’ ax ~ Dir(ax),

Oc ’ ag ~ Dir(ac),

e/f | C' ~ Multi(dc).

Bitext Pruning Strategy
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smaller than the possibleriptO(n?), wheren is ty
the average sentence length. Pruning the span pairs j "
(bitext cells) that can participate in a tree (either as l..
terminals or non-terminals) serves to not only speed -

up ITG parsing, but also to provide a kind of ini- ;
tialization hint to the training procedures, encourag- "
ing it to focus on promising regions of the alignment

space. (a)
Given a bitext cell defined by the four boundary

indices(¢, 7,1, m) as shown in Figure 1a, we prune

based on a figure of merit (i, j,1,m) approximat-

ing the utility of that cell in a full ITG parse. The (b)

figure of merit considers the Model 1 scores of not o I o

only the words inside a given cell, but also all the m m m

words not included in the source and target spans, as e o
in Moore (2003) and Vogel (2005). Like Zhang and /’
Gildea (2005), it is used to prune bitext cells rather

than score phrases. The total score is the product of (c)
the Model 1 probabilities for each column; “inside”
columns in the rang@, m| are scored according to

. i Figure 1: (a) shows the original tic-tac-toe score for a
the sum (or maximum) of Model 1 probabilities forbitext cell (4,7,1,m). (b) demonstrates the finite state

[, 5], and “outside"‘(.:(.)lumns.use the sum (or maxitepresentation using the machine in (c), assuming a fixed
mum) of all probabilities not in the rangg j]. source spafi, ).

Our pruning differs from Zhang and Gildea
(2005) in two major ways. First, we perform prun-
ing using both directions of the IBM Model 1 scoresimproved algorithm with best case’ performance.
instead of a single figure of merif, we have two: Although the worst case performance is al3@:*),
Vr and V3. Only those spans that pass the prunin practice it is significantly faster.
ing threshold in both directions are kept. Second, To begin, let us restrict our attention to the for-
we allow whole spans to be pruned. The figure ofvard direction for a fixed source spé j). Prun-
merit for a span i8/x (4, j) = max; , Vr(i,j,1,m). ing bitext spans and cells requirgs (i, j), the score
Only spans that are within some threshold of the uref the best bitext cell within a given span, as well
restricted Model 1 scordgp andVp are kept: as all cells within a given threshold of that best
o score. For a fixed andj, we need to search over
Vr(i,j) > 1, and Vs(l,m) > 1, the starting and ending pointsand m of the in-
P VB~ side region. Note that there is an isomorphism be-

Amongst those spans retained by this first threshol@V€€n the set of spans and a simple finite state ma-

we keep only those bitext cells satisfying both ~ Chine: any spart/, m) can be represented by a se-
guence of ouTsIDEcolumns, followed byn—I+1

Ve(i,j,l,m) < INSIDE columns, followed byn — m + 1 ouT-
Vi(i,7) Ve(l,m) — - SIDE columns. This simple machine has the re-
_ _ stricted form described in Figure 1c: it has three
4.1 Fast Tic-tac-toe Pruning states,L, M, and R; each transition generates ei-
The tic-tac-toe pruning algorithm (Zhang andher anouTsIDE column O or anINSIDE column
Gildea, 2005) uses dynamic programming to comf. The cost of generating aouTSIDE at posi-
pute the product of inside and outside scores fdion a is O(a) = P(ta|NULL) + 340, 4 P(talsy);
all cells in O(n*) time. However, even this can belikewise the cost of generating aNsIDE column
slow for large values of.. Therefore we describe anis I(a) = P(to|[NULL) + 3 ,cr; ;y P(talsp), with

=X =

VF(i7j7l7m) > T and
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0(0)=0(n+1)=1andI(0) =I(n+1) = 0. 900
Directly computingO and I would take time

T T
Baseline

@
O(n?) for each source span, leading to an overall & 8%
runtime of O(n*). Luckily there are faster ways to § 700
find the inside and outside scores. First we can pre- ‘s
compute following arrays i (n”) time and space: <
g 500
pref0,1] = P(t;[NULL) 2
preli,l] = prei— 1,1 + P(t]s;) s 0
£
sufin +1,1] = 0 = 300
suffi,l] = sufli +1,1] + P(t;]s;) % 200
o
Then for any (4,5), O(a) = P(tq|]NULL) + 100 .~
2ogfig) Pltalsy) = prefi — 1,a] + suflj + 1,a]. e
I(a) can be incrementally updated as the source 10 20 30 40 50
span varies: when = j, I(a) = P(to|NULL) + Average sentence length

P(ty|si). As j is incremented, we ad®(t,|s;) to

I(a). Thus we have linear time updates @rand/. Figure 2: Speed comparison of tlig(n*) tic-tac-toe
We can then find the best scoring sequence usiguning algorithm, the A* tope algorithm, and the fast

the familiar Viterbi algorithm. Leb[a, o] be the cost fic-tac-toe pruning. All produce the same set of bitext

of the best scoring sequence ending at in sta cells, those within threshold of the best bitext cell.

timea:
6[0,0] = 1if o = L; 0 otherwise o _ _ o
Sla,I] = Sla—1,I] O(a) within threshold_, them is the right boundary within
threshold. Using these facts, we can gradually
0la, M] = Uglgﬁ@,{ﬂa —Loal}-1(a) sweep the right boundany. from n toward 1 until
Sla,R] := max {dla—1,0]} O(a) the first condition fails to hold. For each value where

oEM,R the second condition holds, we pause to search for

Then Vi(i,j) = dn + 1, R], using the isomor- the set of left boundaries within threshold.

phism between state sequences and spans. This lin{ jkewise for the left edgei[l, M] 'Hmfl—kl I(a)-
ear 'Fime algori_thm allows us to compute span prunFrn_ . O(a) is within threshold iff there is some
ing in O(n?) time. The same algorithm may be < 1 identifying a span(’’,m) within threshold.
performed using the backward figure of merit afte[:ina”y it V(i,j,l,m) = 6]l —1,L] - [[™, I(a) -
transposing rows and columns. N "_ .1 0(a) is within threshold, theri, j, 1, m)
Having cast the problem in terms of finite state aujs g pitext cell within threshold. For right edges that
tomata, we can use finite state algorithms for prungre known to be within threshold, we can sweep the
ing. For instance, fixing a source span we can enystt edges leftward until the first condition no longer

merate the target spans in decreasing order by SCQ{8ids, keeping only those spans for which the sec-
(Soong and Huang, 1991), stopping once we eRnd condition holds.

counter the first span below threshold. In practice
the overhead of maintaining the priority queue out- The filtering algorithm behaves extremely well.
weighs any benefit, as seen in Figure 2. Although the worst case runtime is stifl(n?), the

An alternate approach that avoids this overhead Isest case has improved:id; empirically it seems to
to enumerate spans by position. Note that, R] - significantly reduce the amount of time spent explor-
[1i—ni1O(a) is within threshold iff there is a ing spans. Figure 2 compares the speed of the fast
span with right boundaryn’ < m within thresh- tic-tac-toe algorithm against the algorithm in Zhang
old. Furthermore if5[m,M] - [[,_,,., O(a) is and Gildea (2005).
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Figure 3: Example output from the ITG using non-composdaighrases. (a) is the Viterbi alignment from the word-
based ITG. The shaded regions indicate phrasal alignmiesttste allowed by the non-compositional constraint; all
other phrasal alignments will not be considered. (b) is titerbi alignment from the phrasal ITG, with the multi-word
alignments highlighted.

5 Bootstrapping Phrasal ITG from bitext space to constraint ITG phrases. We use ITG
Word-based ITG Viterbi alignments instead. The benefit is two-fold.

) o ) First of all, we do not have to run a GIZA++ aligner.
This section introduces a technique that bootstra%second, we do not need to worry about non-ITG
candidate phrase pairs for phrase-based ITG froWord alignments, such as th 4, 1, 3) permutation
word-based ITG Viterbi alignments. The word-paterns. GizA++ does not limit the set of permu-
based ITG uses the same expansions for the NOR4ions allowed during translation, so it can produce
terminal X', but the expansions af' are limited 10 ormytations that are not reachable using an ITG.
generate only 1-1, 1-0, and 0-1 alignments: Formally, given a word-based ITG alignment, the
bootstrapping algorithm finds all the phrase pairs

¢ — e according to the definition of Och and Ney (2004)
C — el and Chiang (2005) with the additional constraint
C — ¢€/f that each phrase pair contains at most one word

link. Mathematically, lek(i, j) count the number of
where ¢ indicates that no word was generatedword links that are emitted from the substriag ;,
Broadly speaking, the goal of this section is the samend (1, m) count the number of word links emit-
as the previous section, namely, to limit the set ofed from the substring_,,. The non-compositional
phrase pairs that needs to be considered in the traishrase pairs satisfy
ing process. The tic-tac-toe pruning relies on IBM
model 1 for scoring a given aligned area. In this e(i, j) = f(l,m) < 1.

part, we use word-based ITG alignments as anchor _ N
points in the alignment space to pin down the poterf-i9ure 3 (a) shows all possible non-compositional

tial phrases. The scope of iterative phrasal ITG trairf2hrases given the Viterbi word alignment of the ex-
ing, therefore, is limited to determining the bound-2MPple sentence pair.

aries of the phrases anchored on the given one-t
one word alignments.

The heuristic method is based on the NonWe summarize the pipeline of our system, demon-
Compositional Constraint of Cherry and Lin (2007) strating the interactions between the three main con-
Cherry and Lin (2007) use GIZA++ intersectionstributions of this paper: Variational Bayes, tic-tac-
which have high precision as anchor points in théoe pruning, and word-to-phrase bootstrapping. We

8 Summary of the Pipdine
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start from sentence-aligned bilingual data and run 0.6

IBM Model 1 in both directions to obtain two trans- A
lation tables. Then we use the efficient bidirectional 0.55

tic-tac-toe pruning to prune the bitext space within os | |
each of the sentence pairs; ITG parsing will be car- '

ried out on only this this sparse set of bitext cells. 0.45 | i
The first stage of training is word-based ITG, us- ]
ing the standard iterative training procedure, except % 0.4r //
VB replaces EM to focus on a sparse prior. Af- 0.35F 1
ter several training iterations, we obtain the Viterbi

alignments on the training data according to the fi- 03} .
nal model. Now we transition into the second stage

— the phrasal training. Before the training starts, 0.25F 1
we apply the non-compositional constraints over the 0.2 L
pruned bitext space to further constrain the space 1e-009 1e-006 0.001 1
of phrase pairs. Finally, we run phrasal ITG itera- Prior value

tive training using VB for a certain number of itera-

tions. Inthe end, a Viterbi pass for the phrasal ITG i§igure 4: AER drops asc approaches zero; a more
executed to produce the non-compositional phras&arse solution leads to better results.

alignments. From this alignment, phrase pairs are

extracted in the usual manner, and a phrase—basetd bil t iteration 10. Wh is 1 9 VB
translation system is trained. stabilizes at iteration 10. Whemc Is 1e — 9,

gets AER close to .35 at iteration 10.
7 Experiments As we increase the bias toward sparsity, the AER
decreases, following a long slow plateau. Although
The training data was a subset of 175K sentendbe magnitude of improvement is not large, the trend
pairs from the NIST Chinese-English training datais encouraging.
automatically selected to maximize character-level These experiments also indicate that a very sparse
overlap with the source side of the test data. We pytrior is needed for machine translation tasks. Un-
a length limit of 35 on both sides, producing a trainlike Johnson (2007), who found optimal perfor-
ing set of 141K sentence pairs. 500 Chinese-Englighance whenn was approximatelyl0—*, we ob-
pairs from this set were manually aligned and useskerved monotonic increases in performancecas

as a gold standard. dropped. The dimensionality of this MT problem is
_ _ significantly larger than that of the sequence prob-
7.1 Word Alignment Evaluation lem, though, therefore it may take a stronger push

First, using evaluations of alignment quality, we/fom the prior to achieve the desired result.
demonstrate the effectiveness of VB over EM, and )
explore the effect of the prior. 7.2 End-to-end Evaluation

Figure 4 examines the difference between EM an@iven an unlimited amount of time, we would tune
VB with varying sparse priors for the word-basedhe prior to maximize end-to-end performance, us-
model of ITG on the 500 sentence pairs, both afing an objective function such as BLEU. Unfortu-
ter 10 iterations of training. Using EM, because ohately these experiments are very slow. Since we
overfitting, AER drops first and increases again agbserved monotonic increases in alignment perfor-
the number of iterations varies from 1 to 10. Themance with smaller values af-, we simply fixed
lowest AER using EM is achieved after the seconthe prior at a very small valua (') for all trans-
iteration, which is .40. At iteration 10, AER for EM lation experiments. We do compare VB against EM
increases to .42. On the other hand, using VB, AEI terms of final BLEU scores in the translation ex-
decreases monotonically over the 10 iterations arkriments to ensure that this sparse prior has a sig-
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nificant impact on the output. \ Development  Test

We also trained a baseline model with GIZA++ GlZA++ 37.46 28.24
(Och and Ney, 2003) following a regimen of 5 it- ITG-word 35.47 26.55
erations of Model 1, 5 iterations of HMM, and 5 ITG-mwm (VB) 39.21 29.02
iterations of Model 4. We computed Chinese-to- ITG-mwm (EM) 39.15 28.47

English and English-to-Chinese word translation ta-

bles using five iterations of Model 1. These val-Table 1. Translation results on Chinese-English, using

ues were used to perform tic-tac-toe pruning Witﬁhe subset of training data (141K sentence pairs) that have

7, =1 x 1073 andr, = 1 x 10~. Over the pruned Igonngt? limit 35 on both sides. (No length limit in transla-

charts, we ran 10 iterations of word-based ITG using
EM or VB. The charts were then pruned further by
applying the non-compositional constraint from the2 points dev set and nearly 1 point of improvement
Viterbi alignment links of that model. Finally we ran on the test set. We also observe the consistent supe-
10 iterations of phrase-based ITG over the residusiority of VB over EM. The gain is especially large
charts, using EM or VB, and extracted the Viterbion the test data set, indicating VB is less prone to
alignments. overfitting.

For translation, we used the standard phrasal de- ,
coding approach, based on a re-implementation & Conclusion

the Pharaoh system (Koehn, 2004). The output {e have presented an improved and more efficient
the word alignment systems (GIZA++ or ITG) Werépeinod of estimating phrase pairs directly. By both
fed to a standard phrase extraction procedure th_atlanging the objective function to include a bias
extracted all phrases of length up to 7 and estyyyarq sparser models and improving the pruning
mated the condition_al probabilities pf sourcg give’?echniques and efficiency, we achieve significant
target and target given source using relative fresqaing on test data with practical speed. In addition,
quencies. Thus our phrasal ITG leams only thg,ese gains were shown without resorting to external
minimal non-compositional phrases; the Standa%odels, such as GIZA++ We have shown that VB
phrase-extraction algorithm learns larger combings poth practical and effective for use in MT models.
tions of these minimal units. In addition the phrases However, our best system does not apply VB to a
were annotated with lexical weights using_the IBN%ingIe probability model, as we found an apprecia-
Model 1 tables. The decoder also used a trigram lagye penefit from bootstrapping each model from sim-
guage model trained on the target side of the tra|_n|n‘5*er models, much as the IBM word alignment mod-
data, as well as word count, phrase count, and distQfs are ysually trained in succession. We find that
tion penalty features. Minimum Error Rate trainingy/g ajone is not sufficient to counteract the tendency
(Och, 2003) over BLEU was used to optimize they gy 1o prefer analyses with smaller trees using
weights for each of these models over the develogg,yer ryles and longer phrases. Both the tic-tac-toe
ment test data. ) pruning and the non-compositional constraint ad-
We used the NIST 2002 evaluation datasets fQfress this problem by reducing the space of possible
tuning and evaluation; the 10-reference developsy ase pairs. On top of these hard constraints, the
ment set was used for minimum error rate tramm_ggparse prior of VB helps make the model less prone
and the 4-reference test set was used for evaluatiqg. overfitting to infrequent phrase pairs, and thus

We trained several phrasal translation systems, Val¥nproves the quality of the phrase pairs the model
ing only the word alignment (or phrasal alignment)o5ns.

method.

Table 1 compares the four systems: the GIZA+Acknowledgments This work was done while the
baseline, the ITG word-based model, the ITG multifirst author was at Microsoft Research; thanks to Xi-
word model using EM training, and the ITG multi-aodong He, Mark Johnson, and Kristina Toutanova.
word model using VB training. ITG-mwm-VB is The last author was supported by NSF 11S-0546554.
our best model. We see an improvement of nearly
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