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Abstract

Recent work by Nerbonne and Wiersma
(2006) has provided a foundation for mea-
suring syntactic differences between cor-
pora. It uses part-of-speech trigrams as an
approximation to syntactic structure, com-
paring the trigrams of two corpora for sta-
tistically significant differences.

This paper extends the method and its appli-
cation. It extends the method by using leaf-
path ancestors of Sampson (2000) instead
of trigrams, which capture internal syntactic
structure—every leaf in a parse tree records
the path back to the root.

The corpus used for testing is the Interna-
tional Corpus of English, Great Britain (Nel-
son et al., 2002), which contains syntacti-
cally annotated speech of Great Britain. The
speakers are grouped into geographical re-
gions based on place of birth. This is dif-
ferent in both nature and number than pre-
vious experiments, which found differences
between two groups of Norwegian L2 learn-
ers of English. We show that dialectal varia-
tion in eleven British regions from the ICE-
GB is detectable by our algorithm, using
both leaf-ancestor paths and trigrams.

1 Introduction

In the measurement of linguistic distance, older
work such as Séguy (1973) was able to measure dis-
tance in most areas of linguistics, such as phonology,
morphology, and syntax. The features used for com-
parison were hand-picked based on linguistic knowl-
edge of the area being surveyed. These features,

while probably lacking in completeness of coverage,
certainly allowed a rough comparison of distance in
all linguistic domains. In contrast, computational
methods have focused on a single area of language.
For example, a method for determining phonetic dis-
tance is given by Heeringa (2004). Heeringa and
others have also done related work on phonologi-
cal distance in Nerbonne and Heeringa (1997) and
Gooskens and Heeringa (2004). A measure of syn-
tactic distance is the obvious next step: Nerbonne
and Wiersma (2006) provide one such method. This
method approximates internal syntactic structure us-
ing vectors of part-of-speech trigrams. The trigram
types can then be compared for statistically signifi-
cant differences using a permutation test.

This study can be extended in a few ways. First,
the trigram approximation works well, but it does
not necessarily capture all the information of syntac-
tic structure such as long-distance movement. Sec-
ond, the experiments did not test data for geograph-
ical dialect variation, but compared two generations
of Norwegian L2 learners of English, with differ-
ences between ages of initial acquisition.

We address these areas by using the syntactically
annotated speech section of the International Cor-
pus of English, Great Britain (ICE-GB) (Nelson et
al., 2002), which provides a corpus with full syntac-
tic annotations, one that can be divided into groups
for comparison. The sentences of the corpus, be-
ing represented as parse trees rather than a vector
of POS tags, are converted into a vector of leaf-
ancestor paths, which were developed by Sampson
(2000) to aid in parser evaluation by providing a way
to compare gold-standard trees with parser output
trees.

In this way, each sentence produces its own vec-
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tor of leaf-ancestor paths. Fortunately, the permu-
tation test used by Nerbonne and Wiersma (2006) is
already designed to normalize the effects of differing
sentence length when combining POS trigrams into
a single vector per region. The only change needed
is the substitution of leaf-ancestor paths for trigrams.

The speakers in the ICE-GB are divided by place
of birth into geographical regions of England based
on the nine Government Office Regions, plus Scot-
land and Wales. The average region contains a lit-
tle over 4,000 sentences and 40,000 words. This
is less than the size of the Norwegian corpora, and
leaf-ancestor paths are more complex than trigrams,
meaning that the amount of data required for obtain-
ing significance should increase. Testing on smaller
corpora should quickly show whether corpus size
can be reduced without losing the ability to detect
differences.

Experimental results show that differences can be
detected among the larger regions: as should be ex-
pected with a method that measures statistical sig-
nificance, larger corpora allow easier detection of
significance. The limit seems to be around 250,000
words for leaf-ancestor paths, and 100,000 words for
POS trigrams, but more careful tests are needed to
verify this. Comparisons to judgments of dialectolo-
gists have not yet been made. The comparison is dif-
ficult because of the difference in methodology and
amount of detail in reporting. Dialectology tends to
collect data from a few informants at each location
and to provide a more complex account of relation-
ship than the like/unlike judgments provided by per-
mutation tests.

2 Methods

The methods used to implement the syntactic dif-
ference test come from two sources. The primary
source is the syntactic comparison of Nerbonne and
Wiersma (2006), which uses a permutation test, ex-
plained in Good (1995) and in particular for linguis-
tic purposes in Kessler (2001). Their permutation
test collects POS trigrams from a random subcorpus
of sentences sampled from the combined corpora.
The trigram frequencies are normalized to neutral-
ize the effects of sentence length, then compared to
the trigram frequencies of the complete corpora.

The principal difference between the work of Ner-

bonne and Wiersma (2006) and ours is the use of
leaf-ancestor paths. Leaf-ancestor paths were devel-
oped by Sampson (2000) for estimating parser per-
formance by providing a measure of similarity of
two trees, in particular a gold-standard tree and a
machine-parsed tree. This distance is not used for
our method, since for our purposes, it is enough that
leaf-ancestor paths represent syntactic information,
such as upper-level tree structure, more explicitly
than trigrams.

The permutation test used by Nerbonne and
Wiersma (2006) is independent of the type of item
whose frequency is measured, treating the items
as atomic symbols. Therefore, leaf-ancestor paths
should do just as well as trigrams as long as they
do not introduce any additional constraints on how
they are generated from the corpus. Fortunately, this
is not the case; Nerbonne and Wiersma (2006) gen-
erate N − 2 POS trigrams from each sentence of
length N ; we generate N leaf-ancestor paths from
each parsed sentence in the corpus. Normalization
is needed to account for the frequency differences
caused by sentence length variation; it is presented
below. Since the same number (minus two) of tri-
grams and leaf-ancestor paths are generated for each
sentence the same normalization can be used for
both methods.

2.1 Leaf-Ancestor Paths
Sampson’s leaf-ancestor paths represent syntactic
structure by aggregating nodes starting from each
leaf and proceeding up to the root—for our exper-
iment, the leaves are parts of speech. This maintains
constant input from the lexical items of the sentence,
while giving the parse tree some weight in the rep-
resentation.

For example, the parse tree
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creates the following leaf-ancestor paths:
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• S-NP-Det-The

• S-NP-N-dog

• S-VP-V-barks

There is one path for each word, and the root ap-
pears in all four. However, there can be ambigui-
ties if some node happens to have identical siblings.
Sampson gives the example of the two trees
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which would both produce

• A-B-p

• A-B-q

• A-B-r

• A-B-s

There is no way to tell from the paths which
leaves belong to which B node in the first tree, and
there is no way to tell the paths of the two trees apart
despite their different structure. To avoid this ambi-
guity, Sampson uses a bracketing system; brackets
are inserted at appropriate points to produce

• [A-B-p

• A-B]-q

• A-[B-r

• A]-B-s

and

• [A-B-p

• A-B-q

• A-B-r

• A]-B-s

Left and right brackets are inserted: at most one
in every path. A left bracket is inserted in a path
containing a leaf that is a leftmost sibling and a right
bracket is inserted in a path containing a leaf that is
a rightmost sibling. The bracket is inserted at the
highest node for which the leaf is leftmost or right-
most.

It is a good exercise to derive the bracketing of
the previous two trees in detail. In the first tree, with
two B siblings, the first path is A-B-p. Since p is a
leftmost child, a left bracket must be inserted, at the
root in this case. The resulting path is [A-B-p. The
next leaf, q, is rightmost, so a right bracket must be
inserted. The highest node for which it is rightmost
is B, because the rightmost leaf of A is s. The result-
ing path is A-B]-q. Contrast this with the path for
q in the second tree; here q is not rightmost, so no
bracket is inserted and the resulting path is A-B-q. r
is in almost the same position as q, but reversed: it is
the leftmost, and the right B is the highest node for
which it is the leftmost, producing A-[B-r. Finally,
since s is the rightmost leaf of the entire sentence,
the right bracket appears after A: A]-B-s.

At this point, the alert reader will have noticed
that both a left bracket and right bracket can be in-
serted for a leaf with no siblings since it is both left-
most and rightmost. That is, a path with two brack-
ets on the same node could be produced: A-[B]-c.
Because of this redundancy, single children are ex-
cluded by the bracket markup algorithm. There is
still no ambiguity between two single leaves and a
single node with two leaves because only the second
case will receive brackets.

2.2 Permutation Significance Test
With the paths of each sentence generated from the
corpus, then sorted by type into vectors, we now try
to determine whether the paths of one region occur
in significantly different numbers from the paths of
another region. To do this, we calculate some mea-
sure to characterize the difference between two vec-
tors as a single number. Kessler (2001) creates a
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simple measure called the RECURRENCE metric (R
hereafter), which is simply the sum of absolute dif-
ferences of all path token counts cai from the first
corpus A and cbi from the second corpus B.

R = Σi|cai − c̄i| where c̄i =
cai + cbi

2

However, to find out if the value of R is signifi-
cant, we must use a permutation test with a Monte
Carlo technique described by Good (1995), fol-
lowing closely the same usage by Nerbonne and
Wiersma (2006). The intuition behind the technique
is to compare the R of the two corpora with the R
of two random subsets of the combined corpora. If
the random subsets’ Rs are greater than the R of the
two actual corpora more than p percent of the time,
then we can reject the null hypothesis that the two
were are actually drawn from the same corpus: that
is, we can assume that the two corpora are different.

However, before the R values can be compared,
the path counts in the random subsets must be nor-
malized since not all paths will occur in every sub-
set, and average sentence length will differ, causing
relative path frequency to vary. There are two nor-
malizations that must occur: normalization with re-
spect to sentence length, and normalization with re-
spect to other paths within a subset.

The first stage of normalization normalizes the
counts for each path within the pair of vectors a
and b. The purpose is to neutralize the difference
in sentence length, in which longer sentences with
more words cause paths to be relatively less fre-
quent. Each count is converted to a frequency f

f =
c

N

where c is either cai or cbi from above and N is the
length of the containing vector a or b. This produces
two frequencies, fai and fbi.Then the frequency is
scaled back up to a redistributed count by the equa-
tion

∀j ∈ a, b : c′
ji =

fji(cai + cbi)
fai + fbi

This will redistribute the total of a pair from a and b
based on their relative frequencies. In other words,
the total of each path type cai + cbi will remain the
same, but the values of cai and cbi will be balanced
by their frequency within their respective vectors.

For example, assume that the two corpora have 10
sentences each, with a corpus a with only 40 words
and another, b, with 100 words. This results in Na =
40 and Nb = 100. Assume also that there is a path
i that occurs in both: cai = 8 in a and cbi = 10
in b. This means that the relative frequencies are
fai = 8/40 = 0.2 and fbi = 10/100 = 0.1. The
first normalization will redistribute the total count
(18) according to relative size of the frequencies. So

c′
ai =

0.2(18)
0.2 + 0.1

= 3.6/0.3 = 12

and

c′
bi =

0.1(18)
0.2 + 0.1

= 1.8/0.3 = 6

Now that 8 has been scaled to 12 and 10 to 6, the
effect of sentence length has been neutralized. This
reflects the intuition that something that occurs 8 of
40 times is more important than something that oc-
curs 10 of 100 times.

The second normalization normalizes all values in
both permutations with respect to each other. This
is simple: find the average number of times each
path appears, then divide each scaled count by it.
This produces numbers whose average is 1.0 and
whose values are multiples of the amount that they
are greater than the average. The average path count
is N/2n, where N is the number of path tokens in
both the permutations and n is the number of path
types. Division by two is necessary since we are
multiplying counts from a single permutation by to-
ken counts from both permutations. Each type entry
in the vector now becomes

∀j ∈ a, b : sji =
2nc′

ji

N

Starting from the previous example, this second
normalization first finds the average. Assuming 5
unique paths (types) for a and 30 for b gives

n = 5 + 30 = 35

and
N = Na + Nb = 40 + 100 = 140

Therefore, the average path type has 140/2(35) = 2
tokens in a and b respectively. Dividing c′

ai and c′
bi

by this average gives sai = 6 and sbi = 3. In other
words, sai has 6 times more tokens than the average
path type.
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Region sentences words
East England 855 10471
East Midlands 1944 16924
London 24836 244341
Northwest England 3219 27070
Northeast England 1012 10199
Scotland 2886 27198
Southeast England 11090 88915
Southwest England 939 7107
West Midlands 960 12670
Wales 2338 27911
Yorkshire 1427 19092

Table 1: Subcorpus size

3 Experiment and Results

The experiment was run on the syntactically anno-
tated part of the International Corpus of English,
Great Britain corpus (ICE-GB). The syntactic an-
notation labels terminals with one of twenty parts
of speech and internal nodes with a category and a
function marker. Therefore, the leaf-ancestor paths
each started at the root of the sentence and ended
with a part of speech. For comparison to the exper-
iment conducted by Nerbonne and Wiersma (2006),
the experiment was also run with POS trigrams. Fi-
nally, a control experiment was conducted by com-
paring two permutations from the same corpus and
ensuring that they were not significantly different.

ICE-GB reports the place of birth of each speaker,
which is the best available approximation to which
dialect a speaker uses. As a simple, objective parti-
tioning, the speakers were divided into 11 geograph-
ical regions based on the 9 Government Office Re-
gions of England with Wales and Scotland added as
single regions. Some speakers had to be thrown out
at this point because they lacked brithplace informa-
tion or were born outside the UK. Each region varied
in size; however, the average number of sentences
per corpus was 4682, with an average of 44,726
words per corpus (see table 1). Thus, the average
sentence length was 9.55 words. The average corpus
was smaller than the Norwegian L2 English corpora
of Nerbonne and Wiersma (2006), which had two
groups, one with 221,000 words and the other with
84,000.

Significant differences (at p < 0.05) were found

Region Significantly different (p < 0.05)
London East Midlands, NW England

SE England, Scotland
SE England Scotland

Table 2: Significant differences, leaf-ancestor paths

Region Significantly different (p < 0.05)
London East Midlands, NW England,

NE England, SE England,
Scotland, Wales

SE England London, East Midlands,
NW England, Scotland

Scotland London, SE England, Yorkshire

Table 3: Significant differences, POS trigrams

when comparing the largest regions, but no signifi-
cant differences were found when comparing small
regions to other small regions. The significant differ-
ences found are given in table 2 and 3. It seems that
summed corpus size must reach a certain threshold
before differences can be observed reliably: about
250,000 words for leaf-ancestor paths and 100,000
for trigrams. There are exceptions in both direc-
tions; the total size of London compared to Wales
is larger than the size of London compared to the
East Midlands, but the former is not statistically dif-
ferent. On the other hand, the total size of Southeast
England compared to Scotland is only half of the
other significantly different comparisons; this dif-
ference may be a result of more extreme syntactic
differences than the other areas. Finally, it is inter-
esting to note that the summed Norwegian corpus
size is around 305,000 words, which is about three
times the size needed for significance as estimated
from the ICE-GB data.

4 Discussion

Our work extends that of Nerbonne and Wiersma
(2006) in a number of ways. We have shown that
an alternate method of representing syntax still al-
lows the permutation test to find significant differ-
ences between corpora. In addition, we have shown
differences between corpora divided by geographi-
cal area rather than language proficiency, with many
more corpora than before. Finally, we have shown
that the size of the corpus can be reduced somewhat
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and still obtain significant results.
Furthermore, we also have shown that both leaf-

ancestor paths and POS trigrams give similar results,
although the more complex paths require more data.

However, there are a number of directions that this
experiment should be extended. A comparison that
divides the speakers into traditional British dialect
areas is needed to see if the same differences can be
detected. This is very likely, because corpus divi-
sions that better reflect reality have a better chance
of achieving a significant difference.

In fact, even though leaf-ancestor paths should
provide finer distinctions than trigrams and thus re-
quire more data for detectable significance, the re-
gional corpora presented here were smaller than
the Norwegian speakers’ corpora in Nerbonne and
Wiersma (2006) by up to a factor of 10. This raises
the question of a lower limit on corpus size. Our ex-
periment suggests that the two corpora must have at
least 250,000 words, although we suspect that better
divisions will allow smaller corpus sizes.

While we are reducing corpus size, we might as
well compare the increasing numbers of smaller and
smaller corpora in an advantageous order. It should
be possible to cluster corpora by the point at which
they fail to achieve a significant difference when
split from a larger corpus. In this way, regions
could be grouped by their detectable boundaries, not
a priori distinctions based on geography or existing
knowledge of dialect boundaries.

Of course this indirect method would not be
needed if one had a direct method for clustering
speakers, by distance or other measure. Develop-
ment of such a method is worthwhile research for
the future.
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