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Abstract

This paper describes a new method for 
computing lexical chains. These are 
sequences of semantically related words 
that reflect a text’s cohesive structure. In 
contrast to previous methods, we are able 
to select chains based on their cohesive
strength. This is achieved by analyzing the 
connectivity in graphs representing the 
lexical chains. We show that the generated 
chains significantly improve performance 
of automatic text summarization and 
keyphrase indexing. 

1 Introduction

Text understanding tasks such as topic detection, 
automatic summarization, discourse analysis and 
question answering require deep understanding of 
the text’s meaning. The first step in determining 
this meaning is the analysis of the text’s concepts
and their inter-relations. Lexical chains provide a 
framework for such an analysis. They combine
semantically related words across sentences into 
meaningful sequences that reflect the cohesive 
structure of the text. 

Lexical chains, introduced by Morris and Hirst 
(1991), have been studied extensively in the last 
decade, since large lexical databases are available 
in digital form. Most approaches use WordNet or 
Roget’s thesaurus for computing the chains and 
apply the results for text summarization.

We present a new approach for computing 
lexical chains by treating them as graphs, where 

nodes are document terms and edges reflect
semantic relations between them. In contrast to 
previous methods, we analyze the cohesive 
strength within a chain by computing the diameter 
of the chain graph. Weakly cohesive chains with a 
high graph diameter are decomposed by a graph 
clustering algorithm into several highly cohesive 
chains. We use WordNet and alternatively a 
domain-specific thesaurus for obtaining semantic 
relations between the terms.

We first give an overview of existing methods 
for computing lexical chains and related areas. 
Then we discuss the motivation behind the new 
approach and describe the algorithm in detail. Our 
evaluation demonstrates the advantages of using
extracted lexical chains for the task of automatic 
text summarization and keyphrase indexing, 
compared to a simple baseline approach. The 
results are compared to annotations produced by a 
group of humans.

2 Related Work

Morris and Hirst (1991) provide the theoretical 
background behind lexical chains and demonstrate 
how they can be constructed manually from
Roget’s thesaurus. The algorithm was re-
implemented as soon as digital WordNet and 
Roget’s became available (Barzilay and Elhadad, 
1997) and its complexity was improved (Silber and 
McCoy, 2002; Galley and McKeown, 2003). All 
these algorithms perform explicit word sense 
disambiguation while computing the chains. For 
each word in a document the algorithm chooses 
only one sense, the one that relates to members of 
existing lexical chains. Reeve et al. (2006)
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compute lexical chains with a medical thesaurus 
and suggest an implicit disambiguation: once the 
chains are computed, weak ones containing
irrelevant senses are eliminated. We also follow 
this approach.

One of the principles of building lexical chains 
is that each term must belong to exactly one chain. 
If several chains are possible, Morris and Hirst
(1991) choose the chain to whose overall score the
term contributes the most. This score is a sum over
weights of semantic relations between chain 
members. This approach produces different lexical 
chains depending on the order of words in the 
document. This is not justified, as the same content 
can be expressed with different sequences of 
statements. We propose an alternative order 
independent approach, where a graph clustering 
algorithm calculates the chain to which a term 
should belong.

3 Lexical Chains

The following notation is used throughout the 
paper. A lexical chain is a graph G = (V,E) with 
nodes viV being terms and edges (vi, vj, wij)E
representing semantic relations between them, 
where wij is a weight expressing the strength of the 
relation. 1 A set of terms and semantic relations
building a graph is a valid lexical chain if the graph
is connected, i.e. there are no unconnected nodes 
and no isolated groups of nodes.

The graph distance d(vi, vj) between two nodes 
vi and vj is the minimum length of the path
connecting them. And the graph diameter is the 
“longest shortest distance” between any two nodes 
in a graph, defined as:

(1) ),(max , jivv vvdm
ji

 .

                                                
1 The initial experiments presented in this paper use an 
unweighted graph with wi,j = 1 for any semantic relation.

Because semantic relations are either bi-
directional or inverse, we treat lexical chains as 
undirected graphs.

3.1 The Cohesive Strength

Lexical cohesion is the property of lexical 
entities to “stick together” and function as a whole 
(Morris and Hirst, 1991). How strongly the 
elements of a lexical chain “stick together,” that is
the cohesive strength of the chain, has been 
defined as the sum of semantic relations between 
every pair of chain members (e.g. Morris and Hirst, 
1991; Silber and McCoy, 2002). This number 
increases with the length of a chain, but longer 
lexical chains are not necessarily more cohesive 
than shorter ones.

Instead, we define the cohesive strength as the 
diameter of the chain graph. Depending on their 
diameter we propose to group lexical chains as
follows: 

1. Strongly cohesive lexical chains (Fig. 1a) 
build fully connected graphs where each term is 
related to all other chain members and m = 1.

2. Weakly cohesive lexical chains (Fig. 1b) 
connect terms without cycles and with a diameter 
m = |V|  1.

3. Moderately cohesive lexical chains (Fig. 1c) 
are in-between the above cases with m [1, |V| 1]. 

To detect individual topics in texts it is more 
useful to extract strong lexical chains. For 
example, Figure 1a describes “physiographic 
features” and 1c refers to “seafood,” while it is 
difficult to summarize the weak chain 1b with a 
single term. The goal is to compute lexical chains 
with the highest possible cohesion. Thus, the 
algorithm must have a way to control the selection. 
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Figure 1. Lexical chains of different cohesive strength.
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3.2 Computing Lexical Chains

The algorithm consists of two stages. First, we 
compute lexical chains in a text with only one 
condition: to be included into a chain a term needs
to be related to at least one of its members. Then, 
we apply graph clustering on the resulting weak 
chains to determine their strong subchains.

I. Determining all chains. First, the documents’ 
n-grams are mapped onto terms in the thesaurus. 
To improve conflation we ignore stopwords and 
sort the remaining stemmed words alphabetically. 
Second, for each thesaurus term t that was found in 
the document we search for an appropriate lexical 
chain. We iterate over the list L containing
previously created chains and check whether term t
is related to any of the members of each chain. The 
following cases are possible:

1. No lexical chains were found. 
A new lexical chain with the term t as a 
single element is created and included in L.

2. One lexical chain was found. 
This chain is updated with the term t.

3. Two or more lexical chains were found.
We merge these chains into a single new 
chain, and remove the old chains from L.

II. Clustering within the weak chains.
Algorithms for graph clustering divide sparsely 
connected graphs into dense subgraphs with a 
similar diameter. We consider each lexical chain in 
L with diameter 3m as a weak chain and apply 
graph clustering to identify highly cohesive 
subchains within this chain. The list L is updated 
with the newly generated chains and the original 
chain is removed. 

A popular graph clustering algorithm, Markov 
Clustering (MCL) is based on the idea that “a 
random walk that visits a dense cluster will likely 
not leave the cluster until many of its vertices have 
been visited” (van Dongen, 2000). MCL is
implemented as a sequence of iterative operations
on a matrix representing the graph. We use 
ChineseWhispers (Biemann, 2006), a special case 
of MCL that performs the iteration in a more 
aggressive way, with an optimized linear 
complexity with the number of graph edges. 

Figure 2 demonstrates how an original weakly 
cohesive lexical chain has been divided by 
ChineseWhispers into five strong chains.

4 Lexical Chains for Text Summarization

Lexical chains are usually evaluated in terms of their 
performance on the automatic text summarization 
task, where the most significant sentences are 
extracted from a document into a summary of a 
predefined length. The idea is to use the cohesive 
information about sentence members stored in 
lexical chains. We first describe the summarization
approach and then compare results to manually 
created summaries.

4.1 Identifying the Main Sentences

The algorithm takes one document at a time and 
computes its lexical chains as described in Section 
3.2, using the lexical database WordNet. First, we 
consider all semantic senses of each document 
term. However, after weighting the chains we 
eliminate senses appearing in low scored chains.

Doran et al. (2004) state that changes in 
weighting schemes have little effect on summaries.
We have observed significant differences between 
reported functions on our data and achieved best 
results with the formula produced by Barzilay and 
Elhadad (1997):

(2)  



LCt

LCt

tfreq
tfreq

LC
LCScore )()

)(

||
1()(

Here, |LC| is the length of the chain and freq(t) is 
the frequency of the term t in the document. All 
lexical chains with score lower than a threshold 
contain irrelevant word senses and are eliminated.

Next we identify the main sentences for the final 
summary of the document. Different heuristics
have been proposed for sentence extraction based 
on the information in lexical chains. For each top
scored chain, Barzilay and Elhadad (1997) extract
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Figure 2. Clustering of a weak chain 
with ChineseWhispers.
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  Rater 2
Positive Negative

Positive a bRater 1
Negative c d

Table 1. Possible choices for any two raters

that sentence which contains the first appearance 
of a chain member. Doran et al. (2004) sum up the 
weights all words in the sentence, which 
correspond to the chain weights in which these 
words occur. We choose the latter heuristic 
because it significantly outperforms the former 
method in our experiments. 

The highest scoring sentences from the 
document, presented in their original order, form
the automatically generated summary. How many 
sentences are extracted depends on the requested 
summary length, which is defined as the
percentage of the document length.

4.2 Experimental Settings

For evaluation we used a subset of a manually 
annotated corpus specifically created to evaluate
text summarization systems (Hasler et al. 2003). 
We concentrate only on documents with at least 
two manually produced summaries: 11 science and 
29 newswire articles with two summaries each, and
7 articles additionally annotated by a third person. 
This data allows us to compare the consistency of 
the system with humans to their consistency with 
each other. 

The results are evaluated with the Kappa 
statistic , defined for Table 1 as follows:

(3)
))(()9)((

)(2

badbcca

bcab






It takes into account the probability of chance 
agreement and is widely used to measure inter-
rater agreement (Hripcsak and Rothshild, 2005). 
The ideal automatic summarization algorithm 
should have as high agreement with human 
subjects as they have with each other.

We also use a baseline approach (BL) to 
estimate the advantage of using the proposed
lexical chaining algorithm (LCA). It extracts text
summaries in exactly the manner described in 
Section 4.1, with the exception of the lexical 
chaining stage. Thus, when weighting sentences, 
the frequencies of all WordNet mappings are taken 
into account without the implicit word sense 
disambiguation provided by lexical chains.

Humans BL LCA
S1 0.19 0.2029 newswire 

articles S2
0.32

0.20 0.24
S1 0.08 0.1311 science

articles S2
0.34

0.13 0.22

Table 2. Kappa agreement on 40 summaries

vs. human 
2,3 and 1 vs. BL vs. LCA

human 1 0,41 0,30 0,30
human 2 0,38 0,22 0,24
human 3 0,28 0,17 0,24

average 0,36 0,23 0,26

Table 3. Kappa agreement on 7 newswire articles

4.3 Results

Table 2 compares the agreement among the human 
annotators and their agreement with the baseline 
approach BL and the lexical chain algorithm LCA. 
The agreement between humans is low, which 
confirms that sentence extraction is a highly 
subjective task. The lexical chain approach LCA 
significantly outperforms the baseline BL, 
particularly on the science articles.

While the average agreement of the LCA with 
humans is still low, the picture changes when we 
look at the agreement on individual documents.
Human agreement varies a lot (stdev = 0.24), while 
results produced by LCA are more consistent
(stdev = 0.18). In fact, for over 50% of documents 
LCA has greater or the same agreement with one 
or both human annotators than they with each 
other. The overall superior performance of humans 
is due to exceptionally high agreement on a few 
documents, whereas on another couple of 
documents LCA failed to produce a consistent 
summary with both subjects. This finding is similar 
to the one mentioned by Silber and McCoy (2002). 

Table 3 shows the agreement values for 7
newswire articles that were summarized by three 
human annotators. Again, LCA clearly 
outperforms the baseline BL. Interestingly, both 
systems have a greater agreement with the first 
subject than the first and the third human subjects 
with each other. 

5 Lexical Chains for Keyphrase Indexing

Keyphrase indexing is the task of identifying the 
main topics in a document. The drawback of 
conventional indexing systems is that they analyze
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Professional Indexers
1 2 3 4 5 6 Avg

1 61 51 64 57 57 58
2 61 48 53 60 52 55
3 51 48 54 44 61 51
4 64 53 54 51 57 56
5 57 60 44 51 49 52
6 57 52 61 57 49 55

BL 42 39 37 39 39 35 39
LCA 43 42 40 40 39 40 41

Table 4. Topic consistency over 30 documents

document terms individually. Lexical chains enable
topical indexing, where first highly cohesive terms 
are organized into larger topics and then the main 
topics are selected. Properties of chain members 
help to identify terms that represent each 
keyphrases. To compute lexical chains and assign 
keyphrases this time we use a domain-specific 
thesaurus instead of WordNet.

5.1 Finding Keyphrases in Lexical Chains

The ranking of lexical chains is essential for 
determining the main topics of a document. Unlike 
in summarization, it should capture the specificity 
of the individual chains. Also, for some topics, e.g. 
proper nouns, the number of terms to express it can 
be limited; therefore we average frequencies over 
all chain members. Our measure of chain 
specificity combines TFIDFs and term length, 2

which boosts chains containing specific terms that 
are particularly frequent in a given document:

(4)
LC

tlengthtTFIDF
LCScore LCtLCt







)()(
)(

We assume that the top ranked weighted lexical 
chains represent the main topics in a document. To 
determine the keyphrases, for each lexical chain 
we need to choose a term that describes this chain 
in the best way, just as “seafood” is the best 
descriptor for the chain in Figure 1c. 

Each member of the chain t is scored as follows: 

(5) )()()()( tlengthtNDtTFIDFtScore 

where ND(t) is the node degree, or the number of 
edges connecting term t to other chain members. 
The top scored term is chosen as a keyphrase. 

                                                
2 Term length, measured in words, gives an indirect but 
simple measure of its specificity. E.g., “tropical rain 
forests” is more specific than “forests”.

Professional indexers tend to choose more than 
one term for a document’s most prominent topics. 
Thus, we extract the top two keyphrases from the 
top two lexical chains with |LC|  3. If the second 
keyphrase is a broader or a narrower term of the 
first one, this rule does not apply. 

5.2 Evaluation of the Extracted Keyphrases

This approach is evaluated on 30 documents 
indexed each by 6 professional indexers from the 
UN’s Food and Agriculture Organization. The 
keyphrases are driven from the agricultural 
thesaurus Agrovoc3 with around 40,000 terms and 
30,000 semantic relations between them.

The effectiveness of the lexical chains is shown 
in comparison to a baseline approach, which given 
a document simply defines keyphrases as Agrovoc 
terms with top TFIDF values. 

Indexing consistency is computed with the F-
Measure F, which can be expressed in terms of 
Table 1 (Section 4.1) as following:4

(6)
cba

a
F




2

2

The overlap between two keyphrase sets a is 
usually computed by exact matching of keyphrases. 
However, discrepancies between professional 
human indexers show that there are no “correct” 
keyphrases. Capturing main topics rather than 
exact term choices is more important. Lexical 
chains provide a way of measuring this so called 
topical consistency. Given a set of lexical chains 
extracted from a document, we first compute 
chains that are covered in its keyphrase set and 
then compute consistency in the usual manner.

5.3 Results

Table 4 shows topical consistency between each 
pair of professional human indexers, as well as 
between the indexers and the two automatic 
approaches, baseline BL and the lexical chain 
algorithm LCA, averaged over 30 documents.

The overall consistency between the human 
indexers is 55%. The baseline BL is 16 percentage 
points less consistent with the 6 indexers, while 

                                                
3 http://www.fao.org/agrovoc/
4 When vocabulary is large, the consistency is the same,
whether it is computed with the Kappa statistic or the F-
Measure (Hripcsak and Rothshild, 2005).
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LCA is 1 to 5 percentage points more consistent 
with each indexer than the baseline. 

6 Discussion

Professional human indexers first perform 
conceptual analysis of a document and then 
translate the discovered topics into keyphrases. We 
show how these two indexing steps are realized 
with lexical chain approach that first builds an
intermediate semantic representation of a 
document and then translates chains into 
keyphrases. Conceptual analysis with lexical 
chains in text summarization helps to identify
irrelevant word senses. 

The initial results show that lexical chains 
perform better than baseline approaches in both 
experiments. In automatic summarization, lexical 
chains produce summaries that in most cases have 
higher consistency with human annotators than 
they with each other, even using a simplified 
weighting technique. Integrating lexical chaining 
into existing keyphrase indexing systems is a 
promising step towards their improvement. 

The lexical chaining does not require any 
resources other than a controlled vocabulary. We 
have shown that it performs well with a general 
lexical database and with a domain-specific 
thesaurus. We use the Semantic Knowledge 
Organization Standard 5 which allows easy inter-
changeability of thesauri. Thus, this approach is
domain and language independent.

7 Conclusions

We have shown a new method for computing 
lexical chains based on graph clustering. While 
previous chaining algorithms did not analyze the 
lexical cohesion within each chain, we force our 
algorithm to produce highly cohesive lexical 
chains based on the minimum diameter of the chain 
graph. The required cohesion can be controlled by 
increasing the diameter value and adjusting 
parameters of the graph clustering algorithm.

Experiments on text summarization and key-
phrase indexing show that the lexical chains
approach produces good results. It combines
symbolic analysis with statistical features and 

                                                
5 http://www.w3.org/2004/02/skos/

outperforms a purely statistical baseline. The 
future work will be to further improve the lexical 
chaining technique and integrate it into a more 
complex topical indexing system.
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