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Abstract

We propose an automatic machine translation
(MT) evaluation metric that calculates a sim-
ilarity score (based on precision and recall)
of a pair of sentences. Unlike most metrics,
we compute a similarity score between items
across the two sentences. We then find a maxi-
mum weight matching between the items such
that each item in one sentence is mapped to
at most one item in the other sentence. This
general framework allows us to use arbitrary
similarity functions between items, and to in-
corporate different information in our com-
parison, such as n-grams, dependency rela-
tions, etc. When evaluated on data from the
ACL-07 MT workshop, our proposed metric
achieves higher correlation with human judge-
ments than all 11 automatic MT evaluation
metrics that were evaluated during the work-
shop.

1 Introduction

In recent years, machine translation (MT) research
has made much progress, which includes the in-
troduction of automatic metrics for MT evaluation.
Since human evaluation of MT output is time con-
suming and expensive, having a robust and accurate
automatic MT evaluation metric that correlates well
with human judgement is invaluable.

Among all the automatic MT evaluation metrics,
BLEU (Papineni et al., 2002) is the most widely
used. Although BLEU has played a crucial role in
the progress of MT research, it is becoming evident
that BLEU does not correlate with human judgement

well enough, and suffers from several other deficien-
cies such as the lack of an intuitive interpretation of
its scores.

During the recent ACL-07 workshop on statis-
tical MT (Callison-Burch et al., 2007), a total of
11 automatic MT evaluation metrics were evalu-
ated for correlation with human judgement. The re-
sults show that, as compared to BLEU, several re-
cently proposed metrics such as Semantic-role over-
lap (Gimenez and Marquez, 2007), ParaEval-recall
(Zhou et al., 2006), and METEOR (Banerjee and
Lavie, 2005) achieve higher correlation.

In this paper, we propose a new automatic MT
evaluation metric, MAXSIM, that compares a pair
of system-reference sentences by extracting n-grams
and dependency relations. Recognizing that differ-
ent concepts can be expressed in a variety of ways,
we allow matching across synonyms and also com-
pute a score between two matching items (such as
between two n-grams or between two dependency
relations), which indicates their degree of similarity
with each other.

Having weighted matches between items means
that there could be many possible ways to match, or
link items from a system translation sentence to a
reference translation sentence. To match each sys-
tem item to at most one reference item, we model
the items in the sentence pair as nodes in a bipartite
graph and use the Kuhn-Munkres algorithm (Kuhn,
1955; Munkres, 1957) to find a maximum weight
matching (or alignment) between the items in poly-
nomial time. The weights (from the edges) of the
resulting graph will then be added to determine the
final similarity score between the pair of sentences.
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Although a maximum weight bipartite graph was
also used in the recent work of (Taskar et al., 2005),
their focus was on learning supervised models for
single word alignment between sentences from a
source and target language.

The contributions of this paper are as fol-
lows. Current metrics (such as BLEU, METEOR,
Semantic-role overlap, ParaEval-recall, etc.) do not
assign different weights to their matches: either two
items match, or they don’t. Also, metrics such
as METEOR determine an alignment between the
items of a sentence pair by using heuristics such
as the least number of matching crosses. In con-
trast, we propose weighting different matches dif-
ferently, and then obtain an optimal set of matches,
or alignments, by using a maximum weight match-
ing framework. We note that this framework is not
used by any of the 11 automatic MT metrics in the
ACL-07 MT workshop. Also, this framework al-
lows for defining arbitrary similarity functions be-
tween two matching items, and we could match arbi-
trary concepts (such as dependency relations) gath-
ered from a sentence pair. In contrast, most other
metrics (notably BLEU) limit themselves to match-
ing based only on the surface form of words. Finally,
when evaluated on the datasets of the recent ACL-
07 MT workshop (Callison-Burch et al., 2007), our
proposed metric achieves higher correlation with hu-
man judgements than all of the 11 automatic MT
evaluation metrics evaluated during the workshop.

In the next section, we describe several existing
metrics. In Section 3, we discuss issues to consider
when designing a metric. In Section 4, we describe
our proposed metric. In Section 5, we present our
experimental results. Finally, we outline future work
in Section 6, before concluding in Section 7.

2 Automatic Evaluation Metrics

In this section, we describe BLEU, and the three
metrics which achieved higher correlation results
than BLEU in the recent ACL-07 MT workshop.

2.1 BLEU

BLEU (Papineni et al., 2002) is essentially a
precision-based metric and is currently the standard
metric for automatic evaluation of MT performance.
To score a system translation, BLEU tabulates the

number of n-gram matches of the system translation
against one or more reference translations. Gener-
ally, more n-gram matches result in a higher BLEU
score.

When determining the matches to calculate pre-
cision, BLEU uses a modified, or clipped n-gram
precision. With this, an n-gram (from both the sys-
tem and reference translation) is considered to be
exhausted or used after participating in a match.
Hence, each system n-gram is “clipped” by the max-
imum number of times it appears in any reference
translation.

To prevent short system translations from receiv-
ing too high a score and to compensate for its lack
of a recall component, BLEU incorporates a brevity
penalty. This penalizes the score of a system if the
length of its entire translation output is shorter than
the length of the reference text.

2.2 Semantic Roles

(Gimenez and Marquez, 2007) proposed using
deeper linguistic information to evaluate MT per-
formance. For evaluation in the ACL-07 MT work-
shop, the authors used the metric which they termed
as SR-Or-*1. This metric first counts the number
of lexical overlaps SR-Or-t for all the different se-
mantic roles t that are found in the system and ref-
erence translation sentence. A uniform average of
the counts is then taken as the score for the sen-
tence pair. In their work, the different semantic roles
t they considered include the various core and ad-
junct arguments as defined in the PropBank project
(Palmer et al., 2005). For instance, SR-Or-A0 refers
to the number of lexical overlaps between the A0
arguments. To extract semantic roles from a sen-
tence, several processes such as lemmatization, part-
of-speech tagging, base phrase chunking, named en-
tity tagging, and finally semantic role tagging need
to be performed.

2.3 ParaEval

The ParaEval metric (Zhou et al., 2006) uses a
large collection of paraphrases, automatically ex-
tracted from parallel corpora, to evaluate MT per-
formance. To compare a pair of sentences, ParaE-
val first locates paraphrase matches between the two

1Verified through personal communication as this is not ev-
ident in their paper.
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sentences. Then, unigram matching is performed
on the remaining words that are not matched us-
ing paraphrases. Based on the matches, ParaEval
will then elect to use either unigram precision or un-
igram recall as its score for the sentence pair. In
the ACL-07 MT workshop, ParaEval based on re-
call (ParaEval-recall) achieves good correlation with
human judgements.

2.4 METEOR

Given a pair of strings to compare (a system transla-
tion and a reference translation), METEOR (Baner-
jee and Lavie, 2005) first creates a word alignment
between the two strings. Based on the number of
word or unigram matches and the amount of string
fragmentation represented by the alignment, ME-
TEOR calculates a score for the pair of strings.

In aligning the unigrams, each unigram in one
string is mapped, or linked, to at most one unigram
in the other string. These word alignments are cre-
ated incrementally through a series of stages, where
each stage only adds alignments between unigrams
which have not been matched in previous stages. At
each stage, if there are multiple different alignments,
then the alignment with the most number of map-
pings is selected. If there is a tie, then the alignment
with the least number of unigram mapping crosses
is selected.

The three stages of “exact”, “porter stem”, and
“WN synonymy” are usually applied in sequence to
create alignments. The “exact” stage maps unigrams
if they have the same surface form. The “porter
stem” stage then considers the remaining unmapped
unigrams and maps them if they are the same af-
ter applying the Porter stemmer. Finally, the “WN
synonymy” stage considers all remaining unigrams
and maps two unigrams if they are synonyms in the
WordNet sense inventory (Miller, 1990).

Once the final alignment has been produced, un-
igram precision P (number of unigram matches m
divided by the total number of system unigrams)
and unigram recall R (m divided by the total number
of reference unigrams) are calculated and combined
into a single parameterized harmonic mean (Rijsber-
gen, 1979):

Fmean =
P · R

αP + (1 − α)R
(1)

To account for longer matches and the amount
of fragmentation represented by the alignment, ME-
TEOR groups the matched unigrams into as few
chunks as possible and imposes a penalty based on
the number of chunks. The METEOR score for a
pair of sentences is:

score =

[

1 − γ

(

no. of chunks

m

)β
]

Fmean

where γ
(

no. of chunks
m

)β
represents the fragmenta-

tion penalty of the alignment. Note that METEOR
consists of three parameters that need to be opti-
mized based on experimentation: α, β, and γ.

3 Metric Design Considerations

We first review some aspects of existing metrics and
highlight issues that should be considered when de-
signing an MT evaluation metric.

• Intuitive interpretation: To compensate for
the lack of recall, BLEU incorporates a brevity
penalty. This, however, prevents an intuitive in-
terpretation of its scores. To address this, stan-
dard measures like precision and recall could
be used, as in some previous research (Baner-
jee and Lavie, 2005; Melamed et al., 2003).

• Allowing for variation: BLEU only counts
exact word matches. Languages, however, of-
ten allow a great deal of variety in vocabulary
and in the ways concepts are expressed. Hence,
using information such as synonyms or depen-
dency relations could potentially address the is-
sue better.

• Matches should be weighted: Current met-
rics either match, or don’t match a pair of
items. We note, however, that matches between
items (such as words, n-grams, etc.) should be
weighted according to their degree of similar-
ity.

4 The Maximum Similarity Metric

We now describe our proposed metric, Maximum
Similarity (MAXSIM), which is based on precision
and recall, allows for synonyms, and weights the
matches found.
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Given a pair of English sentences to be com-
pared (a system translation against a reference
translation), we perform tokenization2 , lemmati-
zation using WordNet3, and part-of-speech (POS)
tagging with the MXPOST tagger (Ratnaparkhi,
1996). Next, we remove all non-alphanumeric to-
kens. Then, we match the unigrams in the system
translation to the unigrams in the reference transla-
tion. Based on the matches, we calculate the recall
and precision, which we then combine into a single
Fmean unigram score using Equation 1. Similarly,
we also match the bigrams and trigrams of the sen-
tence pair and calculate their corresponding Fmean

scores. To obtain a single similarity score scores

for this sentence pair s, we simply average the three
Fmean scores. Then, to obtain a single similarity
score sim-score for the entire system corpus, we
repeat this process of calculating a scores for each
system-reference sentence pair s, and compute the
average over all |S| sentence pairs:

sim-score =
1

|S|

|S|
∑

s=1

[

1

N

N
∑

n=1

Fmeans,n

]

where in our experiments, we set N=3, representing
calculation of unigram, bigram, and trigram scores.
If we are given access to multiple references, we cal-
culate an individual sim-score between the system
corpus and each reference corpus, and then average
the scores obtained.

4.1 Using N-gram Information

In this subsection, we describe in detail how we
match the n-grams of a system-reference sentence
pair.

Lemma and POS match Representing each n-
gram by its sequence of lemma and POS-tag pairs,
we first try to perform an exact match in both lemma
and POS-tag. In all our n-gram matching, each n-
gram in the system translation can only match at
most one n-gram in the reference translation.

Representing each unigram (lipi) at position i by
its lemma li and POS-tag pi, we count the num-
ber matchuni of system-reference unigram pairs
where both their lemma and POS-tag match. To find
matching pairs, we proceed in a left-to-right fashion

2http://www.cis.upenn.edu/ treebank/tokenizer.sed
3http://wordnet.princeton.edu/man/morph.3WN

r1 r2 r3

00.5

0.750.75

0.75

11

1

s3s2s1

0.5

r1 r2 r3

0.75

11

s3s1 s2

Figure 1: Bipartite matching.

(in both strings). We first compare the first system
unigram to the first reference unigram, then to the
second reference unigram, and so on until we find a
match. If there is a match, we increment matchuni

by 1 and remove this pair of system-reference un-
igrams from further consideration (removed items
will not be matched again subsequently). Then, we
move on to the second system unigram and try to
match it against the reference unigrams, once again
proceeding in a left-to-right fashion. We continue
this process until we reach the last system unigram.

To determine the number matchbi of bi-
gram matches, a system bigram (lsi

psi
, lsi+1

psi+1
)

matches a reference bigram (lri
pri

, lri+1
pri+1

) if
lsi

= lri
, psi

= pri
, lsi+1

= lri+1
, and psi+1

= pri+1
.

For trigrams, we similarly determine matchtri by
counting the number of trigram matches.

Lemma match For the remaining set of n-grams
that are not yet matched, we now relax our matching
criteria by allowing a match if their corresponding
lemmas match. That is, a system unigram (lsi

psi
)

matches a reference unigram (lri
pri

) if lsi
= lri

.
In the case of bigrams, the matching conditions are
lsi

= lri
and lsi+1

= lri+1
. The conditions for tri-

grams are similar. Once again, we find matches in a
left-to-right fashion. We add the number of unigram,
bigram, and trigram matches found during this phase
to matchuni, matchbi, and matchtri respectively.

Bipartite graph matching For the remaining n-
grams that are not matched so far, we try to match
them by constructing bipartite graphs. During this
phase, we will construct three bipartite graphs, one
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each for the remaining set of unigrams, bigrams, and
trigrams.

Using bigrams to illustrate, we construct a
weighted complete bipartite graph, where each edge
e connecting a pair of system-reference bigrams has
a weight w(e), indicating the degree of similarity
between the bigrams connected. Note that, without
loss of generality, if the number of system nodes and
reference nodes (bigrams) are not the same, we can
simply add dummy nodes with connecting edges of
weight 0 to obtain a complete bipartite graph with
equal number of nodes on both sides.

In an n-gram bipartite graph, the similarity score,
or the weight w(e) of the edge e connecting a system
n-gram (ls1

ps1
, . . . , lsn

psn
) and a reference n-gram

(lr1
pr1

, . . . , lrn
prn

) is calculated as follows:

Si =
I(psi

, pri
) + Syn(lsi

, lri
)

2

w(e) =
1

n

n
∑

i=1

Si

where I(psi
, pri

) evaluates to 1 if psi
= pri

, and
0 otherwise. The function Syn(lsi

, lri
) checks

whether lsi
is a synonym of lri

. To determine this,
we first obtain the set WNsyn(lsi

) of WordNet syn-
onyms for lsi

and the set WNsyn(lri
) of WordNet

synonyms for lri
. Then,

Syn(lsi
, lri

) =







1, WNsyn(lsi
) ∩ WNsyn(lri

)
6= ∅

0, otherwise

In gathering the set WNsyn for a word, we gather
all the synonyms for all its senses and do not re-
strict to a particular POS category. Further, if we
are comparing bigrams or trigrams, we impose an
additional condition: Si 6= 0, for 1 ≤ i ≤ n, else we
will set w(e) = 0. This captures the intuition that
in matching a system n-gram against a reference n-
gram, where n > 1, we require each system token
to have at least some degree of similarity with the
corresponding reference token.

In the top half of Figure 1, we show an example
of a complete bipartite graph, constructed for a set
of three system bigrams (s1, s2, s3) and three refer-
ence bigrams (r1, r2, r3), and the weight of the con-
necting edge between two bigrams represents their
degree of similarity.

Next, we aim to find a maximum weight match-
ing (or alignment) between the bigrams such that
each system (reference) bigram is connected to ex-
actly one reference (system) bigram. This maxi-
mum weighted bipartite matching problem can be
solved in O(n3) time (where n refers to the number
of nodes, or vertices in the graph) using the Kuhn-
Munkres algorithm (Kuhn, 1955; Munkres, 1957).
The bottom half of Figure 1 shows the resulting
maximum weighted bipartite graph, where the align-
ment represents the maximum weight matching, out
of all possible alignments.

Once we have solved and obtained a maximum
weight matching M for the bigram bipartite graph,
we sum up the weights of the edges to obtain the
weight of the matching M : w(M) =

∑

e∈M w(e),
and add w(M) to matchbi. From the unigram
and trigram bipartite graphs, we similarly calculate
their respective w(M) and add to the corresponding
matchuni and matchtri.

Based on matchuni, matchbi, and matchtri, we
calculate their corresponding precision P and re-
call R, from which we obtain their respective Fmean

scores via Equation 1. Using bigrams for illustra-
tion, we calculate its P and R as:

P =
matchbi

no. of bigrams in system translation

R =
matchbi

no. of bigrams in reference translation

4.2 Dependency Relations

Besides matching a pair of system-reference sen-
tences based on the surface form of words, previ-
ous work such as (Gimenez and Marquez, 2007) and
(Rajman and Hartley, 2002) had shown that deeper
linguistic knowledge such as semantic roles and syn-
tax can be usefully exploited.

In the previous subsection, we describe our
method of using bipartite graphs for matching of n-
grams found in a sentence pair. This use of bipartite
graphs, however, is a very general framework to ob-
tain an optimal alignment of the corresponding “in-
formation items” contained within a sentence pair.
Hence, besides matching based on n-gram strings,
we can also match other “information items”, such
as dependency relations.
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Metric Adequacy Fluency Rank Constituent Average
MAXSIMn+d 0.780 0.827 0.875 0.760 0.811
MAXSIMn 0.804 0.845 0.893 0.766 0.827
Semantic-role 0.774 0.839 0.804 0.742 0.790
ParaEval-recall 0.712 0.742 0.769 0.798 0.755
METEOR 0.701 0.719 0.746 0.670 0.709
BLEU 0.690 0.722 0.672 0.603 0.672

Table 1: Overall correlations on the Europarl and News Commentary datasets. The “Semantic-role overlap” metric
is abbreviated as “Semantic-role”. Note that each figure above represents 6 translation tasks: the Europarl and News
Commentary datasets each with 3 language pairs (German-English, Spanish-English, French-English).

In our work, we train the MSTParser4 (McDon-
ald et al., 2005) on the Penn Treebank Wall Street
Journal (WSJ) corpus, and use it to extract depen-
dency relations from a sentence. Currently, we fo-
cus on extracting only two relations: subject and
object. For each relation (ch, dp, pa) extracted, we
note the child lemma ch of the relation (often a
noun), the relation type dp (either subject or ob-
ject), and the parent lemma pa of the relation (often
a verb). Then, using the system relations and ref-
erence relations extracted from a system-reference
sentence pair, we similarly construct a bipartite
graph, where each node is a relation (ch, dp, pa).
We define the weight w(e) of an edge e between a
system relation (chs, dps, pas) and a reference rela-
tion (chr, dpr, par) as follows:

Syn(chs, chr) + I(dps, dpr) + Syn(pas, par)

3

where functions I and Syn are defined as in the pre-
vious subsection. Also, w(e) is non-zero only if
dps = dpr. After solving for the maximum weight
matching M , we divide w(M) by the number of sys-
tem relations extracted to obtain a precision score P ,
and divide w(M) by the number of reference rela-
tions extracted to obtain a recall score R. P and R

are then similarly combined into a Fmean score for
the sentence pair. To compute the similarity score
when incorporating dependency relations, we aver-
age the Fmean scores for unigrams, bigrams, tri-
grams, and dependency relations.

5 Results

To evaluate our metric, we conduct experiments on
datasets from the ACL-07 MT workshop and NIST

4Available at: http://sourceforge.net/projects/mstparser

Europarl
Metric Adq Flu Rank Con Avg
MAXSIMn+d 0.749 0.786 0.857 0.651 0.761
MAXSIMn 0.749 0.786 0.857 0.651 0.761
Semantic-role 0.815 0.854 0.759 0.612 0.760
ParaEval-recall 0.701 0.708 0.737 0.772 0.730
METEOR 0.726 0.741 0.770 0.558 0.699
BLEU 0.803 0.822 0.699 0.512 0.709

Table 2: Correlations on the Europarl dataset.
Adq=Adequacy, Flu=Fluency, Con=Constituent, and
Avg=Average.

News Commentary
Metric Adq Flu Rank Con Avg
MAXSIMn+d 0.812 0.869 0.893 0.869 0.861
MAXSIMn 0.860 0.905 0.929 0.881 0.894
Semantic-role 0.734 0.824 0.848 0.871 0.819
ParaEval-recall 0.722 0.777 0.800 0.824 0.781
METEOR 0.677 0.698 0.721 0.782 0.720
BLEU 0.577 0.622 0.646 0.693 0.635

Table 3: Correlations on the News Commentary dataset.

MT 2003 evaluation exercise.

5.1 ACL-07 MT Workshop

The ACL-07 MT workshop evaluated the transla-
tion quality of MT systems on various translation
tasks, and also measured the correlation (with hu-
man judgement) of 11 automatic MT evaluation
metrics. The workshop used a Europarl dataset and a
News Commentary dataset, where each dataset con-
sisted of English sentences (2,000 English sentences
for Europarl and 2,007 English sentences for News
Commentary) and their translations in various lan-
guages. As part of the workshop, correlations of
the automatic metrics were measured for the tasks
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of translating German, Spanish, and French into En-
glish. Hence, we will similarly measure the correla-
tion of MAXSIM on these tasks.

5.1.1 Evaluation Criteria

For human evaluation of the MT submissions,
four different criteria were used in the workshop:
Adequacy (how much of the original meaning is ex-
pressed in a system translation), Fluency (the trans-
lation’s fluency), Rank (different translations of a
single source sentence are compared and ranked
from best to worst), and Constituent (some con-
stituents from the parse tree of the source sentence
are translated, and human judges have to rank these
translations).

During the workshop, Kappa values measured for
inter- and intra-annotator agreement for rank and
constituent are substantially higher than those for
adequacy and fluency, indicating that rank and con-
stituent are more reliable criteria for MT evaluation.

5.1.2 Correlation Results

We follow the ACL-07 MT workshop process of
converting the raw scores assigned by an automatic
metric to ranks and then using the Spearman’s rank
correlation coefficient to measure correlation.

During the workshop, only three automatic met-
rics (Semantic-role overlap, ParaEval-recall, and
METEOR) achieve higher correlation than BLEU.
We gather the correlation results of these metrics
from the workshop paper (Callison-Burch et al.,
2007), and show in Table 1 the overall correlations
of these metrics over the Europarl and News Com-
mentary datasets. In the table, MAXSIMn represents
using only n-gram information (Section 4.1) for our
metric, while MAXSIMn+d represents using both n-
gram and dependency information. We also show
the breakdown of the correlation results into the Eu-
roparl dataset (Table 2) and the News Commentary
dataset (Table 3). In all our results for MAXSIM

in this paper, we follow METEOR and use α=0.9
(weighing recall more than precision) in our calcu-
lation of Fmean via Equation 1, unless otherwise
stated.

The results in Table 1 show that MAXSIMn and
MAXSIMn+d achieve overall average (over the four
criteria) correlations of 0.827 and 0.811 respec-
tively. Note that these results are substantially

Metric Adq Flu Avg
MAXSIMn+d 0.943 0.886 0.915
MAXSIMn 0.829 0.771 0.800
METEOR (optimized) 1.000 0.943 0.972
METEOR 0.943 0.886 0.915
BLEU 0.657 0.543 0.600

Table 4: Correlations on the NIST MT 2003 dataset.

higher than BLEU, and in particular higher than the
best performing Semantic-role overlap metric in the
ACL-07 MT workshop. Also, Semantic-role over-
lap requires more processing steps (such as base
phrase chunking, named entity tagging, etc.) than
MAXSIM. For future work, we could experiment
with incorporating semantic-role information into
our current framework. We note that the ParaEval-
recall metric achieves higher correlation on the con-
stituent criterion, which might be related to the fact
that both ParaEval-recall and the constituent crite-
rion are based on phrases: ParaEval-recall tries to
match phrases, and the constituent criterion is based
on judging translations of phrases.

5.2 NIST MT 2003 Dataset

We also conduct experiments on the test data
(LDC2006T04) of NIST MT 2003 Chinese-English
translation task. For this dataset, human judgements
are available on adequacy and fluency for six sys-
tem submissions, and there are four English refer-
ence translation texts.

Since implementations of the BLEU and ME-
TEOR metrics are publicly available, we score
the system submissions using BLEU (version 11b
with its default settings), METEOR, and MAXSIM,
showing the resulting correlations in Table 4. For
METEOR, when used with its originally proposed
parameter values of (α=0.9, β=3.0, γ=0.5), which
the METEOR researchers mentioned were based on
some early experimental work (Banerjee and Lavie,
2005), we obtain an average correlation value of
0.915, as shown in the row “METEOR”. In the re-
cent work of (Lavie and Agarwal, 2007), the val-
ues of these parameters were tuned to be (α=0.81,
β=0.83, γ=0.28), based on experiments on the NIST
2003 and 2004 Arabic-English evaluation datasets.
When METEOR was run with these new parame-
ter values, it returned an average correlation value of
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0.972, as shown in the row “METEOR (optimized)”.
MAXSIM using only n-gram information

(MAXSIMn) gives an average correlation value
of 0.800, while adding dependency information
(MAXSIMn+d) improves the correlation value to
0.915. Note that so far, the parameters of MAXSIM

are not optimized and we simply perform uniform
averaging of the different n-grams and dependency
scores. Under this setting, the correlation achieved
by MAXSIM is comparable to that achieved by
METEOR.

6 Future Work

In our current work, the parameters of MAXSIM are
as yet un-optimized. We found that by setting α=0.7,
MAXSIMn+d could achieve a correlation of 0.972
on the NIST MT 2003 dataset. Also, we have barely
exploited the potential of weighted similarity match-
ing. Possible future directions include adding se-
mantic role information, using the distance between
item pairs based on the token position within each
sentence as additional weighting consideration, etc.
Also, we have seen that dependency relations help to
improve correlation on the NIST dataset, but not on
the ACL-07 MT workshop datasets. Since the accu-
racy of dependency parsers is not perfect, a possible
future work is to identify when best to incorporate
such syntactic information.

7 Conclusion

In this paper, we present MAXSIM, a new auto-
matic MT evaluation metric that computes a simi-
larity score between corresponding items across a
sentence pair, and uses a bipartite graph to obtain
an optimal matching between item pairs. This gen-
eral framework allows us to use arbitrary similarity
functions between items, and to incorporate differ-
ent information in our comparison. When evaluated
for correlation with human judgements, MAXSIM

achieves superior results when compared to current
automatic MT evaluation metrics.
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