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Preface

On behalf of the Organizing Committee, we are pleased to present the proceedings of the Student
Research Workshop held at the 45th Annual Meeting of the Association for Computational Linguistics
(ACL) in Prague, Czech Republic, June 25–27, 2007. The Student Research Workshop is an established
tradition at the Annual Meetings of the Association for Computational Linguistics and builds on the
success of no less than 16 previous student sessions at ACL meetings.

Students in Computational Linguistics, Natural Language Processing and related fields were offered
the possibility to present their work in a setting embedded in the main conference. The workshop plays
an integral role in ACL’s efforts to build and maintain a research community by investing in young
researchers that will shape the field in the years to come. Theworkshop aimed at providing feedback
from senior to beginner researchers. In the call for papers,we explicitly aimed at students in an early
stage of their Ph.D. work. We felt that this group could gain the most benefit from this event, as the
experts’ feedback can still influence their research directions.

The Program Committee was compiled such that about half of the reviewers were students or young
researchers, and the other half consisted of senior scientists. This mixture ensures that the scientific
quality of reviews is high, while student-specific issues are well understood by the committee members.
We are indebted to our 52 reviewers for their elaborate, thoughtful and high quality reviews, which will
also be of great help to those students whose work could not beaccepted for presentation.

We received 52 submissions from all over the world, of which 16 were accepted for presentation: 9 for
oral presentation and 7 for poster presentation. The presentation format was assigned based on thoughts
about how the work could be presented best, and does not indicate a quality difference among papers,
which are all fixed to the same length of 6 pages.

This year’s workshop features contributions from a wide range of topics. Various issues on grammar are
dealt with in five papers: Richard Johansson uses logistic online learning for incremental dependency
parsing, Nathan C. Sanders measures syntactic differencesin British English, Elias Ponvert induces
combinatory categorial grammars with genetic algorithms,Bart Cramer investigates limitations of
current grammar induction techniques, and Aleksander Buczyński describes an implementation that
combines partial parsing and morphosyntactic disambiguation.

Another five contributions can be subsumed under the scope ofsemantics: Radosław Moszczyński
provides a classification of multi-word expressions especially for highly inflected languages, Paul
Nulty classifies noun phrases along semantic properties using web counts and machine learning,
Diarmuid Ó Séaghdha annotates and learns compound noun semantics, Kata Gábor and Enikő Héja
cluster Hungarian verbs by complementation patterns, and Silke Scheible lays out foundations of a
computational treatment of superlatives.

Research on dialects and different languages is carried outby three papers: Andrea Mulloni performs
cognate prediction in a bilingual setting, Yves Scherrer presents adaptive measures to graphemic
similarity for inducing dialect lexicons, and Jelena Prokić identifies linguistic structure in a quantitative
analysis of Bulgarian dialects. For opinionated Chinese Information Retrieval, Taras Zagibalov
examines the utility of various features. Structuring texts is the topic of two papers: Olena Medelyan

iii



uses graph clustering to compute lexical chains, and Martina Naughton exploits structure for event
discovery using the MDI algorithm.

Following the workshop tradition, a panel of senior researchers will take part in the presentation of
papers, providing in-depth comments on the work of each author either immediately after the oral
presentation or in front of the poster. We would like to thankthe panelists in advance for fulfilling such
an important role.

Many people contributed to the success of this year’s Student Research Workshop. Apart from Program
Committee members and panelists, we would like to thank the ACL conference organizers for involving
us in their planning, the webmasters for swiftly handling update requests for the SRW page, the
publication chair for providing us the facilities to compile this volume, and, most of all, the students
for their hard work in preparing their submissions. Finally, we are grateful to the National Science
Foundation for generously sponsoring our event: All student presenters received reimbursement of
registration and accommodation as well as almost full coverage of travel costs.

The ACL 2007 Student Research Workshop Co-Chairs
Chris Biemann, Violeta Seretan, Ellen Riloff
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Joakim Nivre, Växjö University and Uppsala University, Sweden
Constantin Orasan, University of Wolverhampton, UK
Rainer Osswald, FernUniversität in Hagen, Germany
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Measuring Syntactic Difference in British English

Nathan C. Sanders
Department of Linguistics

Indiana University
Bloomington, IN 47405, USA
ncsander@indiana.edu

Abstract

Recent work by Nerbonne and Wiersma
(2006) has provided a foundation for mea-
suring syntactic differences between cor-
pora. It uses part-of-speech trigrams as an
approximation to syntactic structure, com-
paring the trigrams of two corpora for sta-
tistically significant differences.

This paper extends the method and its appli-
cation. It extends the method by using leaf-
path ancestors of Sampson (2000) instead
of trigrams, which capture internal syntactic
structure—every leaf in a parse tree records
the path back to the root.

The corpus used for testing is the Interna-
tional Corpus of English, Great Britain (Nel-
son et al., 2002), which contains syntacti-
cally annotated speech of Great Britain. The
speakers are grouped into geographical re-
gions based on place of birth. This is dif-
ferent in both nature and number than pre-
vious experiments, which found differences
between two groups of Norwegian L2 learn-
ers of English. We show that dialectal varia-
tion in eleven British regions from the ICE-
GB is detectable by our algorithm, using
both leaf-ancestor paths and trigrams.

1 Introduction

In the measurement of linguistic distance, older
work such as Séguy (1973) was able to measure dis-
tance in most areas of linguistics, such as phonology,
morphology, and syntax. The features used for com-
parison were hand-picked based on linguistic knowl-
edge of the area being surveyed. These features,

while probably lacking in completeness of coverage,
certainly allowed a rough comparison of distance in
all linguistic domains. In contrast, computational
methods have focused on a single area of language.
For example, a method for determining phonetic dis-
tance is given by Heeringa (2004). Heeringa and
others have also done related work on phonologi-
cal distance in Nerbonne and Heeringa (1997) and
Gooskens and Heeringa (2004). A measure of syn-
tactic distance is the obvious next step: Nerbonne
and Wiersma (2006) provide one such method. This
method approximates internal syntactic structure us-
ing vectors of part-of-speech trigrams. The trigram
types can then be compared for statistically signifi-
cant differences using a permutation test.

This study can be extended in a few ways. First,
the trigram approximation works well, but it does
not necessarily capture all the information of syntac-
tic structure such as long-distance movement. Sec-
ond, the experiments did not test data for geograph-
ical dialect variation, but compared two generations
of Norwegian L2 learners of English, with differ-
ences between ages of initial acquisition.

We address these areas by using the syntactically
annotated speech section of the International Cor-
pus of English, Great Britain (ICE-GB) (Nelson et
al., 2002), which provides a corpus with full syntac-
tic annotations, one that can be divided into groups
for comparison. The sentences of the corpus, be-
ing represented as parse trees rather than a vector
of POS tags, are converted into a vector of leaf-
ancestor paths, which were developed by Sampson
(2000) to aid in parser evaluation by providing a way
to compare gold-standard trees with parser output
trees.

In this way, each sentence produces its own vec-

1



tor of leaf-ancestor paths. Fortunately, the permu-
tation test used by Nerbonne and Wiersma (2006) is
already designed to normalize the effects of differing
sentence length when combining POS trigrams into
a single vector per region. The only change needed
is the substitution of leaf-ancestor paths for trigrams.

The speakers in the ICE-GB are divided by place
of birth into geographical regions of England based
on the nine Government Office Regions, plus Scot-
land and Wales. The average region contains a lit-
tle over 4,000 sentences and 40,000 words. This
is less than the size of the Norwegian corpora, and
leaf-ancestor paths are more complex than trigrams,
meaning that the amount of data required for obtain-
ing significance should increase. Testing on smaller
corpora should quickly show whether corpus size
can be reduced without losing the ability to detect
differences.

Experimental results show that differences can be
detected among the larger regions: as should be ex-
pected with a method that measures statistical sig-
nificance, larger corpora allow easier detection of
significance. The limit seems to be around 250,000
words for leaf-ancestor paths, and 100,000 words for
POS trigrams, but more careful tests are needed to
verify this. Comparisons to judgments of dialectolo-
gists have not yet been made. The comparison is dif-
ficult because of the difference in methodology and
amount of detail in reporting. Dialectology tends to
collect data from a few informants at each location
and to provide a more complex account of relation-
ship than the like/unlike judgments provided by per-
mutation tests.

2 Methods

The methods used to implement the syntactic dif-
ference test come from two sources. The primary
source is the syntactic comparison of Nerbonne and
Wiersma (2006), which uses a permutation test, ex-
plained in Good (1995) and in particular for linguis-
tic purposes in Kessler (2001). Their permutation
test collects POS trigrams from a random subcorpus
of sentences sampled from the combined corpora.
The trigram frequencies are normalized to neutral-
ize the effects of sentence length, then compared to
the trigram frequencies of the complete corpora.

The principal difference between the work of Ner-

bonne and Wiersma (2006) and ours is the use of
leaf-ancestor paths. Leaf-ancestor paths were devel-
oped by Sampson (2000) for estimating parser per-
formance by providing a measure of similarity of
two trees, in particular a gold-standard tree and a
machine-parsed tree. This distance is not used for
our method, since for our purposes, it is enough that
leaf-ancestor paths represent syntactic information,
such as upper-level tree structure, more explicitly
than trigrams.

The permutation test used by Nerbonne and
Wiersma (2006) is independent of the type of item
whose frequency is measured, treating the items
as atomic symbols. Therefore, leaf-ancestor paths
should do just as well as trigrams as long as they
do not introduce any additional constraints on how
they are generated from the corpus. Fortunately, this
is not the case; Nerbonne and Wiersma (2006) gen-
erate N − 2 POS trigrams from each sentence of
length N ; we generate N leaf-ancestor paths from
each parsed sentence in the corpus. Normalization
is needed to account for the frequency differences
caused by sentence length variation; it is presented
below. Since the same number (minus two) of tri-
grams and leaf-ancestor paths are generated for each
sentence the same normalization can be used for
both methods.

2.1 Leaf-Ancestor Paths
Sampson’s leaf-ancestor paths represent syntactic
structure by aggregating nodes starting from each
leaf and proceeding up to the root—for our exper-
iment, the leaves are parts of speech. This maintains
constant input from the lexical items of the sentence,
while giving the parse tree some weight in the rep-
resentation.

For example, the parse tree

S

||
||

||
||

DD
DD

DD
DD

D

NP

yy
yy

yy
yy

VP

Det N V

the dog barks

creates the following leaf-ancestor paths:
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• S-NP-Det-The

• S-NP-N-dog

• S-VP-V-barks

There is one path for each word, and the root ap-
pears in all four. However, there can be ambigui-
ties if some node happens to have identical siblings.
Sampson gives the example of the two trees

A

��
��

��
�

??
??

??
?

B

��
��

��
�

B

>>
>>

>>
>>

p q r s

and

A

B

pppppppppppppp

��
��

��
�

>>
>>

>>
>>

NNNNNNNNNNNNNN

p q r s

which would both produce

• A-B-p

• A-B-q

• A-B-r

• A-B-s

There is no way to tell from the paths which
leaves belong to which B node in the first tree, and
there is no way to tell the paths of the two trees apart
despite their different structure. To avoid this ambi-
guity, Sampson uses a bracketing system; brackets
are inserted at appropriate points to produce

• [A-B-p

• A-B]-q

• A-[B-r

• A]-B-s

and

• [A-B-p

• A-B-q

• A-B-r

• A]-B-s

Left and right brackets are inserted: at most one
in every path. A left bracket is inserted in a path
containing a leaf that is a leftmost sibling and a right
bracket is inserted in a path containing a leaf that is
a rightmost sibling. The bracket is inserted at the
highest node for which the leaf is leftmost or right-
most.

It is a good exercise to derive the bracketing of
the previous two trees in detail. In the first tree, with
two B siblings, the first path is A-B-p. Since p is a
leftmost child, a left bracket must be inserted, at the
root in this case. The resulting path is [A-B-p. The
next leaf, q, is rightmost, so a right bracket must be
inserted. The highest node for which it is rightmost
is B, because the rightmost leaf of A is s. The result-
ing path is A-B]-q. Contrast this with the path for
q in the second tree; here q is not rightmost, so no
bracket is inserted and the resulting path is A-B-q. r
is in almost the same position as q, but reversed: it is
the leftmost, and the right B is the highest node for
which it is the leftmost, producing A-[B-r. Finally,
since s is the rightmost leaf of the entire sentence,
the right bracket appears after A: A]-B-s.

At this point, the alert reader will have noticed
that both a left bracket and right bracket can be in-
serted for a leaf with no siblings since it is both left-
most and rightmost. That is, a path with two brack-
ets on the same node could be produced: A-[B]-c.
Because of this redundancy, single children are ex-
cluded by the bracket markup algorithm. There is
still no ambiguity between two single leaves and a
single node with two leaves because only the second
case will receive brackets.

2.2 Permutation Significance Test
With the paths of each sentence generated from the
corpus, then sorted by type into vectors, we now try
to determine whether the paths of one region occur
in significantly different numbers from the paths of
another region. To do this, we calculate some mea-
sure to characterize the difference between two vec-
tors as a single number. Kessler (2001) creates a
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simple measure called the RECURRENCE metric (R
hereafter), which is simply the sum of absolute dif-
ferences of all path token counts cai from the first
corpus A and cbi from the second corpus B.

R = Σi|cai − c̄i| where c̄i =
cai + cbi

2

However, to find out if the value of R is signifi-
cant, we must use a permutation test with a Monte
Carlo technique described by Good (1995), fol-
lowing closely the same usage by Nerbonne and
Wiersma (2006). The intuition behind the technique
is to compare the R of the two corpora with the R
of two random subsets of the combined corpora. If
the random subsets’ Rs are greater than the R of the
two actual corpora more than p percent of the time,
then we can reject the null hypothesis that the two
were are actually drawn from the same corpus: that
is, we can assume that the two corpora are different.

However, before the R values can be compared,
the path counts in the random subsets must be nor-
malized since not all paths will occur in every sub-
set, and average sentence length will differ, causing
relative path frequency to vary. There are two nor-
malizations that must occur: normalization with re-
spect to sentence length, and normalization with re-
spect to other paths within a subset.

The first stage of normalization normalizes the
counts for each path within the pair of vectors a
and b. The purpose is to neutralize the difference
in sentence length, in which longer sentences with
more words cause paths to be relatively less fre-
quent. Each count is converted to a frequency f

f =
c

N

where c is either cai or cbi from above and N is the
length of the containing vector a or b. This produces
two frequencies, fai and fbi.Then the frequency is
scaled back up to a redistributed count by the equa-
tion

∀j ∈ a, b : c′
ji =

fji(cai + cbi)
fai + fbi

This will redistribute the total of a pair from a and b
based on their relative frequencies. In other words,
the total of each path type cai + cbi will remain the
same, but the values of cai and cbi will be balanced
by their frequency within their respective vectors.

For example, assume that the two corpora have 10
sentences each, with a corpus a with only 40 words
and another, b, with 100 words. This results in Na =
40 and Nb = 100. Assume also that there is a path
i that occurs in both: cai = 8 in a and cbi = 10
in b. This means that the relative frequencies are
fai = 8/40 = 0.2 and fbi = 10/100 = 0.1. The
first normalization will redistribute the total count
(18) according to relative size of the frequencies. So

c′
ai =

0.2(18)
0.2 + 0.1

= 3.6/0.3 = 12

and

c′
bi =

0.1(18)
0.2 + 0.1

= 1.8/0.3 = 6

Now that 8 has been scaled to 12 and 10 to 6, the
effect of sentence length has been neutralized. This
reflects the intuition that something that occurs 8 of
40 times is more important than something that oc-
curs 10 of 100 times.

The second normalization normalizes all values in
both permutations with respect to each other. This
is simple: find the average number of times each
path appears, then divide each scaled count by it.
This produces numbers whose average is 1.0 and
whose values are multiples of the amount that they
are greater than the average. The average path count
is N/2n, where N is the number of path tokens in
both the permutations and n is the number of path
types. Division by two is necessary since we are
multiplying counts from a single permutation by to-
ken counts from both permutations. Each type entry
in the vector now becomes

∀j ∈ a, b : sji =
2nc′

ji

N

Starting from the previous example, this second
normalization first finds the average. Assuming 5
unique paths (types) for a and 30 for b gives

n = 5 + 30 = 35

and
N = Na + Nb = 40 + 100 = 140

Therefore, the average path type has 140/2(35) = 2
tokens in a and b respectively. Dividing c′

ai and c′
bi

by this average gives sai = 6 and sbi = 3. In other
words, sai has 6 times more tokens than the average
path type.
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Region sentences words
East England 855 10471
East Midlands 1944 16924
London 24836 244341
Northwest England 3219 27070
Northeast England 1012 10199
Scotland 2886 27198
Southeast England 11090 88915
Southwest England 939 7107
West Midlands 960 12670
Wales 2338 27911
Yorkshire 1427 19092

Table 1: Subcorpus size

3 Experiment and Results

The experiment was run on the syntactically anno-
tated part of the International Corpus of English,
Great Britain corpus (ICE-GB). The syntactic an-
notation labels terminals with one of twenty parts
of speech and internal nodes with a category and a
function marker. Therefore, the leaf-ancestor paths
each started at the root of the sentence and ended
with a part of speech. For comparison to the exper-
iment conducted by Nerbonne and Wiersma (2006),
the experiment was also run with POS trigrams. Fi-
nally, a control experiment was conducted by com-
paring two permutations from the same corpus and
ensuring that they were not significantly different.

ICE-GB reports the place of birth of each speaker,
which is the best available approximation to which
dialect a speaker uses. As a simple, objective parti-
tioning, the speakers were divided into 11 geograph-
ical regions based on the 9 Government Office Re-
gions of England with Wales and Scotland added as
single regions. Some speakers had to be thrown out
at this point because they lacked brithplace informa-
tion or were born outside the UK. Each region varied
in size; however, the average number of sentences
per corpus was 4682, with an average of 44,726
words per corpus (see table 1). Thus, the average
sentence length was 9.55 words. The average corpus
was smaller than the Norwegian L2 English corpora
of Nerbonne and Wiersma (2006), which had two
groups, one with 221,000 words and the other with
84,000.

Significant differences (at p < 0.05) were found

Region Significantly different (p < 0.05)
London East Midlands, NW England

SE England, Scotland
SE England Scotland

Table 2: Significant differences, leaf-ancestor paths

Region Significantly different (p < 0.05)
London East Midlands, NW England,

NE England, SE England,
Scotland, Wales

SE England London, East Midlands,
NW England, Scotland

Scotland London, SE England, Yorkshire

Table 3: Significant differences, POS trigrams

when comparing the largest regions, but no signifi-
cant differences were found when comparing small
regions to other small regions. The significant differ-
ences found are given in table 2 and 3. It seems that
summed corpus size must reach a certain threshold
before differences can be observed reliably: about
250,000 words for leaf-ancestor paths and 100,000
for trigrams. There are exceptions in both direc-
tions; the total size of London compared to Wales
is larger than the size of London compared to the
East Midlands, but the former is not statistically dif-
ferent. On the other hand, the total size of Southeast
England compared to Scotland is only half of the
other significantly different comparisons; this dif-
ference may be a result of more extreme syntactic
differences than the other areas. Finally, it is inter-
esting to note that the summed Norwegian corpus
size is around 305,000 words, which is about three
times the size needed for significance as estimated
from the ICE-GB data.

4 Discussion

Our work extends that of Nerbonne and Wiersma
(2006) in a number of ways. We have shown that
an alternate method of representing syntax still al-
lows the permutation test to find significant differ-
ences between corpora. In addition, we have shown
differences between corpora divided by geographi-
cal area rather than language proficiency, with many
more corpora than before. Finally, we have shown
that the size of the corpus can be reduced somewhat
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and still obtain significant results.
Furthermore, we also have shown that both leaf-

ancestor paths and POS trigrams give similar results,
although the more complex paths require more data.

However, there are a number of directions that this
experiment should be extended. A comparison that
divides the speakers into traditional British dialect
areas is needed to see if the same differences can be
detected. This is very likely, because corpus divi-
sions that better reflect reality have a better chance
of achieving a significant difference.

In fact, even though leaf-ancestor paths should
provide finer distinctions than trigrams and thus re-
quire more data for detectable significance, the re-
gional corpora presented here were smaller than
the Norwegian speakers’ corpora in Nerbonne and
Wiersma (2006) by up to a factor of 10. This raises
the question of a lower limit on corpus size. Our ex-
periment suggests that the two corpora must have at
least 250,000 words, although we suspect that better
divisions will allow smaller corpus sizes.

While we are reducing corpus size, we might as
well compare the increasing numbers of smaller and
smaller corpora in an advantageous order. It should
be possible to cluster corpora by the point at which
they fail to achieve a significant difference when
split from a larger corpus. In this way, regions
could be grouped by their detectable boundaries, not
a priori distinctions based on geography or existing
knowledge of dialect boundaries.

Of course this indirect method would not be
needed if one had a direct method for clustering
speakers, by distance or other measure. Develop-
ment of such a method is worthwhile research for
the future.
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Abstract

This paper proposes a novel approach to the
induction of Combinatory Categorial Gram-
mars (CCGs) by their potential affinity with
the Genetic Algorithms (GAs). Specifically,
CCGs utilize a rich yet compact notation for
lexical categories, which combine with rela-
tively few grammatical rules, presumed uni-
versal. Thus, the search for a CCG consists
in large part in a search for the appropri-
ate categories for the data-set’s lexical items.
We present and evaluates a system utilizing
a simple GA to successively search and im-
prove on such assignments. The fitness of
categorial-assignments is approximated by
the coverage of the resulting grammar on the
data-set itself, and candidate solutions are
updated via the standard GA techniques of
reproduction, crossover and mutation.

1 Introduction

The discovery of grammars from unannotated ma-
terial is an important problem which has received
much recent research. We propose a novel approach
to this effort by leveraging the theoretical insights of
Combinatory Categorial Grammars (CCG) (Steed-
man, 2000), and their potential affinity with Ge-
netic Algorithms (GA) (Goldberg, 1989). Specifi-
cally, CCGs utilize an extremely small set of gram-
matical rules, presumed near-universal, which op-
erate over a rich set of grammatical categories,
which are themselves simple and straightforward
data structures. A search for a CCG grammar for
a language can be construed as a search for ac-
curate category assignments to the words of that

language, albeit over a large landscape of poten-
tial solutions. GAs are biologically-inspired general
purpose search/optimization methods that have suc-
ceeded in these kinds of environments: wherein so-
lutions are straightforwardly coded, yet nevertheless
the solution space is complex and difficult.

We evaluate a system that uses a GA to suc-
cessively refine a population of categorial lexicons
given a collection of unannotated training material.

This is an important problem for several reasons.
First of all, the development of annotated training
material is expensive and difficult, and so schemes
to discover linguistic patterns from unannotated text
may help cut down the cost of corpora development.
Also, this project is closely related to the problem of
resolving lexical gaps in parsing, which is a dogged
problem for statistical parsing systems in CCG, even
trained in a supervised manner. Carrying over tech-
niques from this project to that could help solve a
major problem in CCG parsing technology.

Statistical parsing with CCGs is an active area
of research. The development of CCGbank (Hock-
enmaier and Steedman, 2005) based on the Penn
Treebank has allowed for the development of wide-
coverage statistical parsers. In particular, Hock-
enmaier and Steedman (2001) report a generative
model for CCG parsing roughly akin to the Collins
parser (Collins, 1997) specific to CCG. Whereas
Hockenmaier’s parser is trained on (normal-form)
CCG derivations, Clark and Curran (2003) present
a CCG parser trained on the dependency structures
within parsed sentences, as well as the possible
derivations for them, using a log-linear (Maximum-
Entropy) model. This is one of the most accurate
parsers for producing deep dependencies currently
available. Both systems, however, suffer from gaps
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in lexical coverage.
The system proposed here was evaluated against

a small corpus of unannotated English with the goal
of inducing a categorial lexicon for the fragment.
The system is not ultimately successful and fails to
achieve the baseline category assignment accuracy,
however it does suggest directions for improvement.

2 Background

2.1 Genetic Algorithms

The basic insight of a GA is that, given a problem
domain for which solutions can be straightforwardly
encoded as chromosomes, and for which candidate
solutions can be evaluated using a faithful fitness
function, then the biologically inspired operations of
reproduction, crossover and mutation can in certain
cases be applied to multisets or populations of can-
didate solutions toward the discovery of true or ap-
proximate solutions.

Among the applications of GA to computational
linguistics, (Smith and Witten, 1995) and (Korkmaz
and Üçoluk, 2001) each present GAs for the induc-
tion of phrase structure grammars, applied success-
fully over small data-sets. Similarly, (Losee, 2000)
presents a system that uses a GA to learn part-of-
speech tagging and syntax rules from a collection of
documents. Other proposals related specifically to
the acquisition of categorial grammars are cited in
§2.3.

2.2 Combinatory Categorial Grammar

CCG is a mildly context sensitive grammatical for-
malism. The principal design features of CCG is that
it posits a small set of grammatical rules that oper-
ate over rich grammatical categories. The categories
are, in the simplest case, formed by the atomic cate-
gories s (for sentence), np (noun phrase), n (com-
mon noun), etc., closed under the slash operators
/, \. There is not a substantive distinction between
lexical and phrasal categories. The intuitive inter-
pretation of non-atomic categories is as follows: a
word for phrase of type A/B is looking for an item
of type B on the right, to form an item of type A.
Likewise, an item of type A\B is looking for an item
of type B on the left. type A. For example, in the
derivation in Figure 1, “scores” combines with the
np “another goal” to form the verb phrase “scores

Ronaldinho

np

scores

(s\np)/np

another

np/n

goal

n
>

np
>

s\np
<

s

Figure 1: Example CCG derivation

Application
A/B B ⇒> A B A\B ⇒< A

Composition
A/B B/C ⇒>B A/C B\C A\B ⇒<B A\C

Crossed-Composition
A/B B\C ⇒>B× A\C B/C A\B ⇒<B× A/C

Figure 2: CCG Rules

another goal”. This, in turn, combines with the np
“Ronaldinho” to form a sentence.

The example illustrates the rule of Application,
denoted with < and > in derivations. The schemata
for this rule, along with the Composition rule (B)
and the Crossed-Composition rule (B×), are given in
Figure 2. The rules of CCG are taken as universals,
thus the acquisition of a CCG grammar can be seen
as the acquisition of a categorial lexicon.

2.3 Related Work
In addition to the supervised grammar systems out-
lined in §1, the following proposals have been put
forward toward the induction of categorial gram-
mars.

Watkinson and Mandahar (2000) report a Catego-
rial Grammar induction system related to that pro-
posed here. They generate a Categorial Grammar
using a fixed and limited set of categories and, uti-
lizing an unannotated corpus, successively refine the
lexicon by testing it against the corpus sentences one
at a time. Using a constructed corpus, their strategy
worked extremely well: 100% accuracy on lexical
category selection as well as 100% parsing accuracy
with the resulting statistical CG parser. With natu-
rally occurring text, however, their system does not
perform as well: approximately 77% lexical accu-
racy and 37% parsing accuracy.

One fundamental difference between the strategy
proposed here and that of Watkinson and Manda-
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har is that we propose to successively generate and
evaluate populations of candidate solutions, rather
than refining a single solution. Also, while Watkin-
son and Mandahar use logical methods to construct
a probabilistic parser, the present system uses ap-
proximate methods and yet derives symbolic parsing
systems. Finally, Watkinson and Mandahar utilize
an extremely small set of known categories, smaller
than the set used here.

Clark (1996) outlines a strategy for the acquisi-
tion of Tree-Adjoining Grammars (Joshi, 1985) sim-
ilar to the one proposed here: specifically, he out-
lines a learning model based on the co-evolution of a
parser, which builds parse trees given an input string
and a set of category-assignments, and a shred-
der, which chooses/discovers category-assignments
from parse-trees. The proposed strategy is not im-
plemented and tested, however.

Briscoe (2000) models the acquisition of catego-
rial grammars using evolutionary techniques from a
different perspective. In his experiments, language
agents induced parameters for languages from other
language agents generating training material. The
acquisition of languages is not induced using GA per
se, but the evolutionary development of languages is
modeled using GA techniques.

Also closely related to the present proposal is the
work of Villavicencio (2002). Villavicencio presents
a system that learns a unification-based categorial
grammar from a semantically-annotated corpus of
child-directed speech. The learning algorithm is
based on a Principles-and-Parameters language ac-
quisition scheme, making use of logical forms and
word order to induce possible categories within a
typed feature-structure hierarchy. Her system has
the advantage of not having to pre-compile a list of
known categories, as did Watkinson and Mandahar
as well as the present proposal. However, Villav-
icencio does make extensive use of the semantics
of the corpus examples, which the current proposal
does not. This is related to the divergent motivations
of two proposals: Villavicencio aims to present a
psychologically realistic language learner and takes
it as psychologically plausible that logical forms are
accessible to the language learner; the current pro-
posal is preoccupied with grammar induction from
unannotated text, and assumes (sentence-level) log-
ical forms to be inaccessible.

n is the size of the population
A are candidate category assignments
F are fitness scores
E are example sentences
m is the likelihood of mutation

Initialize:
for i← 1 to n :

A[i]← RANDOMASSIGNMENT()
Loop:

for i← 1 to length[A] :
F [i]← 0
P← NEWPARSER(A[i])
for j← 1 to length[E] :

F [i]← F [i]+ SCORE(P.PARSE(E[i]))
A← REPRODUCE(A,F)
. Crossover:
for i← 1 to n−1 :

CROSSOVER(A[i],A[i+1])
. Mutate:
for i← 1 to n :

if RANDOM() < m :
MUTATE(A[i])

Until: End conditions are met

Figure 3: Pseudo-code for CCG induction GA.

3 System

As stated, the task is to choose the correct CCG cat-
egories for a set of lexical items given a collection of
unannotated or minimally annotated strings. A can-
didate solution genotype is an assignment of CCG
categories to the lexical items (types rather than to-
kens) contained in the textual material. A candi-
date phenotype is a CCG parser initialized with these
category assignments. The fitness of each candi-
date solution is evaluated by how well its phenotype
(parser) parses the strings of the training material.

Pseudo-code for the algorithm is given in Fig. 3.
For the most part, very simple GA techniques were
used; specifically:

• REPRODUCE The reproduction scheme utilizes
roulette wheel technique: initialize a weighted
roulette wheel, where the sections of the wheel
correspond to the candidates and the weights
of the sections correspond to the fitness of the
candidate. The likelihood that a candidate is
selected in a roulette wheel spin is directly pro-
portionate to the fitness of the candidate.

• CROSSOVER The crossover strategy is a simple
partition scheme. Given two candidates C and
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D, choose a center point 0 ≤ i ≤ n where n the
number of genes (category-assignments), swap
C[0, i]← D[0, i] and D[i, n]← C[i, n].

• MUTATE The mutation strategy simply swaps
a certain number of individual assignments in
a candidate solution with others. For the ex-
periments reported here, if a given candidate
is chosen to be mutated, 25% of its genes are
modified. The probability a candidate was se-
lected is 10%.

In the implementation of this strategy, the follow-
ing simplifying assumptions were made:

• A given candidate solution only posits a single
CCG category for each lexical item.

• The CCG categories to assign to the lexical
items are known a priori.

• The parser only used a subset of CCG – pure
CCG (Eisner, 1996) – consisting of the Appli-
cation and Composition rules.

3.1 Chromosome Encodings
A candidate solution is a simplified assignment of
categories to lexical items, in the following manner.
The system creates a candidate solution by assigning
lexical items a random category selection, as in:

Ronaldinho (s\np)/np
Barcelona pp

kicks (s\np)/(s\np)
...

Given the fixed vocabulary, and the fixed category
list, the representation can be simplified to lists of
indices to categories, indexed to the full vocabulary
list:

0 Ronaldinho
1 Barcelona
2 kicks

...

...
15 (s\np)/np

...
37 (s\np)/(s\np)

...
Then the category assignment can be construed as
a finite function from word-indices to category-
indices {0 7→ 15,1 7→ 42,2 7→ 37, ...} or simply the
vector 〈15,42,37, ...〉. The chromosome encodings
for the GA scheme described here are just this: vec-
tors of integer category indices.

3.2 Fitness

The parser used is straightforward implementation
of the normal-form CCG parser presented by Eis-
ner (1996). The fitness of the parser is evaluated on
its parsing coverage on the individual strings, which
is a score based on the chart output. Several chart
fitness scores were evaluated, including:

• SPANS The number of spans parsed

• RELATIVE The number of spans the string
parsed divided by the string length

• WEIGHTED The sum of the lengths of the spans
parsed

See §5.1 for a comparison of these fitness metrics.
Additionally, the following also factored into

scoring parses:

• S-BONUS Add an additional bonus to candi-
dates for each sentence they parse completely.

• PSEUDO-SMOOTHING Assign all parses at
least a small score, to help avoid premature
convergence. The metrics that count singleton
spans do this informally.

4 Evaluation

The system was evaluated on a small data-set of ex-
amples taken from the World Cup test-bed included
with the OpenCCG grammar development system1

and simplified considerably. This included 19 ex-
ample sentences with a total of 105 word-types and
613 tokens from (Baldridge, 2002).

In spite of the simplifying assumption that an in-
dividual candidate only assigns a single category to
a lexical item, one can derive a multi-assignment of
categories to lexemes from the population by choos-
ing the top category elected by the candidates. It
is on the basis of these derived assignments that the
system was evaluated. The examples chosen require
only 1-to-1 category assignment, hence the relevant
category from the test-bed constitutes the gold stan-
dard (minus Baldridge (2002)’s modalities). The
baseline for this dataset, assigning np to all lexical
items, was 28.6%. The hypothesis is that optimizing

1http://openccg.sf.net
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Fitness Metric Accuracy
COUNT 18.5
RELATIVE 22.0
WEIGHTED 20.4

Table 1: Final accuracy of the metrics

parsing coverage with a GA scheme would correlate
with improved category-accuracy.

The end-conditions apply if the parsing coverage
for the derived grammar exceeds 90%. Such end-
conditions generally were not met; otherwise, ex-
periments ran for 100 generations, with a popula-
tion of 50 candidates. Because of the heavy reliance
of GAs on pseudo-random number generation, indi-
vidual experiments can show idiosyncratic success
or failure. To control for this, the experiments were
replicated 100 times each. The results presented
here are averages over the runs.

5 Results

5.1 Fitness Metrics

The various fitness metrics were each evaluated, and
their final accuracies are reported in Table 1. The re-
sults were negative, as category accuracy did not ap-
proach the baseline. Examining the average system
accuracy over time helps illustrate some of the issues
involved. Figure 4 shows the growth of category ac-
curacy for each of the metrics. Pathologically, the
random assignments at the start of each experiment
have better accuracy than after the application of GA
techniques.

Figure 5 compares the accuracy of the category
assignments to the GA’s internal measure of its fit-
ness, using the Count Spans metric as a point of ref-
erence. (The fitness metric is scaled for compari-
son with the accuracy.) While fitness, in the average
case, steadily increases, accuracy does not increase
with such steadiness and degrades significantly in
the early generations.

The intuitive reason for this is that, initially,
the random assignment of categories succeeds by
chance in many cases, however the likelihood of ac-
curate or even compatible assignments to words that
occur adjacent in the examples is fairly low. The
GA promotes these assignments over others, appar-
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Figure 5: Fitness and accuracy: COUNT

ently committing the candidates to incorrect assign-
ments early on and not recovering from these com-
mitments. The WEIGHTED and RELATIVE metrics
are designed to try to overcome these effects by pro-
moting grammars that parse longer spans, but they
do not succeed. Perhaps exponential rather than lin-
ear bonus for parsing spans of length greater than
two would be effective.

6 Conclusions

This project attempts to induce a grammar from
unannotated material, which is an extremely diffi-
cult problem for computational linguistics. Without
access to training material, logical forms, or other
relevant features to aid in the induction, the system
attempts to learn from string patterns alone. Using
GAs may aid in this process, but, in general, in-
duction from string patterns alone takes much larger
data-sets than the one discussed here.

The GA presented here takes a global perspective
on the progress of the candidates, in that the indi-
vidual categories assigned to the individual words
are not evaluated directly, but rather as members of
candidates that are scored. For a system such as
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this to take advantage of the patterns that arise out
of the text itself, a much more fine-grained perspec-
tive is necessary, since the performance of individ-
ual category-assignments to words being the focus
of the task.
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Džeroski, editors, Language Learning in Logic, pages
16–27, Berlin. Springer.

12



Proceedings of the ACL 2007 Student Research Workshop, pages 13–18,
Prague, June 2007. c©2007 Association for Computational Linguistics

An Implementation of Combined Partial Parser
and Morphosyntactic Disambiguator

Aleksander Buczyński
Institute of Computer Science
Polish Academy of Sciences

Ordona 21, 01-237 Warszawa, Poland
olekb@ipipan.waw.pl

Abstract

The aim of this paper is to present a simple
yet efficient implementation of a tool for si-
multaneous rule-based morphosyntactic tag-
ging and partial parsing formalism. The
parser is currently used for creating a tree-
bank of partial parses in a valency acquisi-
tion project over the IPI PAN Corpus of Pol-
ish.

1 Introduction

1.1 Motivation

Usually tagging and partial parsing are done sep-
arately, with the input to a parser assumed to
be a morphosyntactically fully disambiguated text.
Some approaches (Karlsson et al., 1995; Schiehlen,
2002; Müller, 2006) interweave tagging and parsing.
(Karlsson et al., 1995) is actually using the same for-
malism for both tasks — it is possible, because all
words in this dependency-based approach come with
all possible syntactic tags, so partial parsing is re-
duced to rejecting wrong hypotheses, just as in case
of morphosyntactic tagging.

Rules used in rule-based tagging often implicitly
identify syntactic constructs, but do not mark such
constructs in texts. A typical such rule may say that
when an unambiguous dative-taking preposition is
followed by a number of possibly dative adjectives
and a noun ambiguous between dative and some
other case, then the noun should be disambiguated
to dative. Obviously, such a rule actually identifies
a PP and some of its structure.

Following the observation that both tasks, mor-
phosyntactic tagging and partial constituency pars-
ing, involve similar linguistic knowledge, a for-
malism for simultaneous tagging and parsing was
proposed in (Przepiórkowski, 2007). This paper
presents a revised version of the formalism and
a simple implementation of a parser understanding
rules written according to it. The input to the rules
is a tokenised and morphosyntactically annotated
XML text. The output contains disambiguation an-
notation and two new levels of constructions: syn-
tactic words and syntactic groups.

2 The Formalism

2.1 Terminology

In the remainder of this paper we call the smallest in-
terpreted unit, i.e., a sequence of characters together
with their morphosyntactic interpretations (lemma,
grammatical class, grammatical categories) a seg-
ment. A syntactic word is a non-empty sequence of
segments and/or syntactic words. Syntactic words
are named entities, analytical forms, or any other se-
quences of tokens which, from the syntactic point of
view, behave as single words. Just as basic words,
they may have a number of morphosyntactic inter-
pretations. By a token we will understand a segment
or a syntactic word. A syntactic group (in short:
group) is a non-empty sequence of tokens and/or
syntactic groups. Each group is identified by its syn-
tactic head and semantic head, which have to be to-
kens. Finally, a syntactic entity is a token or a syn-
tactic group; it follows that syntactic groups may be
defined as a non-empty sequence of entities.
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2.2 The Basic Format
Each rule consists of up to 4 parts: Match describes
the sequence of syntactic entities to find; Left and
Right — restrictions on the context; Actions —
a sequence of morphological and syntactic actions
to be taken on the matching entities.

For example:

Left:
Match: [pos~~"prep"][base~"co|kto"]
Right:
Actions: unify(case,1,2);

group(PG,1,2)

means:

• find a sequence of two tokens such that
the first token is an unambiguous preposition
([pos~~"prep"]), and the second token is
a possible form of the lexeme CO ‘what’ or KTO

‘who’ ([base~"co|kto"]),

• if there exist interpretations of these two tokens
with the same value of case, reject all interpre-
tations of these two tokens which do not agree
in case (cf. unify(case,1,2));

• if the above unification did not fail, mark
thus identified sequence as a syntactic group
(group) of type PG (prepositional group),
whose syntactic head is the first token (1) and
whose semantic head is the second token (2;
cf. group(PG,1,2));

Left and Right parts of a rule may be empty;
in such a case the part may be omitted.

2.3 Left, Match and Right
The contents of parts Left, Match and Right
have the same syntax and semantics. Each of them
may contain a sequence of the following specifica-
tions:

• token specification, e.g., [pos~~"prep"] or
[base~"co|kto"]; these specifications ad-
here to segment specifications of the Poliqarp
(Janus and Przepiórkowski, 2006) corpus
search engine; in particular there is a distinc-
tion between certain and uncertain information
— a specification like [pos~~"subst"]
says that all morphosyntactic interpretations
of a given token are nominal (substantive),

while [pos~"subst"] means that there ex-
ists a nominal interpretation of a given token;

• group specification, extending the Poliqarp
query as proposed in (Przepiórkowski, 2007),
e.g., [semh=[pos~~"subst"]] specifies a
syntactic group whose semantic head is a token
whose all interpretations are nominal;

• one of the following specifications:

– ns: no space,
– sb: sentence beginning,
– se: sentence end;

• an alternative of such sequences in parentheses.

Additionally, each such specification may be modi-
fied with one of the three standard regular expression
quantifiers: ?, * and +.

An example of a possible value of Left, Match
or Right might be:
[pos~"adv"] ([pos~~"prep"]
[pos~"subst"] ns? [pos~"interp"]?
se | [synh=[pos~~"prep"]])

2.4 Actions

The Actions part contains a sequence of mor-
phological and syntactic actions to be taken when
a matching sequence of syntactic entities is found.
While morphological actions delete some interpre-
tations of specified tokens, syntactic actions group
entities into syntactic words or syntactic groups. The
actions may also include conditions that must be sat-
isfied in order for other actions to take place, for ex-
ample case or gender agreement between tokens.

The actions may refer to entities matched by
the specifications in Left, Match and Right by
numbers. These specifications are numbered from
1, counting from the first specification in Left
to the last specification in Right. For example,
in the following rule, there should be case agree-
ment between the adjective specified in the left
context and the adjective and the noun specified
in the right context (cf. unify(case,1,4,5)),
as well as case agreement (possibly of a different
case) between the adjective and noun in the match
(cf. unify(case,2,3)).

Left: [pos~~"adj"]
Match: [pos~~"adj"][pos~~"subst"]
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Right: [pos~~"adj"][pos~~"subst"]
Actions: unify(case,2,3);

unify(case,1,4,5)

The exact repertoire of actions still evolves, but
the most frequent are:

• agree(<cat>,...,<tok>,...) - check
if the grammatical categories (<cat>,...)
of entities specified by subsequent numbers
(<tok>,...) agree;

• unify(<cat>,...,<tok>,...) - as
above, plus delete interpretations that do not
agree;

• delete(<cond>,<tok>,...) - delete all
interpretations of specified tokens match-
ing the specified condition (for example
case~"gen|acc")

• leave(<cond>,<tok>,...) - leave only
the interpretations matching the specified con-
dition;

• nword(<tag>,<base>) - create a new
syntactic word with given tag and base form;

• mword(<tag>,<tok>) - create a new syn-
tactic word by copying and appropriately mod-
ifying all interpretations of the token specified
by number;

• group(<type>,<synh>,<semh>) - cre-
ate a new syntactic group with syntactic head
and semantic head specified by numbers.

The actions agree and unify take a vari-
able number of arguments: the initial argu-
ments, such as case or gender, specify
the grammatical categories that should simulta-
neously agree, so the condition agree(case
gender,1,2) is properly stronger than the
sequence of conditions: agree(case,1,2),
agree(gender,1,2). Subsequent arguments of
agree are natural numbers referring to entity spec-
ifications that should be taken into account when
checking agreement.

A reference to entity specification refers to all
entities matched by that specification, so, e.g.,
in case 1 refers to specification [pos~adj]*,
unify(case,1) means that all adjectives
matched by that specification must be rid of all

interpretations whose case is not shared by all these
adjectives.

When a reference refers to a syntactic group, the
action is performed on the syntactic head of that
group. For example, assuming that the following
rule finds a sequence of a nominal segment, a multi-
segment syntactic word and a nominal group, the
action unify(case,1) will result in the unifica-
tion of case values of the first segment, the syntactic
word as a whole and the syntactic head of the group.

Match: ([pos~~"subst"] |
[synh=[pos~~"subst"]])+

Action: unify(case,1)

The only exception to this rule is the semantic head
parameter in the group action; when it references
a syntactic group, the semantic, not syntactic, head
is inherited.

For mword and nword actions we assume that
the orthographic form of the created syntactic word
is always a simple concatenation of all orthographic
forms of all tokens immediately contained in that
syntactic word, taking into account information
about space or its lack between consecutive tokens.

The mword action is used to copy and possibly
modify all interpretations of the specified token. For
example, a rule identifying negated verbs, such as
the rule below, may require that the interpretations
of the whole syntactic word be the same as the in-
terpretations of the verbal segment, but with neg
added to each interpretation.

Left: ([pos!~"prep"]|[case!~"acc"])
Match: [orth~"[Nn]ie"][pos~~"verb"]

(ns [orth~"by[mś]?"])?
(ns [pos~~"aglt"])?

Actions: leave(pos~"qub", 2);
mword(neg,3)

The nword action creates a syntactic word with
a new interpretation and a new base form (lemma).
For example, the rule below will create, for a se-
quence like mimo tego, że or Mimo że ‘in spite of,
despite’, a syntactic word with the base form MIMO

ŻE and the conjunctive interpretation.

Match: [orth~"[Mm]imo"]
[orth~"to|tego"]?
(ns [orth~","])? [orth~"że"]

Actions: leave(pos~"prep",1);
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leave(pos~"subst",2);
nword(conj, mimo że)

The group(<type>,<synh>,<semh>) ac-
tion creates a new syntactic group, where <type>
is the categorial type of the group (e.g., PG), while
<synh> and <semh> are references to appropriate
token specifications in the Match part. For exam-
ple, the following rule may be used to create a nu-
meral group, syntactically headed by the numeral
and semantically headed by the noun:

Left: [pos~~"prep"]
Match: [pos~"num"][pos~"adj"]*

[pos~"subst"]
Actions: group(NumG,2,4)

Of course, the rules should be constructed in
such a way that references <synh> and <semh>
refer to specifications of single entities, e.g.,
([pos~"subst"]|[synh=[pos~"subst"]])
but not [case~"nom"]+

3 The Implementation

3.1 Objectives

The goal of the implementation was a combined par-
tial parser and tagger that would be reasonably fast,
but at the same time easy to modify and maintain. At
the time of designing and implementing the parser,
neither the set of rules, nor the specific repertoire of
possible actions within rules was known, hence, the
flexibility and modifiability of the design was a key
issue.

3.2 Input and Output

The parser currently takes as input the version of
the XML Corpus Encoding Standard (Ide et al.,
2000) assumed in the IPI PAN Corpus of Polish
(korpus.pl). The tagset is configurable, there-
fore the tool can be possibly used for other lan-
guages as well.

Rules may modify the input in one of two ways.
Morphological actions may delete certain interpre-
tations of certain tokens; this fact is marked by
the attribute disamb="0" added to <lex> ele-
ments representing these interpretations. On the
other hand, syntactic actions modify the input by
adding <syntok> and <group> elements, mark-
ing syntactic words and groups.

3.3 Algorithm Overview

During the initialisation phase, the parser loads the
external tagset specification and the ruleset, and con-
verts the latter to a set of compiled regular expres-
sions and actions. Then input files are parsed one
by one (for each input file a corresponding output
file containing parsing results is created). To reduce
memory usage, the parsing is done by chunks de-
fined in the input files, such as sentences or para-
graphs. In the remainder of the paper we assume the
chunks are sentences.

During the parsing, a sentence has dual represen-
tation:

1. object-oriented syntactic entity tree, used for
easy manipulation of entities (for example dis-
abling certain interpretations or creating new
syntactic words) and preserving all necessary
information to generate the final output;

2. compact string for quick regexp matching, con-
taining only the informations important for
these rules which have not been applied yet.

The entity tree is initialised as a flat (one level
deep) tree with all leaves (segments and possibly
special entities, like no space, sentence beginning,
sentence end) connected directly to the root. Appli-
cation of a syntactic action means inserting a new
node (syntacting word or group) to the tree, between
the root and a few of the existing nodes. As the pars-
ing processes, the tree changes its shape: it becomes
deeper and narrower.

The string representations is consistently updated
to always represent the top level of the tree (the chil-
dren of the root). Therefore, the searched string’s
length tends to decrease with every action applied
(as opposed to increasing in a naïve implementa-
tion, with single representation and syntactic / dis-
ambiguation markup added). This is not a strictly
monotonous process, as creating new syntactic en-
tities containing only one segment may temporarily
increase the length, but the increase is offset with
the next rule applied to this entity (and generally the
point of parsing is to eventually find groups longer
than one segment).

Morphological actions do not change the shape
of the tree, but also reduce the string representation
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length by deleting from the string certain interpreta-
tions. The interpretations are preserved in the tree to
produce the final output, but are not interesting for
further stages of parsing.

3.4 Representation of Sentence

The string representation is a compromise between
XML and binary representation, designed for easy,
fast and precise matching, with the use of existing
regular expression libraries.

The representation describes the top level of the
current state of the sentence tree, including only the
informations that may be used by rule matching. For
each child of the tree root, the following informa-
tions are preserved in the string: type (token / group
/ special) and identifier (allowing to find the entity
in the tree in case an action should be applied to it).
The further part of the string depends on the type —
for token it is orthografic forms and a list of interpre-
tations; for group — number of heads of the group
and lists of interpretations of syntactic and semantic
head.

Every interpretation consists of a base form and
a morphosyntactic tag (part of speech, case, gender,
numer, degree, etc.). Because the tagset used in the
IPI PAN Corpus is intended to be human readable,
the morphosyntactic tag is fairly descriptive (long
values) and, on the other hand, compact (may have
many parts ommited, for example when the category
is not applicable to the given part of speech). To
make pattern matching easier, the tag is converted to
a string of fixed width. In the string, each charac-
ter corresponds to one morphological category from
the tagset (first part of speech, then number, case,
gender etc.) as for example in the Czech positional
tag system (Hajič and Hladká, 1997). The charac-
ters — upper- and lowercase letters, or 0 (zero) for
categories non-applicable for a given part of speech
— are assigned automatically, on the basis of the ex-
ternal tagset definition read at initialisation. A few
examples are presented in table 1.

3.5 Rule Matching

The conversion from the Left, Match and Right
parts of the rule to a regular expression over the
string representation is fairly straightforward. Two
exceptions — regular expressions as morphosyntac-
tic category values and the distinction between ex-

IPI PAN tag fixed length tag
adj:pl:acc:f:sup UBDD0C0000000
conj B000000000000
fin:pl:sec:imperf bB00B0A000000

Table 1: Examples of tag conversion between human
readable and inner positional tagset.

istential and universal quantification over interpreta-
tions — will be described in more detail below.

First, the rule might be looking for a token
whose grammatical category is described by a reg-
ular expresion. For example, [gender~"m."]
should match human masculine (m1), animate mas-
culine (m2), and inanimate masculine (m3) to-
kens; [pos~"ppron[123]+|siebie"] should
match various pronouns; [pos!~"num.*"]
should match all segments except for main and col-
lective numerals; etc. Because morphosyntactic tags
are converted to fixed length representations, the
regular expressions also have to be converted before
compilation.

To this end, the regular expression is matched
against all possible values of the given category.
Since, after conversion, every value is represented
as a single character, the resulting regexp can use
square brackets to represent the range of possible
values.

The conversion can be done only for attributes
with values from a well-defined, finite set. Since
we do not want to assume that we know all the text
to parse before compiling rules, we assume that the
dictionary is infinite (this is different from Poliqarp,
where dictionary is calculated during compilation of
corpus to binary form). The assumption makes it
difficult to convert requirements with negated orth
or base (for example [orth!~"[Nn]ie"]). As
for now, such requirements are not included in the
compiled regular expression, but instead handled as
an extra condition in the Action part.

Another issue that has to be taken into careful
consideration is the distinction between certain and
uncertain information. A segment may have many
interpretations and sometimes a rule may apply only
when all the interpretations meet the specified con-
dition (for example [pos~~"subst"]), while in
other cases one matching interpretation should be
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enough to trigger the rule ([pos~"subst"]). The
aforementioned requirements translate respectively
to the following regular expressions:1

• (<N[^<>]+)+

• (<[^<>]+)*(<N[^<>]+)(<[^<>]+)*

Of course, a combination of existential and universal
requirements is a valid requirement as well, for ex-
ample: [pos~~"subst" case~"gen|acc"]
(all interpretations noun, at least one of them in gen-
itive or accusative case) should translate to:

(<N[^<>]+)*(<N.[BD][^<>]+)
(<N[^<>]+)*

3.6 Actions
When a match is found, the parser runs a sequence
of actions connected with the given rule, described
in 2.4. Each action may be condition, morphologi-
cal action, syntactic action or a combination of the
above (for example unify is both a condition and a
morphological action). The parser executes the se-
quence until it encounters an action which evaluates
to false (for example, unification of cases fails).

The actions affect both the tree and the string rep-
resentation of the parsed sentence. The tree is up-
dated instantly (cost of update is constant or linear
to match lenght), but the string update (cost linear to
sentence length) is delayed until it is really needed
(at most once per rule).

4 Conclusion and Future Work

Althought morphosyntactic disambiguation rules
and partial parsing rules often encode the same lin-
guistic knowledge, we are not aware of any partial
(or shallow) parsing systems accepting morphosyn-
tactically ambiguous input and disambiguating it
with the same rules that are used for parsing. This
paper presents a formalism and a working prototype
of a tool implementing simultaneous rule-based dis-
ambiguation and partial parsing.

Unlike other partial parsers, the tool does not ex-
pect a fully disambiguated input. The simplicity
of the formalism and its implementation makes it
possible to integrate a morphological analyser into

1< and > were chosen as convenient separators of interpre-
tations and entities, because they should not happen in the input
data (they have to be escaped in XML).

parser and allow a greater flexibility in input for-
mats.

On the other hand, the rule syntax can be extended
to take advantage of the metadata present in the cor-
pus (for example: style, media, or date of publish-
ing). Many rules, both morphological and syntactic,
may be applicable only to specific kinds of texts —
for example archaic or modern, official or common.

References
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The proceedings of Practical Applications of Linguis-
tic Corpora 2005, Frankfurt am Main. Peter Lang.

F. Karlsson, A. Voutilainen, J. Heikkilä, and A. Anttila,
editors. 1995. Constraint Grammar: A Language-
Independent System for Parsing Unrestricted Text.
Mouton de Gruyter, Berlin.

Frank Henrik Müller. 2006. A Finite State Approach to
Shallow Parsing and Grammatical Functions Annota-
tion of German. Ph. D. dissertation, Universität Tübin-
gen. Pre-final Version of March 11, 2006.

Adam Przepiórkowski. 2007. A preliminary formal-
ism for simultaneous rule-based tagging and partial
parsing. In Georg Rehm, Andreas Witt, and Lothar
Lemnitzer, editors, Datenstrukturen für linguistische
Ressourcen und ihre Anwendungen – Proceedings
der GLDV-Jahrestagung 2007, Tübingen. Gunter Narr
Verlag.

Adam Przepiórkowski. 2007. On heads and coordina-
tion in valence acquisition. In Alexander Gelbukh,
editor, Computational Linguistics and Intelligent Text
Processing (CICLing 2007), Lecture Notes in Com-
puter Science, Berlin. Springer-Verlag.

Michael Schiehlen. 2002. Experiments in German
noun chunking. In Proceedings of the 19th In-
ternational Conference on Computational Linguistics
(COLING 2002), Taipei.

18



Proceedings of the ACL 2007 Student Research Workshop, pages 19–24,
Prague, June 2007. c©2007 Association for Computational Linguistics

A Practical Classification of Multiword Expressions

Radosław Moszczyński

Institute of Computer Science

Polish Academy of Sciences

Ordona 21, 01-237 Warszawa, Poland

rm@ipipan.waw.pl

Abstract

The paper proposes a methodology for deal-

ing with multiword expressions in natu-

ral language processing applications. It

provides a practically justified taxonomy

of such units, and suggests the ways in

which the individual classes can be pro-

cessed computationally. While the study is

currently limited to Polish and English, we

believe our findings can be successfully em-

ployed in the processing of other languages,

with emphasis on inflectional ones.

1 Introduction

radosław moszczyńskiIt is generally acknowledged

that multiword expressions constitute a serious diffi-

culty in all kinds of natural language processing ap-

plications (Sag et al., 2002). It has also been shown

that proper handling of such expressions can result

in significantly better results in parsing (Zhang et

al., 2006).

The difficulties in processing multiword expres-

sions result from their lexical variability, and the

fact that many of them can undergo syntactic trans-

formations. Another problem is that the label “mul-

tiword expressions” covers many linguistic units

that often have little in common. We believe that

the past approaches to formalize the phenomenon,

such as IDAREX (Segond and Breidt, 1995) and

Phrase Manager (Pedrazzini, 1994), suffered from

trying to cover all multiword expressions as a

whole. Such an approach, as is shown below, can-

not efficiently cover all the phenomena related to

multiword expressions.

Therefore, in the present paper we formulate a

proposal of a taxonomy for multiword expressions,

useful for the purposes of natural language process-

ing. The taxonomy is based on the stages in the

NLP workflow in which the individual classes of

units can be processed successfully. We also sug-

gest the tools that can be used for processing the

units in each of the classes.

2 An NLP Taxonomy of Multiword

Expressions

At this stage of work, our taxonomy is composed

of two groups of multiword expressions. The first

one consists of units that should be processed be-

fore syntactic analysis, and the other one includes

expressions whose recognition should be combined

with the syntactic analysis process. The next sec-

tions describe both groups in more detail.

2.1 Morphosyntactically Idiosyncratic

Expressions

The first group consists of morphosyntactically id-

iosyncratic units. They follow unusual morpholog-

ical and syntactic patterns, which causes difficulties

for automatic analyzers.

By morphological idiosyncrasies we mean two

types of units. First of all, there are bound words

that do not inflect and cannot be used independently

outside of the given multiword expression. In Pol-

ish, there are many such units, which are typically

prepositional phrases functioning as complex adver-

bials, e.g.:1

1The asterisk in this and the following examples indicates
an untranslatable bound word.
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(1) na

on

wskroś

*

‘thoroughly’

Secondly, there are unusual forms of otherwise

ordinary words that only appear in strictly defined

multiword expressions. An example is the follow-

ing unit, in which the genitive form of the noun

‘daddy’ is different than the one used outside this

particular construction:

(2) nie

Neg

rób

do-Imperative

z

of

tata

*daddy-Gen

wariata

fool

‘stop making a fool of me’

Morphological idiosyncrasies can be referred to

as “objective” in the sense that it can be proved by

doing corpus research that particular words only ap-

pear in a strictly limited set of constructions. Since

outside such constructions the words do not have

any meaning of their own, it is pointless to put them

in the lexicon of a morphological analyzer. From

the processing point of view, they are parts of com-

plex multiword lexemes which should be considered

as indivisible wholes.

Syntactically idiosyncratic phrases are those

whose structure or behavior is incorrect from the

point of view of a given grammar. In this sense,

they are “subjective”, because they depend on the

rules underlying a particular parser.

A typical parser of Polish is expected to accept

full sentences, i.e. phrases that contain a finite verb

phrase, but possibly not many phraseologisms that

are extremely common in texts and speech, and do

not constitute proper sentences from the point of

view of the grammar. This qualifies such phrases

to be included and formalized among the first group

we have distinguished. In Polish, such phrases in-

clude, e.g.:

(3) Precz

off

z

with

łapami!

hands-Inst

‘Get your hands off!’

Another group of multiword expressions that

should be processed before parsing consists of com-

plex adverbials that do not include any bound

words, but that could be interpreted wrongly by the

syntactic analyzer. Consider the following multi-

word expression:

(4) na

on

kolanach

knees-Loc

‘on one’s knees’ (‘groveling’)

This expression can be used in constructions of the

following type:

(5) Na

on

kolanach

knees-Loc

Kowalskiego

Kowalski-Gen

będą

be-Future;Pl;3rd

błagać.

beg-Infinitive

‘They will beg Kowalski on their knees.’

In the above example na kolanach is an adjunct

that is not subcategorized for by any of the remain-

ing constituents. However, since Kowalskiego is

genitive, the parser would be fooled to believe that

one of the possible interpretations is ‘They will beg

on Kowalski’s knees’, which is not correct and se-

mantically odd. Such complex adverbials are very

common in Polish, which is why we believe that for-

malizing them as wholes would allow us to achieve

better parsing results.

The last type of units that it is necessary to for-

malize for syntactic analysis are multiword text co-

hesion devices and interjections, whose syntactic

structure is hard to establish, as their constituents

belong to weakly defined classes. They can also

directly violate the grammar rules, as the coordina-

tion in the English example does:

(6) bądź

be-Imperative;Sg

co

what

bądź

be-Imperative;Sg

‘after all’

(7) by and large

Since the recognition and tagging of all the above

units will be performed before syntactic analysis, it

seems natural to combine this process with a gener-

alized mechanism of named entity recognition. We

intend to build a preprocessor for syntactic analy-

sis, along the lines of the ideas presented by Sagot

and Boullier (2005). However, in addition to the

set of named entities presented by the authors, we

also intend to formalize multiword expressions of
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the types presented above, possibly with the use of

lxtransduce.2 This will allow us to prepare the

input to the parser in such a way as to eliminate all

the unparsable elements. This in turn should result

in significantly better parsing coverage.

2.2 Semantically Idiosyncratic Expressions

The other group in our classification consists of

multiword expressions that are idiosyncratic from

the point of view of semantics. It includes such

units as:

(8) NP-Nom

NP-Nom

wziąć

to take

nogi

legs-Acc

za

under

pas

belt-Acc

‘to run away’

From the syntactic analysis point of view, such

units are not problematic, as they follow regu-

lar grammatical patterns. They create difficulties

in other types of NLP-based applications, as their

meaning is not compositional, and cannot be pre-

dicted from the meaning of their constituents. Ex-

amples of such applications include electronic dic-

tionaries, which should be able to recognize idioms

and provide an appropriate, non-literal translation

(Prószéky and Földes, 2005).

Such expressions can be extremely complex due

to the lexical and word order variations they can

undergo, which is especially the case in such lan-

guages as Polish. The set of syntactic variations

that are possible in unit (8) is very large. First of

all, there is the subject (NP-Nom). English multi-

word expressions are usually encoded disregarding

the subject, as it can never break the continuity of

the other constituents. In Polish it is different —

the subject can be absent altogether, it can appear

at the very beginning of the multiword expression

without breaking its continuity, but it can also ap-

pear after the verb, between the core constituents.

The subject can be of arbitrary length and needs to

agree in morphosyntactic features (number, gender,

and person) with the verb.

The verb can be modified with adverbial phrases,

both on the left hand side and the right hand side.

2http://www.cogsci.ed.ac.uk/~richard/ltxml2/
lxtransduce.html

However, if the subject is postponed to a position

after the verb, all the potential right hand side ad-

verbials need to be attached after the subject, and

not directly after the verb. Thus, taking all the vari-

ation possibilities into account, it is not unlikely to

encounter such phrases in Polish:

(9) Wziął

take-1sg;Masc;Past

pan

you-1sg;Masc;Nom

przed

before

wszystkimi

everyone

nogi

legs-Acc

za

under

pas!

belt-Acc

‘You ran away before everyone else!’

Some of the English multiword expressions also

display properties that make them difficult to pro-

cess automatically. Although the word order is

more rigid, it is still necessary to handle, e.g., pas-

sivization and nominalization. This concerns the

canonical example of spill the beans, and many oth-

ers.

It follows that the units in the second group

should not, and probably cannot, be reliably en-

coded with the same means as the simpler units

from Section 2.1, which can be accounted for prop-

erly with simple methods based on regular gram-

mars and surface processing.

One possible solution is to encode the complex

units with the rules of a formal grammar of the

given language. Another solution could be con-

structing an appropriate valence dictionary for verbs

in such expressions. Both possibilities imply that

the recognition process should be performed simul-

taneously with syntactic analysis.

3 Rationale

The above classification was formulated during an

examination of the available formalisms for encod-

ing multiword expressions, which was a part of the

present work.

The attempts to formalize multiword expressions

for natural language processing can be roughly di-

vided into two groups. There are approaches that

aim at encoding such units with the rules of an

existing formal grammar, such as the approach de-

scribed by Debusmann (2004). On the other hand,

specialized, limited formalisms have been created,
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whose purpose is to encode only multiword expres-

sions. Such formalisms include the already men-

tioned IDAREX (Segond and Breidt, 1995) and

Phrase Manager (Pedrazzini, 1994).

The first approach has two drawbacks. One of

them is that using the rules of a given grammar to

encode multiword expressions seems to have sense

only if the rest of the language is formalized in the

same way. Thus, such an approach makes the lexi-

con of multiword expressions heavily dependant on

a particular grammar, which might make its reuse

difficult or impossible.

The other disadvantage concerns complexity.

While full-blown grammars do have the means to

handle the most complex multiword expressions

and their transformational potential, they create too

much overhead in the case of simple units, such

as idiomatic prepositional phrases that function as

adverbials, which have been presented above.

Thus, we decided to encode Polish multiword ex-

pressions with an existing, specialized formalism.

However, after an evaluation of such formalisms

none of the ones we were able to find proved to

be adequate for Polish. This is mostly due to the

properties of the language — Polish is highly in-

flectional and has a relatively free word order. Both

of these properties also apply to multiword expres-

sions, which implies that in order to capture all their

possible variations in Polish, it is necessary to use

a powerful formalism (cf. the example in (9)).

Our analysis revealed that IDAREX, which is a

simple formalism based on regular grammars, is

not appropriate for handling expressions that have a

very variable word order and allow many modifica-

tions. In IDAREX, each multiword unit is encoded

with a regular expression, whose symbols are words

or POS-markers. The words are described in terms

of two-level morphology, and can appear either on

the lexical level (which permits inflection) or the

surface level (which restricts the word to the form

present in the regular expression). An example is

provided below:

(10) kick: :the :bucket;

Encoding the multiword expression in (8) with

IDAREX in such a way as to include all the pos-

sible variations leads to a description that suffers

from overgeneration. Also, IDAREX does not in-

clude any unification mechanisms. This makes it

unsuitable for any generation purposes (and reli-

able recognition purposes, too), as Polish requires

a means to enforce agreement between constituents.

Phrase Manager makes encoding multiword ex-

pressions difficult for other reasons. The method-

ology employed in the formalism requires each ex-

pression to be assigned to a predefined syntactic

class which determines the unit’s constituents, as

well as the modifications and transformations that

it can undergo:3

(11) SYNTAX-TREE

(VP V (NP Art Adj N AdvP))

MODIFICATIONS

V >

TRANSFORMATIONS

Passive, N-Adj-inversion

Since it is sometimes the case that multiword

expressions belonging to the same class differ in

respect of the syntactic operations they can undergo,

the classes are arranged into a tree-like structure in

which a class might be subdivided further on into a

subclass that allows passivization, another one that

allows nominalization and subject-verb inversion,

etc.

The problem with this approach is that it leads

to a proliferation of classes. At least in Polish,

multiword expressions that follow the same general

syntactic pattern often differ in the transformations

they allow. Besides, the formalism creates too much

overhead in the case of simple multiword expres-

sions. Consider the following example in Polish:

(12) No

oh

nie!

no

‘Oh, come on!’

In Phrase Manager it would be necessary to define

a syntactic class for this unit, which seems to be

both superfluous and problematic, as it is hard to

establish what parts of speech are the constituents

without taking purely arbitrary decisions.

To complicate matters further, the expression in

the example has a variant in which both constituents

3The transformations need to be defined with separate rules
elsewhere. The whole description is abbreviated.
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switch their positions (with the meaning preserved).

In the case of such a simple expression, it is impos-

sible to “name” this transformation and assign any

syntactic or semantic prominence to it — it can

safely be treated as a simple permutation. How-

ever, Phrase Manager requires each operation to

be named and precisely defined in syntactic terms,

which in this case is more than it is worth.

In our opinion both those formalisms are in-

adequate for encoding all the phenomena labeled

as “multiword expressions”, especially in inflec-

tional languages. Such approaches might be suc-

cessful to a large extent in the case of fixed order

languages, such as English — both IDAREX and

Phrase Manager are reported to have been success-

fully employed for such purposes (Breidt and Feld-

weg, 1997; Tschichold, 2000). However, they fail

with languages that have richer inflection and per-

mit more word order variations. When used for

Polish, the surface processing oriented IDAREX

reaches the limits of its expressiveness; Phrase

Manager is inadequate for different reasons — the

assumptions it is based on would require something

not far from writing a complete grammar of Polish,

a task to which it is not suitable due to its limita-

tions. And on the other hand, it is much too com-

plicated for simple multiword expressions, such as

(12).

4 Previous Classifications

There are numerous classifications available in lin-

guistic literature, and we considered three of them

in turn. From the practical point of view, none of

them proved to be adequate for our needs. More

precisely, none of them partitioned the field of

multiword expressions into manageable classes that

could be handled individually by uniform mecha-

nisms.

The classification presented by Brundage et al.

(1992) approaches the whole problem from an an-

gle similar to what is required in Phrase Manager.

It is based on a study of ca. 300 English and Ger-

man multiword expressions, which were divided

into classes based on their syntactic constituency

and the transformations they are able to undergo.

Such an approach seems to be a dead end for

exactly the same reasons that Phrase Manager has

been criticized above. The study was limited to 300

units, which made the whole undertaking manage-

able. We believe that a really extensive study would

lead to an unpredictable proliferation of very similar

classes, which would make the whole classification

too fine-grained and unpractical for any processing

purposes.

The categorization that has been examined next

is the one presented by Sag et al. (2002). It con-

sists of three categories: fixed expressions (abso-

lutely immutable), semi-fixed expressions (strictly

fixed word order, but some lexical variation is al-

lowed), syntactically-flexible expressions (mainly

decomposable idioms — cf. (8)), and institution-

alized phrases (statistical idiosyncrasies). Unfortu-

nately, such a categorization is hard to use in the

case of some Polish multiword expressions. Con-

sider this example:

(13) Niech

let

to

it-Acc

szlag

*

trafi!

hit-Future

‘Damn it!’

It is hard to establish which of the above categories

does it belong to. The only lexically variable el-

ement is it, which can be substituted with another

noun. This would qualify the expression to be in-

cluded in the second category. However, it has a

very free word order (Niech to trafi szlag!, Szlag

niech to trafi!, and Niech trafi to szlag! are all

acceptable). This in turn qualifies it to the third

category, but it is not a decomposable idiom, and

the word order variations are not semantically jus-

tified transformations, but rather permutations, as

in (12). To make matters worse, the main element

— szlag — is a word with a very limited distribu-

tion. This intuitively makes the unit fit more into

the first category of unproductive expressions. This

is even more obvious considering the fact that the

word order variations do not change the meaning.

Another classification was presented by Guenth-

ner and Blanco (2004). Their categories are very

numerous, and the whole undertaking suffers from

the fact that they are not formally defined. It also

lacks a coherent purpose – it is neither a linguistic,

nor a natural language processing classification, as

it tries to put very different phenomena into one

bag.
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The categories are sometimes more lexicograph-

ically, and sometimes more syntactically oriented.

For example, on the one hand the authors distin-

guish compound expressions (nouns, adverbs, etc.),

and on the other hand collocations. In our opinion

the categories should not be considered as parts of

the same classification, as members of the former

category belong to the lexicon, and the latter are

a purely distributional phenomenon. Therefore, in

the present form, the classification has no practical

use.

5 Conclusions and Further Work

We have shown that trying to provide a formal de-

scription of all phenomena labeled as multiword ex-

pressions as a whole is not possible, which becomes

obvious if one goes beyond English and tries to de-

scribe multiword expressions in heavily inflectional

and relatively free word order languages, such as

Polish. We have also shown the inadequacy of the

available classifications of multiword expressions

for computational processing of such languages.

In our opinion, a successful computational de-

scription of multiword expressions requires distin-

guishing two groups of units: idiosyncratic from

the point of view of morphosyntax and idiosyn-

cratic from the point of view of semantics. Such

a division allows for efficient use of existing tools

without the need of creating a cumbersome formal-

ism.

We believe that the practically oriented classifi-

cation presented above will allow us to build robust

tools for handling both types of multiword expres-

sions, which is the aim of our further research. The

immediate task is to build the syntactic preproces-

sor. We also plan to extend the classification to

make it slightly more fine-grained, which hopefully

will make even more efficient processing possible.
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ligent context-sensitive dictionary: A Polish-English
comprehension tool. In Human Language Tech-
nologies as a Challenge for Computer Science and
Linguistics. 2nd Language & Technology Conference
April 21–23, 2005,, pages 386–389, Poznań, Poland.

Ivan Sag, Timothy Baldwin, Francis Bond, Ann Copes-
take, and Dan Flickinger. 2002. Multiword expres-
sions: A pain in the neck for NLP. In Proc. of the 3rd
International Conference on Intelligent Text Process-
ing and Computational Linguistics (CICLing-2002),
pages 1–15, Mexico City, Mexico.

Benoı̂t Sagot and Pierre Boullier. 2005. From raw cor-
pus to word lattices: robust pre-parsing processing.
Archives of Control Sciences, special issue of selected
papers from LTC’05, 15(4):653–662.

Frédérique Segond and Elisabeth Breidt. 1995.
IDAREX: Formal description of German and French
multi-word expressions with finite state technology.
Technical Report MLTT-022, Rank Xerox Research
Centre, Grenoble.

Cornelia Tschichold. 2000. Multi-word units in natural
language processing. Georg Olms Verlag, Hildeseim,
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Abstract

This  paper  describes  an  algorithm  to 
automatically generate a list of cognates in 
a  target  language  by  means  of  Support 
Vector  Machines.  While  Levenshtein 
distance was used to align the training file, 
no  knowledge  repository  other  than  an 
initial  list  of  cognates  used  for  training 
purposes  was  input  into  the  algorithm. 
Evaluation  was  set  up  in  a  cognate 
production  scenario  which  mimed  a  real-
life  situation  where  no  word  lists  were 
available in the target language, delivering 
the ideal environment to test the feasibility 
of  a  more  ambitious  project  that  will 
involve  language  portability.  An  overall 
improvement of 50.58% over the baseline 
showed promising horizons.

1 Introduction

Cognates are words  that have similar spelling and 
meaning across different languages. They account 
for  a  considerable  portion  of  technical  lexicons, 
and  they  found  application  in  several  NLP 
domains.  Some  major  applications  fields  include 
relevant  areas  such  as  bilingual  terminology 
compilation and statistical machine translation.

So far algorithms for cognate recognition have 
been focussing predominantly on the detection of 
cognate words  in a  text,  e.g.  (Kondrak and Dorr 
2004).  Sometimes,  though,  the  detection  of 
cognates in free-flowing text is rather impractical: 
being able to predict the possible translation in the 
target  language  would  optimize  algorithms  that 
make  extensive  use  of  the  Web or  very  large 
corpora, since there would be no need to scan the 

whole  data  each  time  in  order  to  find  the 
correspondent item. The proposed approach aims to 
look at the same problem from a totally different 
perspective,  that  is  to  produce  an  information 
repository about the target language that could then 
be  exploited  in  order  to  predict  how  the 
orthography of a “possible” cognate in the target 
language should look like. This  is necessary when 
no plain word list is available in the target language 
or the list  is incomplete.  The proposed algorithm 
merges for the first time two otherwise well-known 
methods, adopting a specific tagger implementation 
which  suggests  new areas  of  application for  this 
tool. Furthermore, once language portability will be 
in place, the cognate generation exercise will allow 
to  reformulate  the  recognition  exercise  as  well, 
which is  indeed a more straightforward one. The 
algorithm described in this paper is based on the 
assumption  that  linguistic  mappings  show  some 
kind of regularity and that they can be exploited in 
order to draw a net of implicit rules by means of a 
machine learning approach.

Section 2 deals with previous work done on the 
field  of  cognate  recognition,  while  Section  3 
describes in detail the algorithm used for this study. 
An evaluation scenario will be drawn in Section 4, 
while  Section  5  will  outline  the  directions  we 
intend to take in the next months.

2 Previous Work

The identification of cognates is a quite challenging 
NLP task. The most renowned approach to cognate 
recognition is to use spelling similarities between 
the  two  words  involved.  The  most  important 
contribution to this methodology has been given by 
Levenshtein  (1965),  who  calculated  the  changes 
needed in order to transform one word into another 
by applying four different edit operations – match, 
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substitution, insertion and deletion – which became 
known under  the  name of  edit  distance  (ED).  A 
good case in point of a practical application of ED 
is represented by the studies in the field of lexicon 
acquisition from comparable corpora carried out by  
Koehn and Knight (2002) – who expand a list of 
English-German cognate words by applying well-
established  transformation rules  (e.g.  substitution 
of  k or  z by  c and of  –tät by  –ty, as in German 
Elektizität – English electricity) – as well as those 
that focused on word alignment in parallel corpora 
(e.g.  Melamed (2001)  and Simard et  al.  (1999)). 
Furthermore, Laviosa (2001) showed that cognates 
can be extremely helpful in translation studies, too.

Among others, ED was extensively used also by 
Mann  and  Yarowsky (2001),  who  try  to  induce 
translation  lexicons  between  cross-family 
languages  via  third languages.  Lexicons  are  then 
expanded  to  intra-family languages  by  means  of 
cognate  pairs  and  cognate  distance.  Related 
techniques  include  a  method  developed  by 
Danielsson and Mühlenbock (2000),  who associate 
two words by calculating the number of matching 
consonants, allowing for one mismatched character. 
A  quite  interesting  spin-off  was  analysed  by 
Kondrak  (2004),  who  first  highlighted  the 
importance of genetic cognates by comparing the 
phonetic  similarity of  lexemes  with  the  semantic 
similarity of the glosses.

A  general  overview  of  the  most  important 
statistical  techniques  currently  used  for  cognate 
detection purposes was delivered by Inkpen  et al. 
(2005),  who addressed the  problem of  automatic 
classification of  word  pairs  as  cognates  or  false 
friends  and  analysed  the  impact  of  applying 
different  features  through  machine  learning 
techniques.  In her  paper,  she also  proposed  a 
method  to  automatically  distinguish  between 
cognates  and  false  friends,  while  examining  the 
performance  of  seven  different  machine  learning 
classifiers.

Further applications of ED include Mulloni and 
Pekar (2006), who designed an algorithm based on 
normalized  edit  distance  aiming  to  automatically 
extract translation rules, for then applying them to 
the original cognate list in order to expand it, and 
Brew and McKelvie (1996), who used approximate 
string  matching  in  order  to  align  sentences  and 
extract  lexicographically  interesting  word-word 
pairs from multilingual corpora.

Finally, it  is  worth  mentioning  that  the  work 
done  on  automatic  named  entity  transliteration 
often crosses  paths  with  the  research on cognate 

recognition. One good pointer leads to Kashani et 
al. (2006), who used a three-phase algorithm based 
on  HMM  to  solve  the  transliteration  problem 
between Arabic and English.

All the methodologies described above showed 
good potential, each one in its own way. This paper 
aims to merge some successful ideas together, as 
well  as  providing  an  independent  and  flexible 
framework  that  could  be  applied  to  different 
scenarios.

3 Proposed Approach

When approaching the algorithm design phase, we 
were  faced with two major  decisions:  firstly, we 
had to decide which kind of machine learning (ML) 
approach should be  used to gather  the  necessary 
information, secondly we needed to determine how 
to exploit the knowledge base gathered in the most 
appropriate and productive way. As it turned out, 
the  whole  work  ended  up  to  revolve  around  the 
intuition that  a simple tagger could lead to quite 
interesting  results,  if  only  we  could  scale  down 
from  sentence  level  to  word  level,  that  is  to 
produce  a  tag for  single  letters  instead of  whole 
words.  In other  words,  we wanted to exploit  the 
analogy  between  PoS  tagging  and  cognate 
prediction:  given  a  sequence  of  symbols  –  i.e. 
source language unigrams – and tags aligned with 
them – i.e. target language n-grams –, we aim to 
predict tags for more symbols. Thereby the context 
provided  by  the  neighbors  of  a symbol  and  the 
previous tags are used as evidence to decide its tag. 
After  an  extensive  evaluation  of  the  major  ML-
based  taggers  available,  we  decided  to  opt  for 
SVMTool, a generator of sequential taggers based 
on  Support  Vector  Machines  developed  by 
Gimenez  and  Marquez  (2004).  In  fact,  various 
experiments carried out on similar software showed 
that  SVMTool was the most  suitable  one for  the 
type of data being examined, mainly because of its 
flexible approach to our input file. Also, SVMTool 
allows to define context by providing an adjustable 
sliding window for the extraction of features. Once 
the model was trained, we went on to create the 
most  orthographically  probable  cognate  in  the 
target language. The following sections exemplify 
the  cognate  creation  algorithm,  the  learning  step 
and the exploitation of the information gathered.

3.1 Cognate Creation Algorithm

Figure 1 shows the cognate creation algorithm in 
detail.
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Input: C1, a list of English-German cognate pairs 
{L1,L2}; C2, a test file of cognates in L1

Output: AL, a list of artificially constructed 
cognates in the target language 

1 for c in C1 do:
2 determine the edit operations to arrive 

from L1 to L2
3 use the edit operations to produce a 

formatted training file for the SVM tagger 
4 end
5 Learn orthographic mappings between L1 

and L2 (L1 unigram = instance, L2 n-gram = 
category)

6 Align all words of the test file vertically in a 
letter-by-letter fashion (unigram = instance)

7 Tag the test file with the SVM tagger
8 Group the tagger output into words and 

produce a list of cognate pairs

Figure 1. The cognate creation algorithm. 

Determination of the Edit Operations

The algorithm takes as input two distinct cognate 
lists, one for training and one for testing purposes. 
It is important to note that the input languages need 
to share the same alphabet, since the algorithm is 
currently still  depending on  edit  distance.  Future 
developments  will  allow for  language portability, 
which is already matter of study. The first sub-step 
(Figure 1, Line 2) deals with the determination of 
the  edit  operations  and  its  association  with  the 
cognate  pair,  as  shown  in  Figure  2.  The  four 
options provided by edit distance, as described by 
Levenshtein  (1965),  are  Match,  Substitution, 
Insertion and Deletion.

toilet/toilette

t    |o    |i    |l    |e    |t    |   |

t    |o    |i    |l    |e    |t    |t  |e

MATCH|MATCH|MATCH|MATCH|MATCH|MATCH|INS|INS

tractor/traktor

t    |r    |a    |c    |t    |o    |r

t    |r    |a    |k    |t    |o    |r

MATCH|MATCH|MATCH|SUBST|MATCH|MATCH|MATCH

absolute/absolut

a    |b    |s    |o    |l    |u    |t    |e

a    |b    |s    |o    |l    |u    |t    |

MATCH|MATCH|MATCH|MATCH|MATCH|MATCH|MATCH|DEL

Figure 2. Edit operation association

Preparation of the Training File

This sub-step  (Figure 1, Line 3)  turned out to be 
the  most  challenging  task,  since  we  needed  to 

produce the input file that offered the best layout 
possible for the machine learning module. We first 
tried to insert several empty slots between letters in 
the source language file, so that we could cope with 
maximally  two  subsequent  insertions.  While  all 
words are in lower case, we identified the spaces 
with a capital X, which would have allowed us to 
subsequently discard it without running the risk to 
delete useful letters in the last step of the algorithm. 
The  choice  of  manipulating  the  source  language 
file was supported by the fact that we were aiming 
to limit  the  features  of  the  ML module  to  27  at 
most, that is the letters of the alphabet from “a” to 
“z”  plus  the  upper  case  “X”  meaning  blank. 
Nonetheless,  we  soon  realized  that  the  space 
feature outweighed all other features and biased the  
output towards shorter words.  Also, the input word 
was  so  interspersed  that  it  did  not  allow  the 
learning machine  to  recognize  recurrent  patterns. 
Further  empirical  activity  showed  that  far  better 
results could be achieved by sticking to the original 
letter sequence in the source word and allow for an 
indefinite number of feature to be learned. This was 
implemented by  grouping  letters  on  the  basis  of 
their edit operation relation to the source language. 
Figure  3  exemplifies  a  typical  situation  where 
insertions and deletions are catered for.

START START START START

a a m m

b b a a

i i c k

o o r ro

g g o e

e e e e

n n c k

e e o o

t t n n

i i o o

c X m m

a X i is

l s c ch

l c . END

y h

. END

Figure 3. Layout of the training entries 
macroeconomic/makrooekonomisch and 
abiogenetically/abiogenetisch, showing insertions 
and deletions

As shown in Figure 3,  German diacritics have 
been substituted by their extended version – i.e. “ö” 
as  been  rendered  as  “oe”:  this  was  due  to  the 
inability  of  SVMTool  to  cope  with  diacritics. 
Figure 3 also shows how insertions and deletions 
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were  treated.  This  design  choice  caused  a  non-
foreseeable number of features to be learned by the 
ML module. While apparently a negative issue that  
could cause data to be too sparse to be relevant, we 
trusted our intuition that the feature growing graph 
would just flat out after an initial spike, that is the 
number  of  insertion  edits  would  not  produce  an 
explosion of source/target n-gram equivalents, but 
only  a  short  expansion  to  the  original  list  of 
mapping pairings.  This proved to be correct by the 
evaluation phase described below.

Learning Mappings Across Languages

Once the preliminary steps had been taken care of, 
the training file was passed on to SVMTlearn, the 
learning  module  of  SVMTool. At  this  point  the 
focus switches over to the tool itself, which learns 
regular  patterns  using  Support  Vector Machines 
and then uses the information gathered to tag any 
possible list of words  (Figure 1, Line 5). The tool 
chooses automatically the best scoring tag, but – as 
a matter of  fact  – it  calculates up to 10 possible 
alternatives  for  each  letter  and  ranks  them  by 
probability scores: in the current paper the reported 
results were based on the best scoring “tag”, but the 
algorithm  can  be  easily  modified  in  order  to 
accommodate the outcome of the combination of 
all 10 scores. As it will be shown later in Section 4,  
this is potentially of great interest if we intend to 
work in a cognate creation scenario.

As far the last three steps of the algorithm are 
concerned, they are closely related to the practical 
implementation  of  our  methodology, hence  they 
will be described extensively in Section 4.

4 Evaluation

In order to evaluate the cognate creation algorithm, 
we decided to set up a specific evaluation scenario 
where possible cognates needed to be identified but  
no word list  to choose from existed in the target 
language.  Specifically,  we  were  interested  in 
producing the correct word in the target language, 
starting  from a  list  of  possible  cognates  in  the 
source language. An alternative evaluation setting 
could  have  been  based  on  a  scenario  which 
included  a  scrambling and  matching routine,  but 
after the good results showed by Mulloni and Pekar 
(2006), we thought that yet a different environment 
would  have  offered  more  insight  into  the  field. 
Also, we wanted to evaluate the actual strength of 
our  approach,  in  order  to  decide  if  future  work 
should be heading this way.

4.1 Data

The method was evaluated on an English-German 
cognate  list  including  2105  entries.  Since  we 
wanted to keep as much data available for testing 
as  possible,  we  decided  to  split  the  list  in  80% 
training  (1683  entries)  and  20%  (422  entries) 
testing.

4.2 Task Description

The list used for training/testing purposes included 
cognates  only.  Therefore,  the  optimal  outcome 
would have been a word in the target language that 
perfectly matched the cognate of the corresponding 
source language word in the original file. The task 
was therefore a quite straightforward one:  train the 
SVM tagger  using  the  training  data  file  and  – 
starting from a list of words in the source language 
(English) – produce a word in the target language 
(German) that  looked as  close as possible  to the 
original  cognate  word.  Also,  we  counted  all 
occurrences  where  no  changes  across  languages 
took place – i.e. the target word was spelled in the 
very same way as the source word – and we set this  
number  as  a  baseline  for  the  assessment  of  our 
results.

Preparation of the Training and Test Files

The  training  file  was  formatted  as  described  in 
Section 3.1. In addition to that, the training and test 
files  featured  a  START/START delimiter  at  the 
beginning of the word and ./END delimiter at the 
end of it (Figure 1, Line 6). 

Learning Parameters

Once  formatting was  done,  the  training file  was 
passed  on  to  SVMTlearn.  Notably,  SVMTool 
comes  with  a  standard  configuration:  for  the 
purpose of this exercise we decided to keep most of 
the standard default parameters, while tuning only 
the settings related to the definition of the feature 
set. Also, because of the choices made during the 
design of the training file – i.e. to stick to a strict 
linear layout in the L1 word – we felt that a rather 
small context window of 5 with the core position 
set to 2 – that is, considering a context of 2 features  
before  and  2  features  after  the  feature  currently 
examined – could offer a good trade-off between 
accuracy and acceptable working times. Altogether 
185  features  were  learnt,  which  confirmed  the 
intuition  mentioned  in  Section  3.1.  Furthermore, 
when considering the feature definition, we decided 
to stick to unigrams, bigrams and trigrams, even if 
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up to five-grams were obviously possible. Notably, 
the configuration file pictured below shows how a 
Model 0 and a global left-right-left tagging option 
were  applied.  Both  choices  were  made  after  an 
extensive  empirical  observation  of  several 
model/direction combinations.  This  file  is  highly 
configurable  and  offers  a  vast  range  of  possible 
combinations. Future activities will concentrate to a 
greater  extent  on  the  experimentations  of  other 
possible configuration scenarios in order to find the  
tuning that  performs best.  Gimenez and Marquez 
(2004)  offer a  detailed description of  the  models 
and  all  available  options,  as  well  as  a  general 
introduction to the use of SVMtool, while Figure 4 
shows the feature set used to learn mappings from a 
list of English/German cognate pairs.

#ambiguous-right [default]

A0k = w(-2) w(-1) w(0) w(1) w(2) w(-2,-1) 

w(-1,0) w(0,1) w(1,2) w(-1,1) w(-2,2) 

w(-2,1) w(-1,2) w(-2,0) w(0,2) w(-2,-1,0) 

w(-2,-1,1) w(-2,-1,2) w(-2,0,1) w(-2,0,2) 

w(-1,0,1) w(-1,0,2) w(-1,1,2) w(0,1,2) p(-2) 

p(-1) p(0) p(1) p(2) p(-2,-1) p(-1,0) p(0,1) 

p(1,2) p(-1,1) p(-2,2) p(-2,1) p(-1,2) 

p(-2,0) p(0,2) p(-2,-1,0) p(-2,-1,1) 

p(-2,-1,2) p(-2,0,1) p(-2,0,2) p(-1,0,1) 

p(-1,0,2) p(-1,1,2) p(0,1,2) k(0) k(1) k(2) 

m(0) m(1) m(2)

Figure 4. Feature set for known words (A0k). The 
same feature set is used for unknown words (A0u), 
as well.

Tagging of the Test File and Cognate Generation

Following the learning step, a tagging routine was 
invoked,  which  produced the  best  scoring output 
for every single line – i.e. letter or word boundary – 
of the test file, which now looked very similar to 
the file we used for training (Figure 1, Line 7). At 
this  stage,  we  grouped  test  instances  together  to 
form words and associated each  L1 word with its 
newly generated counterpart in L2 (Figure 1, Line 
8).

4.3 Results

The generated words were then compared with the 
words included in the original cognate file.

When evaluating the results we decided to split 
the data into three classes, rather than two: “Yes” 
(correct), “No” (incorrect) and “Very Close”. The 
reason why we chose to add an extra class was that 
when  analysing  the  data  we  noticed  that  many 
important  mappings  were  correctly  detected,  but 
the  word  was  still  not  perfect  because  of  minor 

orthographic discrepancies that the tagging module 
did get right in a different entry. In such cases we 
felt that more training data would have produced a 
stronger  association  score  that  could  have 
eventually led to a correct output.  Decisions were 
made  by  an  annotator  with  a  well-grounded 
knowledge of Support  Vector Machines and their 
behaviour,  which  turned  out  to  be  quite  useful 
when deciding which output should be classified as 
“Very Close”. For fairness reasons, this extra class 
was added to the “No” class when delivering the 
final results.  Examples of  the “Very Close” class 
are reported in Table 1.

Original EN Original DE Output DE

majestically majestatetisch majestisch

setting setzend settend

machineries maschinerien machinerien

naked nakkt nackt

southwest suedwestlich suedwest

Table 1. Examples of the class “Very Close”.

In Figure 5 we show the  accuracy of the SVM-
based  cognate  generation  algorithm  versus  the 
baseline, adding the “Very Close” class to both the 
“Yes” class (correct) and the “No” class (incorrect).

Figure 5. Accuracy of the SVM-based algorithm 
vs. the baseline (blue line).

The test file included a total of 422 entries, with 
85 orthographically identical entries in  L1 and  L2 
(baseline). The SVM-based algorithm managed to 
produce 128 correct cognates, making errors in 264  
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cases. The “Very Close” class was assigned to 30 
entries.  Figure  5  shows that  30.33% of  the  total 
entries were correctly identified, while an increase 
of 50.58% over the baseline was achieved.

5 Conclusions and Future Work

In  this  paper  we  proposed  an  algorithm for  the 
automatic  generation  of  cognates  from  two 
different languages sharing the same alphabet. An 
increase of 50.58% over the baseline and a 30.33% 
of overall accuracy were reported. Even if accuracy 
is  rather  poor, if  we consider that  no knowledge 
repository other  than an initial list of cognates was 
available,  we  feel  that  the  results  are  still  quite 
encouraging.

As  far  as  the  learning  module  is  concerned, 
future ameliorations will focus on the fine tuning of 
the features used by the classifier as well as on the 
choice of the model, while main research activities 
are  still  concerned  with  the  development  of  a 
methodology allowing for language portability: as 
a  matter  of  fact,  n-gram  co-occurrencies  are 
currently  being  investigated  as  a  possible 
alternative to Edit Distance.
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Abstract

Effectively identifying events in unstruc-
tured text is a very difficult task. This is
largely due to the fact that an individual
event can be expressed by several sentences.
In this paper, we investigate the use of clus-
tering methods for the task of grouping the
text spans in a news article that refer to the
same event. The key idea is to cluster the
sentences, using a novel distance metric that
exploits regularities in the sequential struc-
ture of events within a document. When
this approach is compared to a simple bag
of words baseline, a statistically significant
increase in performance is observed.

1 Introduction

Accurately identifying events in unstructured text is
an important goal for many applications that require
natural language understanding. There has been an
increased focus on this problem in recent years. The
Automatic Content Extraction (ACE) program1 is
dedicated to developing methods that automatically
infer meaning from language data. Tasks include
the detection and characterisation of Entities, Rela-
tions, and Events. Extensive research has been ded-
icated to entity recognition and binary relation de-
tection with significant results (Bikel et al., 1999).
However, event extraction is still considered as one
of the most challenging tasks because an individual
event can be expressed by several sentences (Xu et
al., 2006).

In this paper, we primarily focus on techniques
for identifying events within a given news article.
Specifically, we describe and evaluate clustering

1http://www.nist.gov/speech/tests/ace/

methods for the task of grouping sentences in a news
article that refer to the same event. We generate
sentence clusters using three variations of the well-
documented Hierarchical Agglomerative Clustering
(HAC) (Manning and Schütze, 1999) as a baseline
for this task. We provide convincing evidence sug-
gesting that inherent structures exist in the manner in
which events appear in documents. In Section 3.1,
we present an algorithm which uses such structures
during the clustering process and as a result a mod-
est increase in accuracy is observed.

Developing methods capable of identifying all
types of events from free text is challenging for sev-
eral reasons. Firstly, different applications consider
different types of events and with different levels of
granularity. A change in state, a horse winning a
race and the race meeting itself can be considered
as events. Secondly, interpretation of events can be
subjective. How people understand an event can de-
pend on their knowledge and perspectives. There-
fore in this current work, the type of event to extract
is known in advance. As a detailed case study, we
investigate event discovery using a corpus of news
articles relating to the recent Iraqi War where the tar-
get event is the “Death” event type. Figure 1 shows
a sample article depicting such events.

The remainder of this paper is organised as fol-
lows: We begin with a brief discussion of related
work in Section 2. We describe our approach to
Event Discovery in Section 3. Our techniques are
experimentally evaluated in Section 4. Finally, we
conclude with a discussion of experimental observa-
tions and opportunities for future work in Section 5.

2 Related Research

The aim of Event Extraction is to identify any in-
stance of a particular class of events in a natural
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World News
Insurgents Kill 17 in Iraq
In Tikrit, gunmen killed 17 Iraqis as they were heading to work Sunday at a U.S. military facility.

Capt. Bill Coppernoll, said insurgents fired at several buses of Iraqis from two cars.

. . . . . . . . . . . . . . .

Elsewhere, an explosion at a market in Baqubah, about 30 miles north of Baghdad late Thursday.

The market was struck by mortar bombs according to U.S. military spokesman Sgt. Danny Martin.

. . . . . . . . . . . . . . .

Figure 1: Sample news article that describes multiple events.

language text, extract the relevant arguments of the
event, and represent the extracted information into
a structured form (Grishman, 1997). The types of
events to extract are known in advance. For exam-
ple, “Attack” and “Death” are possible event types
to be extracted. Previous work in this area focuses
mainly on linguistic and statistical methods to ex-
tract the relevant arguments of a event type. Lin-
guistic methods attempt to capture linguists knowl-
edge in determining constraints for syntax, mor-
phology and the disambiguation of both. Statistical
methods generate models based in the internal struc-
tures of sentences, usually identifying dependency
structures using an already annotated corpus of sen-
tences. However, since an event can be expressed
by several sentences, our approach to event extrac-
tion is as follows: First, identify all the sentences in
a document that refer to the event in question. Sec-
ond, extract event arguments from these sentences
and finally represent the extracted information of the
event in a structured form.

Particularly, in this paper we focus on clustering
methods for grouping sentences in an article that dis-
cuss the same event. The task of clustering simi-
lar sentences is a problem that has been investigated
particularly in the area of text summarisation. In
SimFinder (Hatzivassiloglou et al., 2001), a flexible
clustering tool for summarisation, the task is defined
as finding text units (sentences or paragraphs) that
contain information about a specific subject. How-
ever, the text features used in their similarity metric
are selected using a Machine Learning model.

3 Identifying Events within Articles

We treat the task of grouping together sentences that
refer to the same event(s) as a clustering problem.

As a baseline, we generate sentence clusters us-
ing average-link, single-link and complete-link Hi-
erarchical Agglomerative Clustering. HAC initially
assigns each data point to a singleton cluster, and
repeatedly merges clusters until a specified termi-
nation criteria is satisfied (Manning and Schütze,
1999). These methods require a similarity metric
between two sentences. We use the standard co-
sine metric over a bag-of-words encoding of each
sentence. We remove stopwords and stem each re-
maining term using the Porter stemming algorithm
(Porter, 1997). Our algorithms begin by placing
each sentence in its own cluster. At each itera-
tion we merge the two closest clusters. A fully-
automated approach must use some termination cri-
teria to decide when to stop clustering. In exper-
iments presented here, we adopt two manually su-
pervised methods to set the desired number of clus-
ters (k): “correct” k and “best” k. “Correct” sets k
to be the actual number of events. This value was
obtained during the annotation process (see Section
4.1). “Best” tunes k so as to maximise the quality of
the resulting clusters.

3.1 Exploiting Article Structure

Our baseline ignores an important constraint on the
event associated with each sentence: the position
of the sentence within the document. Documents
consist of sentences arranged in a linear order and
nearby sentences in terms of this ordering typically
refer to the same topic (Zha, 2002). Similarly we as-
sume that adjacent sentences are more likely to refer
to the same event, later sentences are likely to intro-
duce new events, etc. In this Section, we describe an
algorithm that exploits this document structure dur-
ing the sentence clustering process.
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The basic idea is to learn a model capable of cap-
turing document structure, i.e. the way events are
reported. Each document is treated as a sequence of
labels (1 label per sentence) where each label repre-
sents the event(s) discussed in that sentence. We de-
fine four generalised event label types: N, represents
a new event sentence; C, represents a continuing
event sentence (i.e. it discusses the same event as the
preceding sentence); B, represents a back-reference
to an earlier event; X, represents a sentence that does
not reference an event. This model takes the form of
a Finite State Automaton (FSA) where:

• States correspond to event labels.

• Transitions correspond to adjacent sentences
that mention the pair of events.

More formally, E = (S, s0, F, L, T) is a model
where S is the set of states, s0 ∈ S is the initial state,
F ⊆ S is the set of final states, L is the set of edge
labels and T ⊆ (S×L)×S is the set of transitions.
We note that it is the responsibility of the learning
algorithm to discover the correct number of states.

We treat the task of discovering an event model as
that of learning a regular grammar from a set of pos-
itive examples. Following Golds research on learn-
ing regular languages (Gold, 1967), the problem has
received significant attention. In our current experi-
ments, we use Thollard et al’s MDI algorithm (Thol-
lard et al., 2000) for learning the automaton. MDI
has been shown to be effective on a wide range of
tasks, but it must be noted that any grammar infer-
ence algorithm could be substituted.

To estimate how much sequential structure exists
in the sentence labels, the document collection was
randomly split into training and test sets. The au-
tomaton produced by MDI was learned using the
training data, and the probability that each test se-
quence was generated by the automaton was calcu-
lated. These probabilities were compared with those
of a set of random sequences (generated to have the
same distribution of length as the test data). The
probabilities of event sequences from our dataset
and the randomly generated sequences are shown
in Figure 2. The test and random sequences are
sorted by probability. The vertical axis shows the
rank in each sequence and the horizontal axis shows
the negative log probability of the sequence at each

Figure 2: Distribution in the probability that actual
and random event sequences are generated by the
automaton produced by MDI.

rank. The data suggests that the documents are in-
deed structured, as real document sequences tend to
be much more likely under the trained FSA than ran-
domly generated sequences.

We modify our baseline clustering algorithm to
utilise the structural information omitted by the au-
tomaton as follows: Let L(c1, c2) be a sequence
of labels induced by merging two clusters c1 and
c2. If P (L(c1, c2)) is the probability that sequence
L(c1, c2) is accepted by the automaton, and let
cos(c1, c2) be the cosine distance between c1 and c2.
We can measure the similarity between c1 and c2 as:

SIM(c1, c2) = cos(c1, c2)× P (L(c1, c2)) (1)

Let r be the number of clusters remaining. Then
there are r(r−1)

2 pairs of clusters. For each pair of
clusters c1,c2 we generate the resulting sequence of
labels that would result if c1 and c2 were merged.
We then input each label sequence to our trained
FSA to obtain the probability that it is generated by
the automaton. At each iteration, the algorithm pro-
ceeds by merging the most similar pair according to
this metric. Figure 3 illustrates this process in more
detail. To terminate the clustering process, we adopt
either the “correct” k or “best” k halting criteria de-
scribed earlier.

4 Experiments

4.1 Experimental Setup
In our experiments, we used a corpus of news arti-
cles which is a subset of the Iraq Body Count (IBC)
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Figure 3: The sequence-based clustering process.

dataset2. This is an independent public database of
media-reported civilian deaths in Iraq resulting di-
rectly from military attack by the U.S. forces. Casu-
alty figures for each event reported are derived solely
from a comprehensive manual survey of online me-
dia reports from various news sources. We obtained
a portion of their corpus which consists of 342 new
articles from 56 news sources. The articles are of
varying size (average sentence length per document
is 25.96). Most of the articles contain references to
multiple events. The average number of events per
document is 5.09. Excess HTML (image captions
etc.) was removed, and sentence boundaries were
identified using the Lingua::EN::Sentence perl mod-
ule available from CPAN3.

To evaluate our clustering methods, we use the
definition of precision and recall proposed by (Hess
and Kushmerick, 2003). We assign each pair of
sentences into one of four categories: (i) clustered
together (and annotated as referring to the same
event); (ii) not clustered together (but annotated as
referring to the same event); (iii) incorrectly clus-
tered together; (iv) correctly not clustered together.
Precision and recall are thus found to be computed
as P = a

a+c and R = a
a+b , and F1 = 2PR

P+R .
The corpus was annotated by a set of ten vol-

unteers. Within each article, events were uniquely
identified by integers. These values were then
mapped to one of the four label categories, namely
“N”, “C”, “X”, and “B”. For instance, sentences de-
scribing previously unseen events were assigned a
new integer. This value was mapped to the label cat-
egory “N” signifying a new event. Similarly, sen-

2http://iraqbodycount.org/
3http://cpan.org/

tences referring to events in a preceding sentence
were assigned the same integer identifier as that
assigned to the preceding sentence and mapped to
the label category “C”. Sentences that referenced an
event mentioned earlier in the document but not in
the preceding sentence were assigned the same inte-
ger identifier as that sentence but mapped to the label
category “B”. Furthermore, If a sentence did not re-
fer to any event, it was assigned the label 0 and was
mapped to the label category “X”. Finally, each doc-
ument was also annotated with the distinct number
of events reported in it.

In order to approximate the level of inter-
annotation agreement, two annotators were asked to
annotate a disjoint set of 250 documents. Inter-rater
agreements were calculated using the kappa statis-
tic that was first proposed by (Cohen, 1960). This
measure calculates and removes from the agreement
rate the amount of agreement expected by chance.
Therefore, the results are more informative than a
simple agreement average (Cohen, 1960; Carletta,
1996). Some extensions were developed including
(Cohen, 1968; Fleiss, 1971; Everitt, 1968; Barlow et
al., 1991). In this paper the methodology proposed
by (Fleiss, 1981) was implemented. Each sentence
in the document set was rated by the two annotators
and the assigned values were mapped into one of the
four label categories (“N”, “C”, “X”, and “B”). For
complete instructions on how kappa was calculated,
we refer the reader to (Fleiss, 1981). Using the an-
notated data, a kappa score of 0.67 was obtained.
This indicates that the annotations are somewhat in-
consistent, but nonetheless are useful for producing
tentative conclusions.

To determine why the annotators were having dif-
ficulty agreeing, we calculated the kappa score for
each category. For the “N”, “C” and “X” categories,
reasonable scores of 0.69, 0.71 and 0.72 were ob-
tained respectively. For the “B” category a relatively
poor score of 0.52 was achieved indicating that the
raters found it difficult to identify sentences that ref-
erenced events mentioned earlier in the document.
To illustrate the difficulty of the annotation task an
example where the raters disagreed is depicted in
Figure 4. The raters both agreed when assigning
labels to sentence 1 and 2 but disagreed when as-
signing a label to Sentence 23 . In order to correctly
annotate this sentence as referring to the event de-
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Sentence 1: A suicide attacker set off a bomb that tore through a funeral tent jammed with Shiite mourners Thursday.

Rater 1: label=1. Rater 2: label=1

Sentence 2: The explosion, in a working class neighbourhood of Mosul, destroyed the tent killing nearly 50 people.

Rater 1: label=1. Rater 2: label=1.

. . . . . . . . .

Sentence 23: At the hospital of this northern city, doctor Saher Maher said that at least 47 people were killed.

Rater 1: label=1. Rater 2: label=2.

Figure 4: Sample sentences where the raters disagreed.

Algorithm a-link c-link s-link
BL(correct k) 40.5 % 39.2% 39.6%

SEQ(correct k) 47.6%* 45.5%* 44.9%*
BL(best k) 52.0% 48.2% 50.9%

SEQ(best k) 61.0%* 56.9%* 58.6%*

Table 1: % F1 achieved using average-link (a-link),
complete-link (c-link) and single-link (s-link) varia-
tions of the baseline and sequence-based algorithms
when the correct and best k halting criteria are used.
Scores marked with * are statistically significant to
a confidence level of 99%.

scribe in sentence 1 and 2, the rater have to resolve
that “the northern city” is referring to “Mosul” and
that “nearly 50” equates to “at least 47”. These and
similar ambiguities in written text make such an an-
notation task very difficult.

4.2 Results

We evaluated our clustering algorithms using the F1
metric. Results presented in Table 1 were obtained
using 50:50 randomly selected train/test splits aver-
aged over 5 runs. For each run, the automaton pro-
duced by MDI was generated using the training set
and the clustering algorithms were evaluated using
the test set. On average, the sequence-based clus-
tering approach achieves an 8% increase in F1 when
compared to the baseline. Specifically the average-
link variation exhibits the highest F1 score, achiev-
ing 62% when the “best” k termination method is
used.

It is important to note that the inference produced
by the automaton depends on two values: the thresh-
old α of the MDI algorithm and the amount of label
sequences used for learning. The closer α is to 0,
the more general the inferred automaton becomes.

In an attempt to produce a more general automaton,
we chose α = 0.1. Intuitively, as more training data
is used to train the automaton, more accurate infer-
ences are expected. To confirm this we calculated
the %F1 achieved by the average-link variation of
the method for varying levels of training data. Over-
all, an improvement of approx. 5% is observed as
the percentage training data used is increased from
10% to 90%.

5 Discussion

Accurately identifying events in unstructured text is
a very difficult task. This is partly because the de-
scription of an individual event can spread across
several sentences. In this paper, we investigated
the use of clustering for the task of grouping sen-
tences in a document that refer to the same event.
However, there are limitations to this approach that
need to be considered. Firstly, results presented
in Section 4.2 suggest that the performance of the
clusterer depends somewhat on the chosen value
of k (i.e. the number of events in the document).
This information is not readily available. However,
preliminary analysis presented in (Naughton et al.,
2006) indicate that is possible to estimate this value
with reasonable accuracy. Furthermore, promising
results are observed when this estimated value is
used halt the clustering process. Secondly, labelled
data is required to train the automation used by our
novel clustering method. Evidence presented in Sec-
tion 4.1 suggests that reasonable inter-annotation
agreement for such an annotation task is difficult to
achieve. Nevertheless, clustering allows us to take
into account that the manner in which events are de-
scribed is not always linear. To assess exactly how
beneficial this is, we are currently treating this prob-
lem as a text segmentation task. Although this is a
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crude treatment of the complexity of written text, it
will help us to approximate the benefit (if any) of
applying clustering-based techniques to this task.

In the future, we hope to further evaluate our
methods using a larger dataset containing more
event types. We also hope to examine the inter-
esting possibility that inherent structures learned
from documents originating from one news source
(e.g. Aljazeera) differ from structures learned us-
ing documents originating from another source (e.g.
Reuters). Finally, a single sentence often contains
references to multiple events. For example, consider
the sentence “These two bombings have claimed the
lives of 23 Iraqi soldiers”. Our algorithms assume
that each sentence describes just one event. Future
work will focus on developing methods to automati-
cally recognise such sentences and techniques to in-
corporate them into the clustering process.
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Abstract

This paper presents the results of experi-
ments in which we tested different kinds of
features for retrieval of Chinese opinionated
texts. We assume that the task of retrieval of
opinionated texts (OIR) can be regarded as
a subtask of general IR, but with some dis-
tinct features. The experiments showed that
the best results were obtained from the com-
bination of character-based processing, dic-
tionary look up (maximum matching) and a
negation check.

1 Introduction

The extraction of opinionated information has re-
cently become an important research topic. Business
and governmental institutions often need to have in-
formation about how their products or actions are
perceived by people. Individuals may be interested
in other people’s opinions on various topics ranging
from political events to consumer products.

At the same time globalization has made the
whole world smaller, and a notion of the world as
a ‘global village’ does not surprise people nowa-
days. In this context we assume information in Chi-
nese to be of particular interest as the Chinese world
(the mainland China, Taiwan, Hong Kong, Singa-
pore and numerous Chinese communities all over
the world) is getting more and more influential over
the world economy and politics.

We therefore believe that a system capable of pro-
viding access to opinionated information in other
languages (especially in Chinese) might be of great
use for individuals as well as for institutions in-

volved in international trade or international rela-
tions.

The sentiment classification experiments pre-
sented in this paper were done in the context of
Opinionated Information Retrieval which is planned
to be a module in a Cross-Language Opinion Extrac-
tion system (CLOE). The main goal of this system is
to provide access to opinionated information on any
topic ad-hoc in a language different to the language
of a query.

To implement the idea the CLOE system which
is the context for the experiments described in the
paper will consist of four main modules:

1. Query translation

2. Opinionated Information Retrieval

3. Opinionated Information Extraction

4. Results presentation

The OIR module will process complex queries
consisting of a word sequence indicating a topic and
sentiment information. An example of such a query
is: ”Asus laptop + OPINIONS”, another, more de-
tailed query, might be ”Asus laptop + POSITIVE
OPINIONS”.

Another possible approach to the architecture of
the CLOE system would be to implement the pro-
cessing as a pipeline consisting, first, of using IR to
retrieve certain articles relevant to the topic followed
by second stage of classifying them according to
sentiment polarity. But such an approach probably
would be too inefficient, as the search will produce
a lot of irrelevant results (containing no opinionated
information).
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2 Chinese NLP and Feature Selection
Problem

One of the central problems in Chinese NLP is what
the basic unit1 of processing should be. The problem
is caused by a distinctive feature of the Chinese lan-
guage - absence of explicit word boundaries, while it
is widely assumed that a word is of extreme impor-
tance for any NLP task. This problem is also crucial
for the present study as the basic unit definition af-
fects the kinds of features to be used.

In this study we use a mixed approached, based
both on words (tokens consisting of more than one
character) and characters as basic units. It is also
important to note, that we use notion of words in
the sense of Vocabulary Word as it was stated by Li
(2000). This means that we use only tokens that are
listed in a dictionary, and do not look for all words
(including grammar words).

3 Related Work

Processing of subjective texts and opinions has re-
ceived a lot of interest recently. Most of the authors
traditionally use a classification-based approach for
sentiment extraction and sentiment polarity detec-
tion (for example, Pang et al. (2002), Turney (2002),
Kim and Hovy (2004) and others), however, the re-
search described in this paper uses the information
retrieval (IR) paradigm which has also been used by
some researchers.

Several sentiment information retrieval models
were proposed in the framework of probabilistic lan-
guage models by Eguchi and Lavrenko (2006). The
setting for the study was a situation when a user’s
query specifies not only terms expressing a certain
topic and also specifies a sentiment polarity of in-
terest in some manner, which makes this research
very similar to the present one. However, we use
sentiment scores (not probabilistic language mod-
els) for sentiment retrieval (see Section 4.1). Dave
et al. (Dave et al., 2003) described a tool for sift-
ing through and synthesizing product reviews, au-
tomating the sort of work done by aggregation sites
or clipping services. The authors of this paper used
probability scores of arbitrary-length substrings that
provide optimal classification. Unlike this approach

1In the context of this study terms “feature” and “basic unit”
are used interchangeably.

we use a combination of sentiment weights of char-
acters and words (see Section 4).

Recently several works on sentiment extraction
from Chinese texts were published. In a paper by
Ku et al. (2006a) a dictionary-based approach was
used in the context of sentiment extraction and sum-
marization. The same authors describe a corpus of
opinionated texts in another paper (2006b). This pa-
per also defines the annotations for opinionated ma-
terials. Although we use the same dictionary in our
research, we do not use only word-based approach
to sentiment detection, but we also use scores for
characters obtained by processing the dictionary as
a training corpus (see Section 4).

4 Experiments

In this paper we present the results of sentiment clas-
sification experiments in which we tested different
kinds of features for retrieval of Chinese opinionated
information.

As stated earlier (see Section 1), we assume that
the task of retrieval of opinionated texts (OIR) can
be regarded as a subtask of general IR with a query
consisting of two parts: (1) words indicating topic
and (2) a semantic class indicating sentiment (OPIN-
IONS). The latter part of the query cannot be speci-
fied in terms that can be instantly used in the process
of retrieval.

The sentiment part of the query can be further de-
tailed into subcategories such as POSITIVE OPIN-
IONS, NEGATIVE OPINIONS, NEUTRAL OPIN-
IONS each of which can be split according to sen-
timent intensity (HIGHLY POSITIVE OPINIONS,
SLIGHTLY NEGATIVE OPINIONS etc.). But
whatever level of categorisation we use, the query
is still too abstract and cannot be used in practice. It
therefore needs to be put into words and most prob-
ably expanded. The texts should also be indexed
with appropriate sentiment tags which in the context
of sentiment processing implies classification of the
texts according to presence / absence of a sentiment
and, if the texts are opinionated, according to their
sentiment polarity.

To test the proposed approach we designed two
experiments.

The purpose of the first experiment was to find the
most effective kind of features for sentiment polar-
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ity discrimination (detection) which can be used for
OIR 2. Nie et al. (2000) found that for Chinese IR
the most effective kinds of features were a combina-
tion of dictionary look up (longest-match algorithm)
together with unigrams (single characters). The ap-
proach was tested in the first experiment.

The second experiment was designed to test the
found set of features for text classification (index-
ing) for an OIR query of the first level (finds opin-
ionated information) and for an OIR query of the
second level (finds opinionated information with
sentiment direction detection), thus the classifier
should 1) detect opinionated texts and 2) classify the
found items either as positive or as negative.

As training corpus for the second experiment we
use the NTU sentiment dictionary (NTUSD) (by Ku
et al. (2006a))3 as well as a list of sentiment scores
of Chinese characters obtained from processing of
the same dictionary. Dictionary look up used the
longest-match algorithm. The dictionary has 2809
items in the “positive” part and 8273 items in the
“negative”. The same dictionary was also used as a
corpus for calculating the sentiment scores of Chi-
nese characters. The use of the dictionary as a
training corpus for obtaining the sentiment scores
of characters is justified by two reasons: 1) it is
domain-independent and 2) it contains only relevant
(sentiment-related) information. The above men-
tioned parts of the dictionary used as the corpus
comprised 24308 characters in the “negative” part
and 7898 characters in the “positive” part.

4.1 Experiment 1

A corpus of E-Bay4 customers’ reviews of products
and services was used as a test corpus. The total
number of reviews is 128, of which 37 are nega-
tive (average length 64 characters) and 91 are pos-
itive (average length 18 characters), all of the re-
views were tagged as ‘positive’ or ‘negative’ by the

2For simplicity we used only binary polarity in both exper-
iments: positive or negative. Thus terms “sentiment polarity”
and “sentiment direction” are used interchangeably in thispa-
per.

3Ku et al. (2006a) automatically generated the dictionary
by enlarging an initial manually created seed vocabulary by
consulting two thesauri, including tong2yi4ci2ci2lin2 and the
Academia Sinica Bilingual Ontological Wordnet 3.

4http://www.ebay.com.cn/

reviewers5.
We computed two scores for each item (a review):

one for positive sentiment, another for negative sen-
timent. The decision about an item’s sentiment po-
larity was made every time by finding the biggest
score of the two.

For every phrase (a chunk of characters between
punctuation marks) a score was calculated as:

Scphrase =
∑

(Scdictionary) +
∑

(Sccharacter)

whereScdictionary is a dictionary based score calcu-
lated using following formula:

Scdictionary =
Ld

Ls

∗ 100

whereLd - length of a dictionary item,Ls - length of
a phrase. The constant value 100 is used to weight
the score, obtained by a series of preliminary tests
as a value that most significantly improved the accu-
racy.

The sentiment scores for characters were obtained
by the formula:

Sci = Fi/F(i+j)

whereSci is the sentiment score for a character for a
given classi, Fi - the character’s relative frequency
in a classi, F(i+j) - the character’s relative frequency
in both classesi andj taken as one unit. The relative
frequency of characterc is calculated as

Fc =

∑
Nc∑

N(1...n)

where
∑

Nc is a number of the character’s occur-
rences in the corpus, and

∑
N(1...n) is the number of

all characters in the same corpus.
Preliminary tests showed that inverting all the

characters for whichSci ≤ 1 improves accuracy.
The inverting is calculated as follows:

Scinverted = Sci − 1

We compute scores rather than probabilities since
we are combining information from two distinct
sources (characters and words).

5The corpus is available at
http://www.informatics.sussex.ac.uk/users/tz21/corpSmall.zip.
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In addition to the features specified (characters
and dictionary items) we also used a simple negation
check. The system checked two most widely used
negations in Chinese:bu andmei. Every phrase was
compared with the following pattern:negation+ 0-2
characters+ phrase. The scores of all the unigrams
in the phrase that matched the pattern were multi-
plied by -1.

Finally, the score was calculated for an item as the
sum of the phrases’ scores modified by the negation
check:

Scitem =
∑

(Scphrase ∗NegCheck)

For sentiment polarity detection the item scores
for each of the two polarities were compared to each
other: the polarity with bigger score was assigned to
the item.

SentimentPolarity = argmax(Sci|Scj)

whereSci is an item score for one polarity andScj

is an item score for the other.
The main evaluation measure was accuracy of

sentiment identification, expressed in percent.

4.1.1 Results of Experiment 1

To find out which kinds of features perform best
for sentiment polarity detection the system was run
several times with different settings.

Running without character scores (with dictionary
longest-match only) gave the following results: al-
most 64% of positive and near 65% for negative re-
views were detected correctly, which is 64% accu-
racy for the whole corpus (note that a baseline clas-
sifier tagging all items as positive achieves an accu-
racy of 71.1%). Characters with sentiment scores
alone performed much better on negative reviews
(84% accuracy) rather than on positive (65%), but
overall performance was still better: 70%. Both
methods combined gave a significant increase on
positive reviews (73%) and no improvement on neg-
ative (84%), giving 77% overall. The last run was
with the dictionary look up, the characters and the
negation check. The results were: 77% for positive
and 89% for negative, 80% corpus-wide (see Table
1).

Judging from the results it is possible to suggest
that both the word-based dictionary look up method

Method Positive Negative All
Dictionary 63.7 64.8 64.0
Characters 64.8 83.7 70.3

Characters+Dictionary 73.6 83.7 76.5
Char’s+Dictionary+negation 76.9 89.1 80.4

Table 1: Results of Experiment 1 (accuracy in per-
cent).

and character-based method contributed to the final
result. It also corresponds to the results obtained by
Nie et al. (2000) for Chinese information retrieval,
where the same combination of features (characters
and words) also performed best.

The negation check increased the performance by
3% overall, up to 80%. Although the performance
gain is not very high, the computational cost of this
feature is very low.

As we used a non-balanced corpus (71% of the
reviews are positive), it is quite difficult to compare
the results with the results obtained by other authors.
But the proposed classifier outperformed some stan-
dart classifiers on the same data set: a Naive Bayes
(multinomial) classifier gained only 49.6 % of ac-
curacy (63 items tagged correctly) while a Support
vector machine classifier got 64.5 % of accuracy (82
items).6

4.2 Experiment 2

The second experiment included two parts: deter-
mining whether texts are opinionated which is a pre-
condition for the processing of the OPINION part of
the query; and tagging found texts with relevant sen-
timent for processing a more detailed form of this
query POSITIVE/NEGATIVE OPINION.

For this experiment we used the features that
showed the best performance as described in section
4.1: the dictionary items and the characters with the
sentiment scores.

The test corpus for this experiment consisted of
282 items, where every item is a paragraph. We used
paragraphs as basic items in this experiment because
of two reasons: 1. opinionated texts (reviews) are
usually quite short (in our corpus all of them are one
paragraph), while texts of other genres are usually
much longer; and 2. for IR tasks it is more usual to
retrieve units longer then a sentence.

6We used WEKA 3.4.10
(http://www.cs.waikato.ac.nz/ ml/weka )
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The test corpus has following structure: 128 items
are opinionated, of which 91 are positive and 37 are
negative (all the items are the reviews used in the
first experiment, see 4.1). 154 items are not opin-
ionated, of which 97 are paragraphs taken from a
scientific book on Chinese linguistics and 57 items
are from articles taken form a Chinese on-line ency-
clopedia Baidu Baike7.

For the first task we used the following tech-
nique: every item was assigned a score (a sum of the
characters’ scores and dictionary scores described in
4.1). The score was divided by the number of char-
acters in the item to obtain the average score:

averScitem =
Scitem

Litem

where Scitem is the item score, andLitem is the
length of an item (number of characters in it).

A positive and a negative average score is com-
puted for each item.

4.2.1 Results of Experiment 2

To determine whether an item is opinionated (for
OPINION query), the maximum of the two scores
was compared to a threshold value. The best perfor-
mance was achieved with the threshold value of 1.6
- more than 85% of accuracy8 (see Table 2).

Next task (NEGATIVE/POSITIVE OPINIONS)
was processed by comparing the negative and pos-
itive scores for each found item (see Table 2).

Query Recall Precision F-measure
OPINION 71.8 85.1 77.9

POS/NEG OPINION 64.0 75.9 69.4

Table 2: Results of Experiment 2 (in percent).

Although the unopinionated texts are very dif-
ferent from the opinionated ones in terms of genre
and topic, the standard classifiers (Naive Bayes
(multinomial) and SVM) failed to identify any non-
opinionated texts. The most probable explanation
for this is that there were no items tagged ‘unopin-
ionated’ in the training corpus (the sentiment dictio-
nary) and there were only words and phrases with
predominant sentiment meaning rather then topic-
related.

7http://baike.baidu.com/
8A random choice could have approximately 55% of accu-

racy if tagged all items as negative.

It is worth noting that we observed the same rela-
tion between subjectivity detection and polarity clas-
sification accuracy as described by Pang and Lee
(2004) and Eriksson (2006). The accuracy of the
sentiment detection of opinionated texts (excluding
erroneously detected unopinionated texts) in Exper-
iment 2 has increased by 13% for positive reviews
and by 6% for negative reviews (see Table 3).

Query Positive Negative
Experiment 1 76.9 89.1
Experiment 2 89.9 95.6

Table 3: Accuracy of sentiment polarity detection of
opinionated texts (in percent).

5 Conclusion and Future Work

These preliminary experiments showed that using
single characters and dictionary items modified by
the negation check can produce reasonable results:
about 78% F-measure for sentiment detection (see
4.1.1) and almost 70% F-measure for sentiment
polarity identification (see 4.2.1) in the context
of domain-independent opinionated information re-
trieval. However, since the test corpus is very small
the results obtained need further validation on bigger
corpora.

The use of the dictionary as a training corpus
helped to avoid domain-dependency, however, using
a dictionary as a training corpus makes it impossible
to obtain grammar information by means of analysis
of punctuation marks and grammar word frequen-
cies.

More intensive use of context information could
improve the accuracy. The dictionary-based pro-
cessing may benefit from the use of word relations
information: some words have sentiment informa-
tion only when used with others. For example,
a noundongxi (‘a thing’) does not seem to have
any sentiment information on its own, although it
is tagged as ‘negative’ in the dictionary.

Some manual filtering of the dictionary may im-
prove the output. It might also be promising to test
the influence on performance of the different classes
of words in the dictionary, for example, to use only
adjectives or adjectives and nouns together (exclud-
ing adverbials).

Another technique to be tested is computing the
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positive and negative scores for the characters used
only in one class, but absent in another. In the cur-
rent system, characters are assigned only one score
(for the class they are present in). It might improve
accuracy if such characters have an appropriate neg-
ative score for the other class.

Finally, the average sentiment score may be used
for sentiment scaling. For example, if in our exper-
iments items with a score less than 1.6 were con-
sidered not to be opinionated, then ones with score
more than 1.6 can be put on a scale where higher
scores are interpreted as evidence for higher senti-
ment intensity (the highest score was 52). The “scal-
ing” approach could help to avoid the problem of as-
signing documents to more than one sentiment cate-
gory as the approach uses a continuous scale rather
than a predefined number of rigid classes. The scale
(or the scores directly) may be used as a means of
indexing for a search engine comprising OIR func-
tionality.
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Abstract

I review a number of grammar induction
algorithms (ABL, Emile, Adios), and test
them on the Eindhoven corpus, resulting in
disappointing results, compared to the usu-
ally tested corpora (ATIS, OVIS). Also, I
show that using neither POS-tags induced
from Biemann’s unsupervised POS-tagging
algorithm nor hand-corrected POS-tags as
input improves this situation. Last, I argue
for the development of entirely incremental
grammar induction algorithms instead of the
approaches of the systems discussed before.

1 Introduction

Grammar induction is a task within the field of nat-
ural language processing that attempts to construct a
grammar of a given language solely on the basis of
positive examples of this language. If a successful
method is found, this will have both practical appli-
cations and considerable theoretical implications.

Concerning the practical side, this will make the
engineering of NLP systems easier, especially for
less widely studied languages. One can conceive
successful GI algorithms as an inspiration for sta-
tistical machine translation systems.

Theoretically, grammar induction is important as
well. One of the main assertions in the nativist’s
position is the Poverty of the Stimulus argument,
which means that the child does not perceive enough
positive examples of language throughout his early
youth to have learned the grammar from his parents,
without the help of innate knowledge (or: Universal

Grammar), that severely constrains the number of
hypotheses (i.e. grammars) that he can learn. Proved
more strictly for formal grammars, Gold’s (1967)
work showed that one cannot learn any type of su-
perfinite grammar (e.g. regular languages, context-
free languages), if one only perceives (an unlim-
ited amount of) positive examples. After, say,n ex-
amples, there is always more than 1 grammar that
would be able to explain the seen examples, thus
these grammar might give different judgments on an
n + 1th example, of which it is impossible to say in
advance which judgment is the correct one.

But, given this is true, isn’t the grammar induction
pursuit deemed to fail? Not really. First, there are
hints that children do receive negative information,
and that they use it for grammar acquisition. Also,
the strictness required by Gold is not needed, and an
approximation in the framework of PAC (Probably
Approximately Correct) or VC (Vapnis and Cher-
vonenkis) could then suffice. This, and other argu-
ments favouring the use of machine learning tech-
niques in linguistic theory testing, are very well re-
viewed in Lappin and Shieber (2007).

Several attempts have been made to create such
systems. The authors of these systems reported
promising results on the ATIS and OVIS treebanks. I
tried to replicate these findings on the more compli-
cated Eindhoven treebank, which turned out to yield
disappointing results, even inferior to very simple
baselines. As an attempt to ameliorate this, and as
an attempt to confirm Klein and Manning’s (2002)
and Bod’s (2006) thesis that good enough unsuper-
vised POS-taggers exist to justify using POS-tags
instead of words in evaluating GI systems, I pre-
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sented the algorithms with both POS-tags that were
induced from Biemann’s unsupervised POS-tagging
algorithm and hand-corrected POS-tags. This did
not lead to improvement.

2 Current Grammar Induction Models

2.1 Algorithms

Grammar induction models can be split up into two
types: tag-based and word-based grammar induc-
tion. The key feature that distinguishes between
these two is the type of input. Tag-based systems
receive part-of-speech tags as their input (i.e. the
words are already labelled), and only induce rules
using the given tags. This kind of work is done
by, for instance, Klein and Manning (2005). On the
other hand, word-based models accept plain text as
its input, and have to extract both the categories and
the syntactic rules from given input.

Recently, several word-based grammar induction
algorithms have been developed: Alignment-Based
Learning (van Zaanen, 2002), Adios (Solan et al.,
2005), Emile (Adriaans, 1992; Adriaans and Ver-
voort, 2002) and GraSp1 (Henrichsen, 2002). Al-
though the means of computation and underlying
aims differ, they all rely to a certain extent on Har-
ris’ principle (1951): if two word groups constitute
the same category, then they can be interchanged in
any sentence, without damaging the grammaticality
of that sentence. Hence, these GI system depend on
the inverse: if two word groups appear to occur in
the same contexts, they probably possess the same
syntactic characteristics.

The most prominent example of this principle is
Alignment-Based Learning, or ABL, (van Zaanen,
2002). This algorithm consists of two stages. First,
all sentences are aligned such that it finds a shared
and a distinct part of all pairs of sentences, sug-
gesting that the distinct parts have the same type.
For example, consider the pair ‘I saw the man’ and
‘I saw John’. Here, ’John’ and ’the man’ are cor-
rectly identified as examples of the same type (NP’s
in this case). The second step, that takes the same
corpus as input, tries to identify the constituents in
that sentence. Because the generated constituents
found in the previous step might overlap, the correct

1As there was no current working version of this system, I
did not include it in this project.

John
(.)

Pat
(.)

Jim
(.)

walks x x
talks x x
smiles x x

Table 1: An example of some context/expression
pairs to show the workings of EMILE. Note that, un-
der standard settings, a rule covering this entire table
will be inferred, causing a phrase like ‘John talks’ to
be accepted, although there was no such input sen-
tence.

ones have to be selected. Simple heuristics are used
to achieve this, for example to take the constituent
that was generated first (ABL-first) or to take the
constituent with the highest score on some proba-
bilistic function (ABL-leaf). For details, I refer to
van Zaanen (2000). Because ABL compares all sen-
tences in the corpus with all other sentences, the al-
gorithm is quadratic in the number of sentences, but
has low memory demands. Interestingly, ABL does
not come up with an explicit grammar, but generates
just a bracketed version of the corpus instead.

Adios (Solan et al., 2005) uses Harris’ principle
as well, although it attempts to create a grammar
(either context-free or context-sensitive) more ex-
plicitly. The algorithm represents language as a di-
rected pseudograph2, with equivalence classes(ini-
tially single words) as nodes. Input sentences can
be regarded as ‘snakes’ over the nodes in the graph.
If enough support is found, words are merged into
equivalence classes, or frequently occurring edges
are put in apath(a rule in usual grammatical terms).
This generalisation process is done iteratively, until
convergence is reached.

Emile (Adriaans, 1992; Adriaans and Vervoort,
2002) is the system that to a greater extent tries to
pinpoint its reasons to accept a linguistic hypothe-
sis. Each rule is divided intoexpressionsandtypes,
where types should be the interchangeable part of
two sentences. Instead of explicitly comparing each
sentence with all other sentences, it incrementally
builds up a table of type/expression pairs, and on the
basis of this table rules are extracted. An example is
given in table 1. This incrementality has two major

2This is a graph that allows for loops and multiple edges.
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consequences: it makes the system vastly more effi-
cient in terms of time, at the cost of rising memory
demands, and it models time linearly, in contrast to
ABL and Adios.

2.2 Evaluation

Different methods of evaluation are used in GI. One
of them is visual inspection (Henrichsen, 2002).
This is not a reproducible and independent evalua-
tion measure, and it does certainly not suffice as an
assessment of the quality of the results. However,
Roberts and Atwell (2003) argue that this evaluation
should still be included in GI discussions.

A second evaluation method is shown by Solan
et al. (2005), in which Adios had to carry out a test
that is available on the Internet: English as a Second
Language (ESL). This test shows three sentences, of
which the examinee has to say which sentence is the
grammatical one. Adios answers around 60% cor-
rect on these questions, which is considered as inter-
mediate for a person who has had 6 years of English
lessons. Although this sounds impressive, no exam-
ples of test sentences are given, and the website is
not available anymore, so we are not able to assess
this result.

A third option is to have sentences generated by
the induced grammar judged on their naturalness,
and compare this average with the average of the
sentences of the original corpus. Solan et al. (2005)
showed that the judgments of Adios generated sen-
tences were comparable to the sentences in their cor-
pus. However, the algorithm might just generates
overly simple utterances, and will receive relatively
high scores that it doesn’t deserve.

The last option for evaluation is to compare the
parses with hand-annotated treebanks. This gives
the most quantifiable and detailed view on the per-
formance of a GI system. An interesting compara-
tive study between Emile and ABL using this eval-
uation method is available in van Zaanen and Adri-
aans (2001) where F-scores of 41.4% (Emile) and
61.7% (ABL) are reported on the OVIS (Openbaar
Vervoer Informatie Systeem3; Dutch) corpus, and
25.4% and 39.2% on the ATIS (Air Traffic Informa-
tion System; English) corpus.

3This acronym means Public Transport Information System.

3 Experiment 1

3.1 Motivation

A major choice in evaluating GI systems is to decide
which corpus to train the algorithm on. The cre-
ators of ABL and Emile chose to test on the ATIS
and OVIS corpus, which is, I believe, an unfortu-
nate choice. These corpora contain sentences that
are spoken to a computer, and represent a very lim-
ited subset of language. Deep recursion, one of the
aspects that is hard to catch in grammar induction,
does not occur often. The average sentence lengths
are 7.5 (ATIS) and 4.4 (OVIS). If we want to know
whether a system is truly capable of bootstrapping
knowledge about language, there is only one way to
test it: by using natural language that is unlimited
in its expressive power. Therefore, I will test ABL,
Adios and Emile on the Eindhoven corpus, that con-
tains 7K sentences, with an average length of ap-
proximately 20 tokens. This is, as far as I know, the
first attempt to train and test word-based GI algo-
rithms on such a complicated corpus.

3.2 Method

The Eindhoven corpus has been automatically anno-
tated by Alpino (Bouma et al., 2000; van der Beek
et al., 2002), a wide-coverage hand-written parser
for Dutch, with around 90% dependency triple ac-
curacy. Afterwards, this treebank has been manu-
ally corrected. The treebank does not literally con-
tain trees, but graphs: some nodes can be copied, so
that linguistic structure can be analyzed in more de-
tail. However, by removing all double nodes it is still
possible to retrieve a list of bracket-tuples from these
graphs. The graphs are also non-concatenative,
meaning that a constituent can span word groups that
are not contiguous. Therefore, if a sentence contains
a constituentwi...wjwk...wl, with k − j > 1, three
bracket-tuples are generated:(i, j), (k, l) and(i, l).

Evaluation of the algorithm is done according to
PARSEVAL, except for a few changes that are also
proposed by Klein and Manning (2002). The set of
bracket-pairs that is found in the Alpino treebank
are calledfacts, and those from a grammar induc-
tion algorithmpredictions. The intersection of the
facts and predictions are calledhits. From these we
can compute the unlabeled precision, recall and F-
score. The subtleties adopted from Klein and Man-
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ning are the following: constituents of length 0 or 1,
constituents that span the whole sentence and con-
stituents just excluding punctuation are not taken
into account, as these are obvious predictions.

Three baselines were created: an algorithm that
always branches left4, idem for right-branching and
an algorithm that performs binary branching on ran-
dom points in the sentence. Note that left-branching
and right-branching yield the maximum number of
predictions.

3.3 Results

From the results in table 2, it can be seen that ABL
scores best: it is the only one that is able to slightly
outperform the random baseline. This is surpris-
ing, because it is the least complicated system of the
three. Adios and Emile performed poorly. It ap-
pears that, with larger sentences, the search space
become too sparse to actually induce any meaning-
ful structure. This is expressed in the low number of
predictions per sentence that Adios (1.5) and Emile
(0.7) make. Adjusting support parameters, to make
the algorithm accept more hypotheses, did not have
the intended effect. Still, notice that Emile has a rel-
atively high precision.

In sum, none of the systems is convincingly able
to outperform the very simple baselines. Neither
did visual inspection give the impression that mean-
ingful information was derived. Therefore, it can
be concluded that current word-based GI algorithms
are not equipped to derive syntactic structure from
corpora as complicated as the Eindhoven corpus.

4 Experiment 2

4.1 Motivation

The second experiment deals with the difference
between tag-based and word-based systems. Intu-
itively, the latter task seems to be more challenging.
Still, Klein and Manning (2002) and Bod (2006)
stick to tag-based models. Their argumentation is
twofold.

First, Bod assumes that unsupervised POS-
tagging can be done successfully, without explic-
itly showing results that can confirm this. Klein
and Manning did tag their text using a simple un-
supervised POS-tagging algorithm, and this mod-

4For example: [ [ [ I saw ] the ] large ] house.

erately harmed their performance: their Context-
Constituent Model’s F-score on Wall Street Journal
text fell from 71.1% to 63.2%.

Second, Klein and Manning created context vec-
tors for a number of non-terminals (NP, VP, PP), and
extracted the two principal components from these
vectors. They did the same with contexts of con-
stituents and distituents. The distribution of these
vectors suggest that the non-terminals were easier
to distinguish from each other than the constituents
from the distituents, suggesting that POS-tagging is
easier than finding syntactic rules. However, this
result would be more convincing if this is true for
POS-tags as well.

4.2 Method

In order to test the argument above, and as an at-
tempt to improve the results from the previous ex-
periment, POS-tags were induced using Biemann’s
unsupervised POS-tagger (Biemann, 2006). Be-
cause that algorithm needs at least 50M words to
work reliably, it was trained on the concatenation of
the Eindhoven corpus and the CLEF corpus (70M
words, also newspaper text). The tags of the Eind-
hoven corpus are then used as input for the GI al-
gorithms, both under same settings as experiment 1.
The evaluation was done the same way as in experi-
ment 1.

The same method was carried out using hand-
corrected tags. Large and equal improvements will
imply the justification for tag-based grammar in-
duction. If the models only improve on the hand-
corrected tags, this will suggest the opposite.

4.3 Results

The results can be found in table 3. Generally, more
predictions were made with respect to experiment 1,
due to the denser search space. Only a convergence
to the baseline was achieved, especially by Adios
and Emile, that were very low in predictions in the
first experiment. Again, none of the tested systems
was able to clearly outperform the baselines.

Because using neither induced nor hand-corrected
made the systems work more reliably, there seems to
be no strong evidence in favor or against Bod’s and
Klein and Manning’s conjecture. Therefore, there is
no sound justification for tag-based grammar induc-
tion yet.
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Method Hits/Predictions Precision Recall F-score
Left 5.8K / 119K 4.9% 9.2% 6.4%
Right 4.4K / 119K 3.6% 6.9% 4.8%
Random 11K / 93K 11.7% 17.3% 14.0%
ABL-leaf 4.0K / 24K 16.9% 6.4% 9.3%
ABL-first 13K / 113K 11.6% 20.8% 14.9%
Adios 319 / 11K 2.8% 0.5% 0.9%
Emile 912 / 5.2K 17.3% 1.5% 2.7%

Table 2: This table shows the results of experiment 1. Left, Right and Random are baseline scores. The two
variants of ABL differ in the selection phase. 62.9K facts were found in the Alpino treebank.

Induced tags Hand-corrected tags
Method Hits/Pred.’s Precision Recall F-score Hits/Pred.’s Precision Recall F-score
ABL-leaf 5K / 30K 16.8% 8.1% 10.9% 7.0K / 34K 21.0% 11.2% 14.6%
ABL-first 11K / 125K 9.2% 18.2% 12.2% 12.6K / 123K 10.3% 20.0% 13.6%
Adios 2.7K / 24K 11.2% 4.3% 6.3% 2.2K / 20K 11.0% 3.5% 5.3%
Emile 1.8K / 16K 11.2% 2.9% 4.6% 1.7K / 19K 8.9% 2.7% 4.1%

Table 3: This table shows the results of experiment 2. The baseline scores are identical to the ones in
experiment 1.

5 Discussion

The results from experiment 1 and 2 clearly show
that ABL, Adios and Emile have severe shortcom-
ings, and that they cannot derive meaningful struc-
ture from language as complicated as the Eindhoven
corpus. An important reason for this is that a cor-
pus with only 7K sentences is not able to sufficiently
cover the search space. This can be seen from the
very low number of predictions made by Adios and
Emile: there was not enough support to accept hy-
potheses.

But how should we proceed? Any algorithm
based solely on Harris’ principle can be either incre-
mental (Emile) or non-incremental (ABL, Adios).
The previous experiments show that very large cor-
pora are needed to mitigate the very sparse search
space, leading me to conclude that non-incremental
systems are not suitable for the problem of gram-
mar induction. Also, incremental systems have the
advantage of an intuitive notion of time: it is al-
ways clear which working hypothesis of a grammar
is maintained.

Emile retains a Boolean table with all combina-
tions of types and expressions it has encountered up
until a given moment. This means that very infre-

quent words demand a disproportionally large part
of the memory. Therefore, all found words and rules
should be divided into three groups: pivotal, nor-
mal and infrequent. Initially, all encountered words
are infrequent. Transitions to the normal and piv-
otal stage occur when an estimator of the relative
frequency is high enough, for example by taking the
lower bound of the confidence interval (Mikheev,
1997). Ultimately, the number of words in the nor-
mal and pivotal stage will converge to a constant.
For example, if the relative frequency of a word
should be larger than 0.01 to become pivotal, there
can only be 100 of these words. Because one can
define upper limits for pivotal and normal words,
the size of the bookkeeping table is limited as well.
Also, when the system starts inducing syntactic cate-
gories of words, very infrequent words should not be
parsed as a separate category initially, but as a mem-
ber of another open-class category. This connects to
the cross-linguistic tendency that infrequent words
generally have simple complementation patterns.

One very important question remains: what in-
tuitions should this imaginary system use to induce
rules? First, all sentences should be sorted by length.
Then, for each sentence, the following steps are
taken:

47



• Update the bookkeeping tables.

• Parse the sentence as deeply as possible.

• If the sentence cannot be parsed completely,
induce all possible rules that would make the
parse complete. Add all these rules to the book-
keeping tables.

The last step deserves some extra attention. If
the algorithm encounters the sentence ‘he is such a
(.)’, we can safely infer that the unknown word at
(.) is a noun. Inducing complementation patterns
should be possible as well. Imagine that the algo-
rithm understands NP’s and transitive verbs. Then
consider the following: ‘John gave Tim a book’.
It will parse ‘John gave Tim’ as a sentence, and ‘a
book’ as a noun phrase. Because these two should
be connected, a number of hypotheses are generated,
for example: ‘a book’ is a complement of ‘Tim’; ‘a
book’ is a complement of ‘John gave Tim’; ‘a book’
is a second complement of ‘gave’. Naturally, only
the last hypothesis is correct. All three inductions
are included, but only the last is likely to be repro-
duced in later sentences in the corpus, because sen-
tences of the form ‘(.) gave (.) (.)’ are more likely
than ‘John gave Tim (.)’ and ‘Tim (.)’.

6 Acknowledgments

I would like to thank Jennifer Spenader, Gertjan van
Noord and the anonymous reviewers for providing
me their invaluable comments.

References

Pieter W. Adriaans and Mark R. Vervoort. 2002. The
EMILE 4.1 grammar induction toolbox. InProceed-
ings of the 6th International Colloquium on Gram-
mar Induction (ICGI), pages 293–295, Amsterdam,
the Netherlands.

Pieter W. Adriaans. 1992.Language learning from a cat-
egorial perspective. Ph.D. thesis, University of Ams-
terdam, NL.

Chris Biemann. 2006. Unsupervised part-of-speech tag-
ging employing efficient graph clustering. InProceed-
ings of ACL/COLING-2006 Students Research Work-
shop, pages 7–12, Sydney, Australia.

Rens Bod. 2006. An all-subtrees approach to unsuper-
vised parsing. InProceedings of ACL/COLING-2006,
pages 865–872, Sydney, Australia.

Gosse Bouma, Gertjan van Noord, and Robert Malouf.
2000. Alpino: wide-coverage computational analysis
of Dutch. InProceedings of Computational Linguis-
tics in the Netherlands (CLIN), pages 45–59, Tilburg,
the Netherlands.

E. Mark Gold. 1967. Language identification in the
limit. Information and Control, 16:447–474.

Zellig S. Harris. 1951.Methods in Structural Linguis-
tics. University of Chicago Press, Chicago.

Peter J. Henrichsen. 2002. GraSp: Grammar learning
from unlabelled speech corpora. InProceedings of
CoNLL-2002, pages 22–28, Pennsylvania, PA, USA.

Dan Klein and Christopher D. Manning. 2002. A gener-
ative Constituent-Context Model for improved gram-
mar induction. InProceedings of ACL-2001, pages
128–135, Toulouse, France.

Dan Klein and Christopher D. Manning. 2005. Nat-
ural language grammar induction with a genera-
tive constituent-context model.Pattern Recognition,
9(38):1407–1419.

Shalom Lappin and Stuart M. Shieber. 2007. Machine
learning theory and practice as a source of insight into
universal grammar.Computational Linguistics, 43:1–
34.

Andrei Mikheev. 1997. Automatic rule induction for
unknown-word guessing.Computational Linguistics,
23(3):405–423.

Andrew Roberts and Eric Atwell. 2003. The use of cor-
pora for automatic evaluation of grammar inference
systems. InProceedings of the Corpus Linguistics
2003 conference, pages 657–661, Lancaster, United
Kingdom.

Zach Solan, David Horn, Eytan Ruppin, and Shimon
Edelman. 2005. Unsupervised learning of natural lan-
guages.Proceedings of the National Academy of Sci-
ences, 102(33):11629–11634.

Leonoor van der Beek, Gosse Bouma, Robert Malouf,
and Gertjan van Noord. 2002. The Alpino depen-
dency treebank. InProceedings of Computational Lin-
guistics in the Netherlands (CLIN) 2001, pages 8–22,
Enschede, the Netherlands.

Menno van Zaanen and Pieter W. Adriaans. 2001.
Alignment-Based Learning versus EMILE: A compar-
ison. InProceedings of the 13th Dutch-Belgian Artifi-
cial Intelligence Conference (BNAIC), pages 315–322,
Amsterdam, the Netherlands.

Menno van Zaanen. 2002. Implementing Alignment-
Based Learning. InProceedings of the 6th Interna-
tional Colloquium on Grammatical Inference (ICGI),
pages 312–314, Amsterdam, the Netherlands.

48



Proceedings of the ACL 2007 Student Research Workshop, pages 49–54,
Prague, June 2007. c©2007 Association for Computational Linguistics

Logistic Online Learning Methods and Their Application to
Incremental Dependency Parsing

Richard Johansson

Department of Computer Science

Lund University

Lund, Sweden

richard@cs.lth.se

Abstract

We investigate a family of update methods

for online machine learning algorithms for

cost-sensitive multiclass and structured clas-

sification problems. The update rules are

based on multinomial logistic models. The

most interesting question for such an ap-

proach is how to integrate the cost function

into the learning paradigm. We propose a

number of solutions to this problem.

To demonstrate the applicability of the al-

gorithms, we evaluated them on a number

of classification tasks related to incremental

dependency parsing. These tasks were con-

ventional multiclass classification, hiearchi-

cal classification, and a structured classifica-

tion task: complete labeled dependency tree

prediction. The performance figures of the

logistic algorithms range from slightly lower

to slightly higher than margin-based online

algorithms.

1 Introduction

Natural language consists of complex structures,

such as sequences of phonemes, parse trees, and dis-

course or temporal graphs. Researchers in NLP have

started to realize that this complexity should be re-

flected in their statistical models. This intuition has

spurred a growing interest of related research in the

machine learning community, which in turn has led

to improved results in a wide range of applications

in NLP, including sequence labeling (Lafferty et al.,

2001; Taskar et al., 2006), constituent and depen-

dency parsing (Collins and Duffy, 2002; McDon-

ald et al., 2005), and logical form extraction (Zettle-

moyer and Collins, 2005).

Machine learning research for structured prob-

lems have generally used margin-based formula-

tions. These include global batch methods such as

Max-margin Markov Networks (M3N) (Taskar et al.,

2006) and SVMstruct (Tsochantaridis et al., 2005)

as well as online methods such as Margin Infused

Relaxed Algorithm (MIRA) (Crammer and Singer,

2003) and the Online Passive-Aggressive Algorithm

(OPA) (Crammer et al., 2006). Although the batch

methods are formulated very elegantly, they do not

seem to scale well to the large training sets prevalent

in NLP contexts. The online methods on the other

hand, although less theoretically appealing, can han-

dle realistically sized data sets.

In this work, we investigate whether logistic

online learning performs as well as margin-based

methods. Logistic models are easily extended to us-

ing kernels; that this is theoretically well-justified

was shown by Zhu and Hastie (2005), who also

made an elegant argument that margin-based meth-

ods are in fact related to regularized logistic models.

For batch learning, there exist several learning algo-

rithms in a logistic framework for conventional mul-

ticlass classification but few for structured problems.

Prediction of complex structures is conventionally

treated as a cost-sensitive multiclass classification

problem, although special care has to be taken to

handle the large space of possible outputs. The in-

tegration of the cost function into the logistic frame-

work leads to two distinct (although related) update

methods: the Scaled Prior Variance (SPV) and the

Minimum Expected Cost (MEC) updates.

Apart from its use in structured prediction, cost-

sensitive classification is useful for hierachical clas-

sification, which we briefly consider here in an ex-

periment. This type of classification has useful ap-
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plications in NLP. Apart from the obvious use in

classification of concepts in an ontology, it is also

useful for prediction of complex morphological or

named-entity tags. Cost-sensitive learning is also

required in the SEARN algorithm (Daumé III et al.,

2006), which is a method to decompose the predic-

tion problem of a complex structure into a sequence

of actions, and train the search in the space of action

sequences to maximize global performance.

2 Algorithm

Wemodel the learning problem as finding a discrim-

inant function F that assigns a score to each possible

output y given an input x. Classification in this set-

ting is done by finding the ŷ that maximizes F (x, y).
In this work, we consider linear discriminants of the

following form:

F (x, y) = 〈w,Ψ(x, y)〉

Here,Ψ(x, y) is a numeric feature representation of
the pair (x, y) and w a vector of feature weights.

Learning in this case is equivalent to assigning ap-

propriate weights in the vector w.

In the online learning framework, the weight vec-

tor is constructed incrementally. Algorithm 1 shows

the general form of the algorithm. It proceeds a

number of times through the training set. In each

step, it computes an update to the weight vector

based on the current example. The resulting weight

vector tends to be overfit to the last few examples;

one way to reduce overfitting is to use the average

of all successive weight vectors as the result of the

training (Freund and Schapire, 1999).

Algorithm 1 General form of online algorithms

input Training set T = {(xt, yt)}Tt=1

Number of iterations N

for n in 1..N
for (xt, yt) in T
Compute update vector δw for (xt, yt)
w ← w + δw

return waverage

Following earlier online learning methods such as

the Perceptron, we assume that in each update step,

we adjust the weight vector by incrementally adding

feature vectors. For stability, we impose the con-

straint that the sum of the updates in each step should

be zero. We assume that the possible output values

are {yi}
m
i=0 and, for convenience, that y0 is the cor-

rect value. This leads to the following ansatz:

δw =

m∑

j=1

αj(Ψ(x, y0)−Ψ(x, yj))

Here, αj defines how much F is shifted to favor y0

instead of yj . This is also the approach (implicitly)

used by other algorithms such as MIRA and OPA.

The following two subsections present two ways

of creating the weight update δw, differing in how

the cost function is integrated into the model. Both

are based on a multinomial logistic framework,

where we model the probability of the class y being

assigned to an input x using a “soft-max” function

as follows:

P (y|x) =
eF (x,y)

∑m
j=0 e

F (x,yj)

2.1 Scaled Prior Variance Approach

The first update method, Scaled Prior Variance

(SPV), directly uses the probability of the correct

output. It uses a maximum a posteriori approach,

where the cost function is used by the prior.

Naïvely, the update could be done by maximizing

the likelihood with respect to α in each step. How-

ever, this would lead to overfitting – in the case of

separability, a maximum does not even exist. We

thus introduce a regularizing prior that penalizes

large values ofα. We introduce variance-controlling

hyperparameters sj for each αj , and with a Gaussian

prior we obtain (disregarding constants) the follow-

ing log posterior:

L(α) =

m∑

j=1

αj(K00 −Kj0)−
m∑

j=1

sjα
2
j

− log
m∑

k=0

efk+
Pm

j=1
αj(K0k−Kjk)

where Kij = 〈Ψ(x, yi),Ψ(x, yj)〉 and fk =
F (x, yk) (i.e. the output before w is updated).

As usual, the feature vectors occur only in inner

products, allowing us to use kernels if appropriate.
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We could have used any prior; however, in prac-

tice we will require it to be log-concave to avoid

suboptimal local maxima. A Laplacian prior (i.e.

−
∑m

j=1 sj|αj |) will also be considered in this work
– the discontinuity of its gradient at the origin seems

to pose no problem in practice.

Costs are incorporated into the model by as-

sociating them to the prior variances. We tried

two variants of variance scaling. In the first case,

we let the variance be directly proportional to the

cost (C-SPV):

sj =
γ

c(yj)

where γ is a tradeoff parameter controlling the rel-

ative weight of the prior with respect to the likeli-

hood. Intuitively, this model allows the algorithm

more freedom to adjust an αj associated with a yj

with a high cost.

In the second case, inspired by margin-based

learning we instead scaled the variance by the loss,

i.e. the scoring error plus the cost (L-SPV):

sj =
γ

max(0, fj − f0) + c(yj)

Here, the intuition is instead that the algorithm is

allowed more freedom for “dangerous” outputs that

are ranked high but have high costs.

2.2 Minimum Expected Cost Approach

In the second approach to integrating the cost func-

tion, the Minimum Expected Cost (MEC) update,

the method seeks to minimize the expected cost in

each step. Once again using the soft-max probabil-

ity, we get the following expectation of the cost:

E(c(y)|x) =
m∑

k=0

c(yk)P (yk|x)

=

∑m
k=0 c(yk)e

fk+
Pm

j=1
αj(K0k−Kjk)

∑m
k=0 e

fk+
Pm

j=1
αj(K0k−Kjk)

This quantity is easily minimized in the same way

as the SPV posterior was maximized, although

we had to add a constant 1 to the expectation to
avoid numerical instability. To avoid overfitting, we

added a quadratic regularizer γ
∑m

j=1 α
2
j to log(1 +

E(c(y)|x)) just like the prior in the SPV method,

although this regularizer does not have an interpre-

tation as a prior.

The MEC update is closely related to SPV: for

cost-insensitive classification (i.e. the cost of every

misclassified instance is 1), the expectation is equal
to one minus the likelihood in the SPV model.

2.3 Handling Complex Prediction Problems

The algorithm can thus be used for any cost-

sensitive classification problem. This class of prob-

lems includes prediction of complex structures such

as trees or graphs. However, for those problems the

set of possible outputs is typically very large. Two

broad categories of solutions to this problem have

been common in literature, both of which rely on

the structure of the domain:

• Subset selection: instead of working with the
complete range of outputs, only an “interest-

ing” subset is used, for instance by repeatedly

finding the most violated constraints (Tsochan-

taridis et al., 2005) or by using N -best search

(McDonald et al., 2005).

• Decomposition: the inherent structure of the
problem is used to factorize the optimiza-

tion problem. Examples include Markov de-

compositions in M3N (Taskar et al., 2006)

and dependency-based factorization for MIRA

(McDonald et al., 2005).

In principle, both methods could be used in our

framework. In this work, we use subset selec-

tion since it is easy to implement for many do-

mains (in the form of an N -best search) and al-

lows a looser coupling between the domain and the

learning algorithm.

2.4 Implementation Issues

Since we typically work with only a few variables in

each iteration, maximizing the log posterior or mini-

mizing the expectation is easy (assuming, of course,

that we chose a log-concave prior). We used gra-

dient ascent and did not try to use more sophisti-

cated optimization procedures like BFGS or New-

ton’s method. Typically, only a few iterations were

needed to reach the optimum. The running time of

the update step is almost identical to that of MIRA,

which solves a small quadratic program in each step,

but longer than for the Perceptron algorithm or OPA.
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Actions Parser actions Conditions

Initialize (nil,W, ∅)
Terminate (S, nil, A)
Left-arc (n|S, n′|I,A)→ (S, n′|I,A ∪ {(n′, n)}) ¬∃n′′(n′′, n) ∈ A
Right-arc (n|S, n′|I,A)→ (n′|n|S, I,A ∪ {(n, n′)}) ¬∃n′′(n′′, n′) ∈ A
Reduce (n|S, I,A)→ (S, I,A) ∃n′(n′, n) ∈ A
Shift (S, n|I,A)→ (n|S, I,A)

Table 1: Nivre’s parser transitions where W is the initial word list; I , the current input word list; A, the

graph of dependencies; and S, the stack. (n′, n) denotes a dependency relations between n′ and n, where n′

is the head and n the dependent.

3 Experiments

To compare the logistic online algorithms against

other learning algorithms, we performed a set of ex-

periments in incremental dependency parsing using

the Nivre algorithm (Nivre, 2003).

The algorithm is a variant of the shift–reduce al-

gorithm and creates a projective and acyclic graph.

As with the regular shift–reduce, it uses a stack S

and a list of input words W , and builds the parse

tree incrementally using a set of parsing actions (see

Table 1). However, instead of finding constituents,

it builds a set of arcs representing the graph of de-

pendencies. It can be shown that every projective

dependency graph can be produced by a sequence

of parser actions, and that the worst-case number of

actions is linear with respect to the number of words

in the sentence.

3.1 Multiclass Classification

In the first experiment, we trained multiclass clas-

sifiers to choose an action in a given parser state

(see (Nivre, 2003) for a description of the feature

set). We stress that this is true multiclass classifica-

tion rather than a decomposed method (such as one-

versus-all or pairwise binarization).

As a training set, we randomly selected 50,000

instances of state–action pairs generated for a

dependency-converted version of Penn Treebank.

This training set contained 22 types of actions (such

as SHIFT, REDUCE, LEFT-ARC(SUBJECT), and

RIGHT-ARC(OBJECT). The test set was also ran-

domly selected and contained 10,000 instances.

We trained classifiers using the logistic updates

(C-SPV, L-SPV, and MEC) with Gaussian and

Laplacian priors. Additionally, we trained OPA

and MIRA classifiers, as well as an Additive Ultra-

conservative (AU) classifier (Crammer and Singer,

2003), a variant of the Perceptron.

For all algorithms, we tried to find the best val-

ues of the respective regularization parameter using

cross-validation. All training algorithms iterated five

times through the training set and used an expanded

quadratic kernel.

Table 2 shows the classification error for all algo-

rithms. As can be seen, the performance was lower

for the logistic algorithms, although the difference

was slight. Both the logistic (MEC and SPV) and

the margin-based classifiers (OPA and MIRA) out-

performed the AU classifier.

Method Test error

MIRA 6.05%
OPA 6.17%
C-SPV, Laplace 6.20%
MEC, Laplace 6.21%
C-SPV, Gauss 6.22%
MEC, Gauss 6.23%
L-SPV, Laplace 6.25%
L-SPV, Gauss 6.26%
AU 6.39%

Table 2: Multiclass classification results.

3.2 Hierarchical Classification

In the second experiment, we used the same train-

ing and test set, but considered the selection of the

parsing action as a hierarchical classficiation task,

i.e. the predicted value has a main type (SHIFT,

REDUCE, LEFT-ARC, and RIGHT-ARC) and possi-

bly also a subtype (such as LEFT-ARC(SUBJECT) or
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RIGHT-ARC(OBJECT)).

To predict the class in this experiment, we used

the same feature function but a new cost function:

the cost of misclassification was 1 for an incorrect
parsing action, and 0.5 if the action was correct but
the arc label incorrect.

We used the same experimental setup as in the

multiclass experiment. Table 3 shows the average

cost on the test set for all algorithms. Here, the

MEC update outperformed the margin-based ones

by a negligible difference. We did not use AU in

this experiment since it does not optimize for cost.

Method Average cost

MEC, Gauss 0.0573
MEC, Laplace 0.0576
OPA 0.0577
C-SPV, Gauss 0.0582
C-SPV, Laplace 0.0587
MIRA 0.0590
L-SPV, Gauss 0.0590
L-SPV, Laplace 0.0632

Table 3: Hierarchical classification results.

3.3 Prediction of Complex Structures

Finally, we made an experiment in prediction of de-

pendency trees. We created a global model where

the discriminant function was trained to assign high

scores to the correct parse tree. A similar model was

previously used by McDonald et al. (2005), with the

difference that we here represent the parse tree as

a sequence of actions in the incremental algorithm

rather than using the dependency links directly.

For a sentence x and a parse tree y, we defined

the feature representation by finding the sequence

((S1, I1) , a1) , ((S2, I2) , a2) . . . of states and their
corresponding actions, and creating a feature vector

for each state/action pair. The discriminant function

was thus written

〈Ψ(x, y),w〉 =
∑

i

〈ψ((Si, Ii) , ai),w〉

where ψ is the feature function from the previous

two experiments, which assigns a feature vector to a

state (Si, Ii) and the action ai taken in that state.

The cost function was defined as the sum of link

costs, where the link cost was 0 for a correct depen-
dency link with a correct label, 0.5 for a correct link
with an incorrect label, and 1 for an incorrect link.
Since the history-based feature set used in the

parsing algorithm makes it impossible to use inde-

pendence to factorize the scoring function, an exact

search to find the best-scoring action sequence is not

possible. We used a beam search of width 2 in this
experiment.

We trained models on a 5000-word subset of the

Basque Treebank (Aduriz et al., 2003) and evalu-

ated them on a 8000-word subset of the same cor-

pus. As before, we used an expanded quadratic ker-

nel, and all algorithms iterated five times through the

training set.

Table 4 shows the results of this experiment. We

show labeled accuracy instead of cost for ease of in-

terpretation. Here, the loss-based SPV outperformed

Method Labeled Accuracy

L-SPV, Gauss 66.24
MIRA 66.19
MEC, Gauss 65.99
C-SPV, Gauss 65.84
OPA 65.45
MEC, Laplace 64.81
C-SPV, Laplace 64.73
L-SPV, Laplace 64.50

Table 4: Results for dependency tree prediction.

MIRA, and two other logistic updates also outper-

formed OPA. The differences between the first four

scores are however not statistically significant. In-

terestingly, all updates with Laplacian prior resulted

in low performance. The reason for this may be that

Laplacian priors tend to promote sparse solutions

(see Krishnapuram et al. (2005), inter alia), and that

this sparsity is detrimental for this highly lexicalized

feature set.

4 Conclusion and Future Work

This paper presented new update methods for online

machine learning algorithms. The update methods

are based on a multinomial logistic model. Their

performance is on par with other state-of-the-art on-

line learning algorithms for cost-sensitive problems.
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We investigated two main approaches to integrat-

ing the cost function into the logistic model. In the

first method, the cost was linked to the prior vari-

ances, while in the second method, the update rule

sets the weights to minimize the expected cost. We

tried a few different priors. Which update method

and which prior was the best varied between exper-

iments. For instance, the update where the prior

variances were scaled by the costs was the best-

performing in the multiclass experiment but the

worst-performing in the dependency tree prediction

experiment.

In the SPV update, the cost was incorporated into

the MAP model in a rather ad-hoc fashion. Al-

though this seems to work well, we would like to

investigate this further and possibly devise a cost-

based prior that is both theoretically well-grounded

and performs well in practice.

To achieve a good classification performance us-

ing the updates presented in this article, there is a

considerable need for cross-validation to find the

best value for the regularization parameter. This is

true for most other classification methods as well,

including SVM, MIRA, and OPA. There has been

some work on machine learning methods where this

parameter is tuned automatically (Tipping, 2001),

and a possible extension to our work could be to

adapt those models to the multinomial and cost-

sensitive setting.

We applied the learning models to three problems

in incremental dependency parsing, the last of which

being prediction of full labeled dependency trees.

Our system can be seen as a unification of the two

best-performing parsers presented at the CoNLL-X

Shared Task (Buchholz and Marsi, 2006).
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Abstract

This paper compares different measures of
graphemic similarity applied to the task
of bilingual lexicon induction between a
Swiss German dialect and Standard Ger-
man. The measures have been adapted
to this particular language pair by training
stochastic transducers with the Expectation-
Maximisation algorithm or by using hand-
made transduction rules. These adaptive
metrics show up to 11% F-measure improve-
ment over a static metric like Levenshtein
distance.

1 Introduction

Building lexical resources is a very important step in
the development of any natural language processing
system. However, it is a time-consuming and repeti-
tive task, which makes research on automatic induc-
tion of lexicons particularly appealing. In this pa-
per, we will discuss different ways of finding lexical
mappings for a translation lexicon between a Swiss
German dialect and Standard German. The choice
of this language pair has important consequences on
the methodology. On the one hand, given the so-
ciolinguistic conditions of dialect use (diglossia), it
is difficult to find written data of high quality; par-
allel corpora are virtually non-existent. These data
constraints place our work in the context of scarce-
resource language processing. On the other hand,
as the two languages are closely related, the lexical
relations to be induced are less complex. We argue
that this point alleviates the restrictions imposed by
the scarcity of the resources. In particular, we claim
that if two languages are close, even if one of them is

scarcely documented, we can successfully use tech-
niques that require training.

Finding lexical mappings amounts to finding
word pairs that are maximally similar, with respect
to a particular definition of similarity. Similarity
measures can be based on any level of linguistic
analysis: semantic similarity relies on context vec-
tors (Rapp, 1999), while syntactic similarity is based
on the alignment of parallel corpora (Brown et al.,
1993). Our work is based on the assumption that
phonetic (or rather graphemic, as we use written
data) similarity measures are the most appropriate
in the given language context because they require
less sophisticated training data than semantic or syn-
tactic similarity models. However, phonetic simi-
larity measures can only be used for cognate lan-
guage pairs, i.e. language pairs that can be traced
back to a common historical origin and that possess
highly similar linguistic (in particular, phonologi-
cal and morphological) characteristics. Moreover,
we can only expect phonetic similarity measures to
induce cognate word pairs, i.e. word pairs whose
forms and significations are similar, as a result of a
historical relationship.

We will present different models of phonetic sim-
ilarity that are adapted to the given language pair. In
particular, attention has been paid to develop tech-
niques requiring little manually annotated data.

2 Related Work

Our work is inspired by Mann and Yarowsky
(2001). They induce translation lexicons between
a resource-rich language (typically English) and a
scarce resource language of another language fam-
ily (for example, Portuguese) by using a resource-
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rich bridge language of the same family (for ex-
ample, Spanish). While they rely on existing
translation lexicons for the source-to-bridge step
(English-Spanish), they use string distance models
(called cognate models) for the bridge-to-target step
(Spanish-Portuguese). Mann and Yarowsky (2001)
distinguish between static metrics, which are suffi-
ciently general to be applied to any language pair,
and adaptive metrics, which are adapted to a spe-
cific language pair. The latter allow for much finer-
grained results, but require more work for the adap-
tation. Mann and Yarowsky (2001) use variants of
Levenshtein distance as a static metric, and a Hidden
Markov Model (HMM) and a stochastic transducer
trained with the Expectation-Maximisation (EM) al-
gorithm as adaptive metrics. We will also use Leven-
shtein distance as well as the stochastic transducer,
but not the HMM, which performed worst in Mann
and Yarowsky’s study.

The originality of their approach is that they ap-
ply models used for speech processing to cognate
word pair induction. In particular, they refer to a
previous study by Ristad and Yianilos (1998). Ris-
tad and Yianilos showed how a stochastic transducer
can be trained in a non-supervised manner using the
EM algorithm and successfully applied their model
to the problem of pronunciation recognition (sound-
to-letter conversion). Jansche (2003) reviews their
work in some detail, correcting thereby some errors
in the presentation of the algorithms.

Heeringa et al. (2006) present several modifica-
tions of the Levenshtein distance that approximate
linguistic intuitions better. These models are pre-
sented in the framework of dialectometry, i.e. they
provide numerical measures for the classification of
dialects. However, some of their models can be
adapted to be used in a lexicon induction task. Kon-
drak and Sherif (2006) use phonetic similarity mod-
els for cognate word identification.

Other studies deal with lexicon induction for cog-
nate language pairs and for scarce resource lan-
guages. Rapp (1999) extends an existing bilin-
gual lexicon with the help of non-parallel cor-
pora, assuming that corresponding words share co-
occurrence patterns. His method has been used by
Hwa et al. (2006) to induce a dictionary between
Modern Standard Arabic and the Levantine Arabic
dialect. Although this work involves two closely re-

lated language varieties, graphemic similarity mea-
sures are not used at all. Nevertheless, Schafer and
Yarowsky (2002) have shown that these two tech-
niques can be combined efficiently. They use Rapp’s
co-occurrence vectors in combination with Mann
and Yarowsky’s EM-trained transducer.

3 Two-Stage Models of Lexical Induction

Following the standard statistical machine transla-
tion architecture, we represent the lexicon induction
task as a two-stage model. In the first stage, we use
the source word to generate a fixed number of can-
didate translation strings, according to a transducer
which represents a particular similarity measure. In
the second stage, these candidate strings are filtered
through a lexicon of the target language. Candidates
that are not words of the target language are thus
eliminated.

This article is, like previous work, mostly con-
cerned with the comparison of different similarity
measures. However, we extend previous work by
introducing two original measures (3.3 and 3.4) and
by embedding the measures into the proposed two-
stage framework of lexicon induction.

3.1 Levenshtein Distance
One of the simplest string distance measures is the
Levenshtein distance. According to it, the distance
between two words is defined as the least-cost se-
quence of edit and identity operations. All edit oper-
ations (insertion of one character, substitution of one
character by another, and deletion of one character)
have a fixed cost of 1. The identity operation (keep-
ing one character from the source word in the target
word) has a fixed cost of 0. Levenshtein distance op-
erates on single letters without taking into account
contextual features. It can thus be implemented in
a memoryless (one-state) transducer. This distance
measure is static – it remains the same for all lan-
guage pairs. We will use Levenshtein distance as a
baseline for our experiments.

3.2 Stochastic Transducers Trained with EM
The algorithm presented by Ristad and Yianilos
(1998) enables one to train a memoryless stochastic
transducer with the Expectation-Maximisation (EM)
algorithm. In a stochastic transducer, all transitions
represent probabilities (rather than costs or weights).
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The transduction probability of a given word pair is
the sum of the probabilities of all paths that gen-
erate it. The goal of using the EM algorithm is to
find the transition probabilities of a stochastic trans-
ducer which maximise the likelihood of generating
the word pairs given in the training stage. This
goal is achieved iteratively by using a training lex-
icon consisting of correct word pairs. The initial
transducer contains uniform probabilities. It is used
to transduce the word pairs of the training lexicon,
thereby counting all transitions used in this process.
Then, the transition probabilities of the transducer
are reestimated according to the frequency of usage
of the transitions counted before. This new trans-
ducer is then used in the next iteration.

This adaptive model is likely to perform better
than the static Levenshtein model. For example, to
transduce Swiss German dialects to Standard Ger-
man, inserting n or e is much more likely than in-
serting m or i. Language-independent models can-
not predict such specific facts, but stochastic trans-
ducers learn them easily. However, these improve-
ments come at a cost: a training bilingual lexicon of
sufficient size must be available. For scarce resource
languages, such lexicons often need to be built man-
ually.

3.3 Training without a Bilingual Corpus

In order to further reduce the data requirements,
we developed another strategy that avoided using a
training bilingual lexicon altogether and used other
resources for the training step instead. The main
idea is to use a simple list of dialect words, and the
Standard German lexicon. In doing this, we assume
that the structure of the lexicon informs us about
which transitions are most frequent. For example,
the dialect word chue ‘cow’ does not appear in the
Standard German lexicon, but similar words like
Kuh ‘cow’, Schuh ‘shoe’, Schule ‘school’, Sache
‘thing’, Kühe ‘cows’ do. Just by inspecting these
most similar existing words, we can conclude that c
may transform to k (Kuh, Kühe), that s is likely to
be inserted (Schuh, Schule, Sache), and that e may
transform to h (Kuh, Schuh ). But we also conclude
that none of the letters c, h, u, e is likely to transform
to ö or f, just because such words do not exist in
the target lexicon. While such statements are coinci-
dental for one single word, they may be sufficiently

reliable when induced over a large corpus.
In this model, we use an iterative training algo-

rithm alternating two tasks. The first task is to build
a list of hypothesized word pairs by using the di-
alect word list, the Standard German lexicon, and a
transducer1: for each dialect word, candidate strings
are generated, filtered by the lexicon, and the best
candidate is selected. The second task is to train a
stochastic transducer with EM, as explained above,
on the previously constructed list of word pairs. In
the next iteration, this new transducer is used in the
first task to obtain a more accurate list of word pairs,
which in turn allows us to build a new transducer
in the second task. This process is iterated several
times to gradually eliminate erroneous word pairs.

The most crucial step is the selection of the best
candidate from the list returned by the lexicon filter.
We could simply use the word which obtained the
highest transduction probability. However, prelimi-
nary experiments have shown that the iterative algo-
rithm tends to prefer deletion operations, so that it
will converge to generating single-letter words only
(which turn out to be present in our lexicon). To
avoid this scenario, the length of the suggested can-
didate words must be taken into account. We there-
fore simply selected the longest candidate word.2

3.4 A Rule-based Model
This last model does not use learning algorithms.
It consists of a simple set of transformation rules
that are known to be important for the chosen lan-
guage pair. Marti (1985, 45-64) presents a precise
overview of the phonetic correspondences between
the Bern dialect and Standard German. Contrary
to the learning models, this model is implemented
in a weighted transducer with more than one state.
Therefore, it allows contextual rules too. For ex-
ample, we can state that the Swiss German sequence
üech should be translated to euch. Each rule is given
a weight of 1, no matter how many characters it con-
cerns. The rule set contains about 50 rules. These
rules are then superposed with a Levenshtein trans-
ducer, i.e. with context-free edit and identity opera-

1In the initialization step, we use a Levenshtein transducer.
2In fact, we should select the word with the lowest abso-

lute value of the length difference. The suggested simplification
prevents us from being trapped in the single-letter problem and
reflects the linguistic reality that Standard German words tend
to be longer than dialect words.
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tions for each letter. These additional transitions as-
sure that every word can be transduced to its target,
even if it does not use any of the language-specific
rules. The identity transformations of the Leven-
shtein part weigh 2, and its edit operations weigh
3. With these values, the rules are always preferred
to the Levenshtein edit operations. These weights
are set somewhat arbitrarily, and further adjustments
could slightly improve the results.

4 Experiments and Results

4.1 Data and Training

Written data is difficult to obtain for Swiss German
dialects. Most available data is in colloquial style
and does not reliably follow orthographic rules. In
order to avoid tackling these additional difficulties,
we chose a dialect literature book written in the Bern
dialect. From this text, a word list was extracted;
each word was manually translated to Standard Ger-
man. Ambiguities were resolved by looking at the
word context, and by preferring the alternatives per-
ceived as most frequent.3 No morphological analy-
sis was performed, so that different inflected forms
of the same lemma may occur in the word list. The
only preprocessing step concerned the elimination
of morpho-phonological variants (sandhi phenom-
ena). The whole list contains 5124 entries. For
the experiments, 393 entries were excluded because
they were foreign language words, proper nouns or
Standard German words.4 From the remaining word
pairs, about 92% were annotated as cognate pairs.5

One half of the corpus was reserved for training the
EM-based models, and the other half was used for
testing.

The Standard German lexicon is a word list con-
sisting of 202’000 word forms. While the lexicon
provides more morphological, syntactic and seman-
tic information, we do not use it in this work.

3Further quality improvements could be obtained by includ-
ing the results of a second annotator, and by allowing multiple
translations.

4This last category was introduced because the dialect text
contained some quotations in Standard German.

5This annotation was done by the author, a native speaker
of both German varieties. Mann and Yarowsky (2001) consider
a word pair as cognate if the Levenshtein distance between the
two words is less than 3. Their heuristics is very conservative:
it detects 84% of the manually annotated cognate pairs of our
corpus.

The test corpus contains 2366 word pairs. 407
pairs (17.2 %) consist of identical words (lower
bound). 1801 pairs (76.1%) contain a Standard Ger-
man word present in the lexicon, and 1687 pairs
(71.3%) are cognate pairs, with the Standard Ger-
man word present in the lexicon (upper bound). It
may surprise that many Standard German words of
the test corpus do not exist in the lexicon. This con-
cerns mostly ad-hoc compound nouns, which cannot
be expected to be found in a Standard German lex-
icon of a reasonable size. Additionally, some Bern
dialect words are expressed by two words in Stan-
dard German, such as the sequence ir ‘in the (fem.)’
that corresponds to Standard German in der. For rea-
sons of computational complexity, our model only
looks for single words and will not find such corre-
spondences.

The basic EM model (3.2) was trained in 50 iter-
ations, using a training corpus of 200 word pairs.
Interestingly, training on 2000 word pairs did not
improve the results. The larger training corpus did
not even lead the algorithm to converge faster.6 The
monolingual EM model (3.3) was trained in 10 iter-
ations, each of which involved a basic EM training
with 50 iterations on a training corpus of 2000 di-
alect words.

4.2 Results

As explained above, the first stage of the model takes
the dialect words given in the test corpus and gen-
erates, for each dialect word, the 500 most similar
strings according to the transducer used. This list
is then filtered by the lexicon. Between 0 and 20
candidate words remain, depending on how effective
the lexicon filter has been. Thus, each source word
is associated to a candidate list, which is ordered
with respect to the costs or probabilities attributed to
the candidates by the transducer. Experiments with
1000 candidate strings yielded comparable results.

Table 1 shows some results for the four models.
The table reports the number of times the expected
Standard German words appeared anywhere in the
corresponding candidate lists (List), and the number

6This is probably due to the fact that the percentage of iden-
tical words is quite high, which facilitates the training. Another
reason could be that the orthographical conventions used in the
dialect text are quite close to the Standard German ones, so that
they conceal some phonetic differences.
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N L P R F
Levenshtein List 840 3.1 18.5 35.5 24.3

Top 671 1.1 32.7 28.4 30.4
EM bilingual List 1210 4.5 21.4 51.1 30.2

Top 794 0.7 52.5 33.6 41.0
EM mono- List 1070 5.0 16.6 45.2 24.3
lingual Top 700 0.7 47.9 29.6 36.6
Rules List 987 3.2 22.8 41.7 29.5

Top 909 1.0 45.6 38.4 41.7

Table 1: Results. The table shows the absolute num-
bers of correct target words induced (N) and the av-
erage lengths of the candidate lists (L). The three
rightmost columns represent percentage values of
precision (P), recall (R), and F-measure (F).

of times they appeared at the best-ranked position of
the candidate lists (Top). Precision and recall mea-
sures are computed as follows:7

precision =
|correct target words|

|unique candidate words|

recall =
|correct target words|

|tested words|
As Table 1 shows, the three adaptive models

perform better than the static Levenshtein distance
model. This finding is consistent with the results
of Mann and Yarowsky (2001), although our experi-
ments show more clear-cut differences. The stochas-
tic transducer trained on the bilingual corpus ob-
tained similar results to the rule-based system, while
the transducer trained on a monolingual corpus per-
formed only slightly better than the baseline. Never-
theless, its performance can be considered to be sat-
isfactory if we take into account that virtually no in-
formation on the exact graphemic correspondences
has been given. The structure of the lexicon and of
the source word list suffice to make some generali-
sations about graphemic correspondences between
two languages. However, it remains to be shown
if this method can be extended to more distant lan-
guage pairs.

In contrast to Levenshtein distance, the bilingual
EM model improves the List statistics a lot, at the
expense of longer candidate lists. However, when
comparing the Top statistics, the difference between
the models is less marked. The rule-based model

7The words that occur in several candidate lists (i.e., for
different source words) are counted only once, hence the term
unique candidate words.

generates rather short candidate lists, but it still out-
performs all other models with respect to the words
proposed in first position. The rule-based model ob-
tains high F-measure values, which means that its
precision and recall values are better balanced than
in the other models.

4.3 Discussion

All models require only a small amount of training
or development data. Such data should be available
for most language pairs that relate a scarce resource
language to a resource-rich language. However, the
performances of the rule-based model and the bilin-
gual EM model show that building a training corpus
with manually translated word pairs, or alternatively
implementing a small rule set, may be worthwhile.

The overall performances of the presented sys-
tems may seem poor. Looking at the recall values
of the Top statistics, our models only induce about
one third of the test corpus, or only about half of the
test words that can be induced by phonetic similar-
ity models – we cannot expect our models to induce
non-cognate words or words that are not in the lex-
icon (see the upper bound values in 4.1). Using the
same models, Mann and Yarowsky (2001) induced
over 90% of the Spanish-Portuguese cognate vocab-
ulary. One reason for their excellent results lies in
their testing procedure. They use a small test corpus
of 100 word pairs. For each given word, they com-
pute the transduction costs to each of the 100 pos-
sible target words, and select the best-ranked candi-
date as hypothesized solution. The list of possible
target words can thus be explored exhaustively. We
tested our models with Mann and Yarowsky’s testing
procedure and obtained very competitive results (see
Table 2). Interestingly, the monolingual EM model
performed much worse in this evaluation, a result
which could not be expected in light of the results in
Table 1.

While Mann and Yarowsky’s procedure is very
useful to evaluate the performance of different simi-
larity measures and the impact of different language
pairs, we believe that it is not representative for the
task of lexicon induction. Typically, the list of possi-
ble target words (the target lexicon) does not contain
100 words only, but is much larger (202’000 words
in our case). This difference has several implica-
tions. First, the lexicon is more likely to present very
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Mann and Yarowsky Our work
cognate full cognate full

Levenshtein 92.3 67.9 90.5 85.2
EM bilingual 92.3 67.1 92.2 86.5
EM monolingual 81.9 76.7
Rules 94.1 88.7

Table 2: Comparison between Mann and
Yarowsky’s results on Spanish-Portuguese (68%
of the full vocabulary are cognate pairs), and our
results on Swiss German-Standard German (83%
cognate pairs). The tests were performed on 10
corpora of 100 word pairs each. The numbers
represent the percentage of correctly induced word
pairs.

similar words (for example, different inflected forms
of the same lexeme), increasing the probability of
“near misses”. Second, our lexicon is too large to be
searched exhaustively. Therefore, we introduced our
two-stage approach, whose first stage is completely
independent of the lexicon. The drawback of this
approach is that for many dialect words, it yields
no result at all, because the 500 generated candi-
dates were all non-words. The recall rates could
be increased by generating more candidates, but this
would lead to longer execution times and lower pre-
cision rates.

5 Conclusion and Perspectives

The experiments conducted with various adaptive
metrics of graphemic similarity show that in the
case of closely related language pairs, lexical in-
duction performances can be increased compared to
a static measure like Levenshtein distance. They
also show that requirements for training data can
be kept rather small. However, these models also
show their limits. They only use single word in-
formation for training and testing, which means that
the rich contextual information encoded in texts, as
well as the morphologic and syntactic information
available in the target lexicon, cannot be exploited.
Future research will focus on integrating contextual
information about the syntactic and semantic prop-
erties of the words into our models, still keeping
in mind the data restrictions for dialects and other
scarce resource languages. Such additional informa-
tion could be implemented by adding a third step to

our two-stage model.
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Abstract

The aim of this paper is to present a new
method for identifying linguistic structure in
the aggregate analysis of the language vari-
ation. The method consists of extracting the
most frequent sound correspondences from
the aligned transcriptions of words. Based
on the extracted correspondences every site
is compared to all other sites, and a corre-
spondence index is calculated for each site.
This method enables us to identify sound al-
ternations responsible for dialect divisions
and to measure the extent to which each al-
ternation is responsible for the divisions ob-
tained by the aggregate analysis.

1 Introduction

Computational dialectometry is a multidisciplinary
field that uses quantitative methods in order to mea-
sure linguistic differences between the dialects. The
distances between the dialects are measured at dif-
ferent levels (phonetic, lexical, syntactic) by aggre-
gating over entire data sets. The aggregate analyses
do not expose the underlying linguistic structure, i.e.
the specific linguistic elements that contributed to
the differences between the dialects. This is very of-
ten seen as one of the main drawbacks of the dialec-
tometry techniques and dialectometry itself. Two at-
tempts to overcome this drawback are presented in
Nerbonne (2005) and Nerbonne (2006). In both of
these papers the identification of linguistic structure
in the aggregate analysis is based on the analysis of
the pronunciation of the vowels found in the data set.

In work presented in this paper the identification
of linguistic structure in the aggregate analysis is
based on the automatic extraction of regular sound
correspondences which are further quantified in or-
der to characterize each site based on the frequency
of a certain sound extracted from the pool of the
site’s pronunciation. The results show that identifi-
cation of regular sound correspondences can be suc-
cessfully applied to the task of identifying linguistic
structure in the aggregate analysis of dialects based
on word pronunciations.

The rest of the paper is structured as follows. Sec-
tion 2 gives an overview of the work previously done
in the areas covered in this paper. In Section 3 more
information on the aggregate analysis of Bulgarian
dialects is given. Work done on the identification of
regular sound correspondences and their quantifica-
tion is presented in Section 4. Conclusion and sug-
gestions for future work are given in Section 5.

2 Previous Work

The work presented in this paper can be divided in
two parts: the aggregate analysis of Bulgarian di-
alects on one hand, and the identification of linguis-
tic structure in the aggregate analysis on the other. In
this section the work closely related to the one pre-
sented in this paper will be described in more detail.

2.1 Aggregate Analysis of Bulgarian

Dialectometry produces aggregate analyses of the
dialect variations and has been done for different
languages. For several languages aggregate analyses
have been successfully developed which distinguish
various dialect areas within the language area. The
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most closely related to the work presented in this pa-
per is quantitative analysis of Bulgarian dialect pro-
nunciation reported in Osenova et al. (2007).

In work done by Osenova et al. (2007) aggregate
analysis of pronunciation differences for Bulgarian
was done on the data set that comprised 36 word
pronunciations from 490 sites. The data was digital-
ized from the four-volume set of Atlases of Bulgar-
ian Dialects (Stojkov and Bernstein, 1964; Stojkov,
1966; Stojkov et al., 1974; Stojkov et al., 1981).
Pronunciations of the same words were aligned and
compared using L04.1 Results were analyzed using
cluster analysis, composite clustering, and multidi-
mensional scaling. The analyses showed that results
obtained using aggregate analysis of word pronunci-
ations mostly conform with the traditional phonetic
classification of Bulgarian dialects as presented in
Stojkov (2002).

2.2 Extraction of Linguistic Structure

Although techniques in dialectometry have shown
to be successful in the analysis of the dialect vari-
ation, all of them aggregate over the entire available
data, failing to extract linguistic structure from the
aggregate analysis. Two attempts to overcome this
withdraw are presented in Nerbonne (2005) and Ner-
bonne (2006).

Nerbonne (2005) suggests aggregating over a lin-
guistically interesting subset of the data. Nerbonne
compares aggregate analysis restricted to vowel dif-
ferences to those using the complete data set. Re-
sults have shown that vowels are probably respon-
sible for a great deal of aggregate differences, since
there was high correlation between differences ob-
tained only by using vowels and by using complete
transcriptions (r = 0.936). Two ways of aggregate
analysis also resulted in comparable maps. How-
ever, no other subset has been analyzed in this pa-
per, making it impossible to conclude how success-
ful other subsets would be if similar analysis was
done.

The second paper (Nerbonne, 2006) applies fac-
tor analysis to the result of the dialectometric analy-
sis in order to extract linguistic structure. The study
focuses on the pronunciation of vowels found in the

1L04 is a freely available software used for di-
alectometry and cartography. It can be found at
http://www.let.rug.nl/kleiweg/L04/

data. Out of 1132 different vowels found in the data
204 vowel positions are investigated, where a vowel
position is, e.g., the first vowel in the word ’Wash-
ington’ or the second vowel in the word ’thirty’.
Factor analysis has shown that 3 factors are most im-
portant, explaining 35% of the total amount of vari-
ance. The main drawback of applying this technique
in dialectometry is that it is not directly related to the
aggregate analysis, but is rather an independent step.
Just as in Nerbonne (2005), only vowels were exam-
ined.

2.3 Sound Correspondences

In his PhD thesis Kondrak (Kondrak, 2002) presents
techniques and algorithms for the reconstruction of
the proto-languages from cognates. In Chapter 6
the focus is on the automatic determination of sound
correspondences in bilingual word lists and the iden-
tification of cognates on the basis of extracted cor-
respondences. Kondrak (2002) adopted Melamed’s
parameter estimation models (Melamed, 2000) used
in statistical machine translation and successfully
applied them to determination of sound correspon-
dences, i.e. diachronic phonology. Kondrak in-
duced a model of sound correspondence in bilin-
gual word lists, where phoneme pairs with the high-
est scores represent the most likely correspondences.
The more regular sound correspondences the two
words share, the more likely it is that they are cog-
nates and not borrowings.

In this paper the identification of sound corre-
spondences will be used to extract linguistic ele-
ments (i.e. phones) responsible for the dialect di-
visions. The method presented in this study differs
greatly from Kondrak’s in that he uses regular sound
correspondences to directly compare two words and
determine if they are cognates. In this study ex-
tracted sound correspondences are further quantified
in order to characterize each site in the data set by
assigning it a unique index. This is the first time that
this method has been applied in dialectometry.

3 Aggregate Analysis

In the first phase of this project L04 toolkit was used
in order to make an aggregate analysis of Bulgarian
dialects. In this section more information on the data
set used in the project, as well as on the process of
the aggregate analysis will be given.
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3.1 Data Set

The data used in this research, as well as the research
itself, are part of the project Buldialect—Measuring
linguistic unity and diversity in Europe.2 The data
set consisted of pronunciations of 117 words col-
lected from 84 sites equally distributed all over Bul-
garia. It comprises nouns, pronouns, adjectives,
verbs, adverbs and prepositions which can be found
in different word forms (singular and plural, 1st,
2nd, and 3rd person verb forms, etc.).

3.2 Measuring of Dialect Distances

Aggregate analysis of Bulgarian dialects done in this
project was based on the phonetic distances between
the various pronunciations of a set of words. No
morphological, lexical, or syntactic variation was
taken into account.

First, all word pronunciations were aligned based
on the following principles: a) a vowel can match
only with the vowel b) a consonant can match only
with the consonant c) [j] can match both vowels and
consonants.

An example of the alignment of two pronuncia-
tions is given in Figure 1.3

g l "A v A
g l @ v "È
———————————-

1 1

Figure 1: Alignment of word pronunciation pair

The alignments were carried out using the Leven-
sthein algorithm,4 which also results in the calcu-
lation of a distance between each pair of words.
The distance is the smallest number of insertions,
deletions, and substitutions needed to transform one
string to the other. In this work all three operations
were assigned the same value—1. All words are rep-
resented as series of phones which are not further
defined. The result of comparing two phones can be
1 or 0; they either match or they don’t. In Figure 1

2The project is sponsored by Volkswagen Stiftung.
More information can be found at http://www.sfs.uni-
tuebingen.de/dialectometry

3For technical reasons primary stress is indicated by a high
vertical line before the syllable’s vowel.

4Detailed explanation of Levensthein algorithm can be
found in Heeringa (2004).

the cheapest way to transform one pronunciation to
the other would be by making two substitutions: ["A]
should be replaced by [@], and [A] by ["È], meaning
that the distance between these two pronunciations
is 2. The distance between each pair of pronunci-
ations was further normalized by the length of the
longest alignment that gives the minimal cost.5 Af-
ter normalization, we get the final distance between
two strings, which is 0.4 (2/5) in the example shown
in Figure 1. If there are more plausible alignments
with the minimal cost, the longest is preferred. Word
pronunciations collected from all sites are aligned
and compared in this fashion, allowing us to cal-
culate the distance between each pair of sites. The
difference between two locations is the mean of all
differences between words collected from these two
sites.

Figure 2: Classification map

The results were analyzed using clustering (Fig-
ure 2) and multidimensional scaling (Figure 3).
Clustering is a common technique in a statistical
data analysis based on a partition of a set of ob-
jects into groups or clusters (Manning and Schütze,
1999). Multidimensional scaling is data analysis
technique that provides a spatial display of the data
revealing relationships between the instances in the
data set (Davison, 1992). On both the maps the
biggest division is between East and West. The bor-
der between these two areas goes around Pleven and
Teteven, and it is the border of “yat” realization as
presented in the traditional dialectological atlases
(Stojkov, 2002). The most incoherent area is the

5An interesting discussion on the normalization by length
can be found in Heeringa et al. (2006). In this paper the authors
report that contrary to results from previous work (Heeringa,
2004) non-normalized string distance measures are superior to
normalized ones.

63



area of Rodopi mountain, and the dialects present
in this area show the greatest similarity with the di-
alects found in the Southeastern part around Malko
Tyrnovo. On the map in Figure 3 it is also possible
to distinguish the area around Golica and Kozichino
on the East, which conforms to the maps found in
Stojkov (2002). Results of the aggregate analysis
conform both to the traditional maps presented in
Stojkov (2002), and to the work reported in Osen-
ova et al. (2007).

Figure 3: MDS map

4 Regular Sound Correspondences

The same data used for the aggregate analysis was
reused to extract sound correspondences and to iden-
tify underlying linguistic structure in the aggregate
analysis. The method and the obtained results will
be presented in more detail.

4.1 Method

From the aligned pairs of word pronunciations all
non-matching segments were extracted and sorted
according to their frequency. In the entire data set
there were 683 different pairs of sound correspon-
dences that appeared 955199 times.

e i 36565 j - 21361
@ È 26398 A @ 20515
o u 26108 e "e 19934
"6 "e 23689 r rj 19787
v - 22100 "È - 18867

Table 1: Most frequent sound correspondences

The most frequent correspondences were taken to
be the most important sound alternations responsi-
ble for dialect variation. The method was tested on

the 10 most frequent correspondences which were
responsible for the 25% of sound alternations in the
whole data set.

In order to determine which of the extracted sound
correspondences is responsible for which of the di-
visions present in the aggregate analysis, each site
was compared to all other sites with respect to the
10 most frequent sound correspondences. For each
pair of sites all sound correspondences were ex-
tracted, including both matching and non-matching
segments. For further analysis it was important to
distinguish which sound comes from which place.

For each pair of the sound correspondences from
Table 1 a correspondence index is calculated for
each site using the following formula:

1
n− 1

n∑

i=1,j 6=i

si−→s′j (1)

where n represents the number of sites, andsi−→s′j
the comparison of each two sites (i, j) with respect
to the sound correspondences/s′. si−→s′j is calcu-
lated applying the following formula:

|si, s
′
j |

|si, s′j |+ |si, sj | (2)

In the above formulasi ands′j stand for the pair of
sounds involved in one of the most frequent sound
correspondences from Table 1.|si, s

′
j | represents the

number of timess is seen in the word pronunciations
collected at site i, aligned with thes′ in word pro-
nunciations collected at site j.|si, sj | is the number
of timess stayed unchanged. For each pair of sound
correspondences a correspondence index was calcu-
lated for thes, s′ correspondence, as well as for the
s′, s correspondence. For example, for the pair of
correspondences [e] and [i], the relation of [e] cor-
responding to [i] is separated from the relation of [i]
corresponding to [e].6

For example, the indices for the sites Aldomirovci
and Borisovo with respect to the sound correspon-
dence [e]-[i] were calculated in the following way.
In the file with the sound correspondences extracted
from all aligned word pronunciations collected at

6It would also be possible to modify this formula and calcu-
late the ratio ofs to s corresponding to any other sound. In this
case the result would be a very small number of sites with the
very high correspondence index.
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these two sites, the algorithm searches for pairs rep-
resented in Table 2:

Aldomirovci e i e
Borisovo i e e

no. of correspondences 24 0 3

Table 2: How often [e] corresponds to [i] and [e]

For each of the sites the indices were calculated us-
ing the above formula. The index for site i (Al-
domirovci) was:

|e, i|
|e, i|+ |e, e| =

24
24 + 3

= 0.89 (3)

The index for site j (Borisovo) was calculated in the
similar fashion from the Table 2:

|e, i|
|e, i|+ |e, e| =

0
0 + 3

= 0.00 (4)

Each of these two sites was compared to all other
sites with respect to the [e]-[i] correspondence re-
sulting in 83 indices for each site. The general cor-
respondence index for each site represents the mean
of all 83 indices. For the site i (Aldomirovci) gen-
eral index was 0.40, and for the site j (Borisovo)
0.21. Sites with the higher values of the general cor-
respondence index represent the sites where sound
[e] tends to be present, with respect to the [e]-[i]
correspondence (see Figure 4). In the same fash-
ion general correspondence indices were calculated
for every site with respect to each pair of the most
frequent correspondences (Table 1).

4.2 Results

The methods described in the previous section were
applied to all phone pairs from the Table 1, resulting
in 17 different divisions of the sites.7

Data obtained by the analysis of sound correspon-
dences, i.e. indices of correspondences for sites was
used to draw maps in which every site is set off by
Voronoi tessellation from all other sites, and shaded
based on the value of the general correspondence in-
dex. Light polygons on the map represent areas with

7For three pairs where one sound doesn’t have a correspond-
ing one (when there was an insertion or deletion) it is not pos-
sible to calculate an index. Formulas for comparing two sites
from the previous section would always give value 1 for the in-
dex.

the higher values of the correspondence index, i.e.
areas where the first sound in the examined alterna-
tion tends to be present. This technique enables us
to visualize the geographical distribution of the ex-
amined sounds. For example, map in Figure 4 rep-

Figure 4: Distribution of [e] sound

resents geographical distribution of sound [e] with
respect to the [e]-[i] correspondence, while map in
Figure 5 reveals the presence of the sound [i] with
respect to the [i]-[e] correspondence.

Figure 5: Distribution of [i] sound

In order to compare the dialect divisions obtained
by the aggregate analysis, and those based on the
general correspondence index for a certain phone
pair, correlation coefficient was calculated for these
2 sets of distances. The results are shown in Ta-
ble 3. Dialect divisions based on the [r]-[rj ] and [i]-
[e] alternations have the highest correlation with the
distances obtained by the aggregate analysis. The
square of the Pearson correlation coefficient pre-
sented in column 3 enables us to see that 39.0% and
30.7% of the variance in the aggregate analysis can
be explained by these two sound alternations.
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Correspondence Correlation r2x100(%)
[e]-[i] 0.19 3.7
[i]-[e] 0.55 30.7
[@]-[È] 0.26 6.7
[È]-[@] 0.23 5.3
[o]-[u] 0.49 24.4
[u]-[o] 0.43 18.9
["A]-[ "e] 0.49 24.3
["e]-["A] 0.38 14.2
[v]- - 0.14 2.0
[j]- - 0.20 4.0

[A]-[@] 0.51 26.5
[@]-[A] 0.26 7.0
[e]-["e] 0.18 3.2
["e]-[e] 0.23 5.2
[r]-[r j ] 0.62 39.0
[r j ]-[r] 0.53 28.1
["È]- - 0.17 2.9

Table 3: Correlation coefficient

5 Conclusion and Future Work

The dialect division of Bulgaria based on the aggre-
gate analysis presented in this paper conforms both
to traditional maps (Stojkov, 2002) and to the work
reported in Osenova et al. (2007), suggesting that
the novel data used in this project is representative.
The method of quantification of regular sound corre-
spondences described in the second part of the paper
was successful in the identification of the underlying
linguistic structure of the dialect divisions. It is an
important step towards more general investigation of
the role of the regular sound changes in the language
dialect variation. The main drawback of the method
is that it analyzes one sound alternation at the time,
while in the real data it is often the case that one
sound corresponds to several other sounds and that
sound correspondences involve series of segments.

In future work some kind of a feature represen-
tation of segments should be included in the anal-
ysis in order to deal with the drawbacks noted. It
would also be very important to analyze the context
in which examined sounds appear, since we can talk
about regular sound changes only with respect to the
certain phonological environments.
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Abstract 

I propose a computational treatment of su-
perlatives, starting with superlative con-
structions and the main challenges in 
automatically recognising and extracting 
their components. Initial experimental evi-
dence is provided for the value of the pro-
posed work for Question Answering. I also 
briefly discuss its potential value for Sen-
timent Detection and Opinion Extraction. 

1 Introduction 

Although superlatives are frequently found in 
natural language, with the exception of recent work 
by Bos and Nissim (2006) and Jindal and Liu 
(2006), they have not yet been investigated within 
a computational framework. And within the 
framework of theoretical linguistics, studies of su-
perlatives have mainly focused on particular se-
mantic properties that may only rarely occur in 
natural language (Szabolcsi, 1986; Heim, 1999). 

My goal is a comprehensive computational 
treatment of superlatives. The initial question I ad-
dress is how useful information can be automati-
cally extracted from superlative constructions. Due 
to the great semantic complexity and the variety of 
syntactic structures in which superlatives occur, 
this is a major challenge. However, meeting it will 
benefit NLP applications such as Question An-
swering, Sentiment Detection and Opinion Extrac-
tion, and Ontology Learning. 

2 What are Superlatives? 

In linguistics, the term “superlative” describes a 
well-defined class of word forms which (in Eng-

lish) are derived from adjectives or adverbs in two 
different ways: Inflectionally, where the suffix -est 
is appended to the base form of the adjective or 
adverb (e.g. lowest, nicest, smartest), or analyti-
cally, where the base adjective/adverb is preceded 
by the markers most/least (e.g. most interesting, 
least beautiful). Certain adjectives and adverbs 
have irregular superlative forms: good (best), bad 
(worst), far (furthest/farthest), well (best), badly 
(worst), much (most), and little (least).  

In order to be able to form superlatives, adjec-
tives and adverbs must be gradable, which means 
that it must be possible to place them on a scale of 
comparison, at a position higher or lower than the 
one indicated by the adjective/adverb alone. In 
English, this can be done by using the comparative 
and superlative forms of the adjective or adverb:  

[1] (a) Maths is more difficult than Physics. 
      (b) Chemistry is less difficult than Physics.  
[2] (a) Maths is the most difficult subject at school. 
      (b) History is the least difficult subject at school.  

The comparative form of an adjective or adverb is 
commonly used to compare two entities to one an-
other with respect to a certain quality. For exam-
ple, in [1], Maths is located at a higher point on the 
difficulty scale than Physics, and Chemistry at a 
lower point. The superlative form of an adjective 
is usually used to compare one entity to a set of 
other entities, and expresses the end spectrum of 
the scale: In [2], Maths and History are located at 
the highest and lowest points of the difficulty 
scale, respectively, while all the other subjects at 
school range somewhere in between. 

3 Why are Superlatives Interesting? 

From a computational perspective, superlatives 
are of interest because they express a comparison 

67



between a target entity (indicated in bold) and its 
comparison set (underlined), as in: 

[3] The blue whale is the largest mammal. 

Here, the target blue whale is compared to the 
comparison set of mammals. Milosavljevic (1999) 
has investigated the discourse purpose of different 
types of comparisons. She classifies superlatives as 
a type of set complement comparison, whose pur-
pose is to highlight the uniqueness of the target 
entity compared to its contrast set. 

My initial investigation of superlative forms 
showed that there are two types of relation that 
hold between a target and its comparison set: 

Relation 1: Superlative relation 
Relation 2: IS-A relation 

The superlative relation specifies a property which 
all members of the set share, but which the target 
has the highest (or lowest) degree or value of. The 
IS-A (or hypernymy) relation expresses the mem-
bership of the target in the comparison class (e.g. 
its parent class in a generalisation hierarchy). Both 
of these relations are of great interest from a rela-
tion extraction point of view, and in Section 6, I 
discuss their use in applications such as Question 
Answering (QA) and Sentiment Detection and 
Opinion Extraction. That a computational treat-
ment of superlatives is a worthwhile undertaking is 
also supported by the frequency of superlative 
forms in ordinary text: In a 250,000 word subcor-
pus of the WSJ corpus1  I found 602 instances 
(which amounts to roughly one superlative form in 
every 17 sentences), while in the corpus of animal 
encyclopaedia entries used by Milosavljevic 
(1999), there were 1059 superlative forms in 
250,000 words (about one superlative form in 
every 11 sentences).2 These results show signifi-
cant variation in the distribution of superlatives 
across different text genres. 

4 Elements of a Computational Treat-
ment of Superlatives 

For an interpretation of comparisons, two things 
are generally of interest: What is being compared, 
and with respect to what this comparison is made. 
Given that superlatives express set comparisons, a 

                                                 
1 www.ldc.upenn.edu/Catalog/LDC2000T43.html 
2 In the following, these 250,000 word subcorpora will 
be referred to as SubWSJ and SubAC. 

computational treatment should therefore help to 
identify: 

a) The target and comparison set 
b) The type of superlative relation that holds be-

tween them (cf. Relation 1 in Section 3)  

However, this task is far from straightforward, 
firstly because superlatives occur in a variety of 
different constructions. Consider for example: 

[4] The pipe organ is the largest instrument.     
[5] Of all the musicians in the brass band, Peter plays 

the largest instrument. 
[6] The human foot is narrowest at the heel. 
[7] First Class mail usually arrives the fastest. 
[8] This year, Jodie Foster was voted best actress. 
[9] I will get there at 8 at the earliest. 
[10] I am most tired of your constant moaning. 
[11] Most successful bands are from the U.S. 

All these examples contain a superlative form 
(bold italics). However, they differ not only in their 
syntactic structure, but also in the way in which 
they express a comparison. Example [4] contains a 
clear-cut comparison between a target item and its 
comparison set: The pipe organ is compared to all 
other instruments with respect to its size. However, 
although the superlative form in [4] occurs in the 
same noun phrase as in [5], the comparisons differ: 
What is being compared in [5] is not just the in-
struments, but the musicians in the brass band with 
respect to the size of the instrument that they play. 
In example [6], the target and comparison set are 
even less easy to identify. What is being compared 
here is not the human foot and a set of other enti-
ties, but rather different parts of the human foot. In 
contrast to the first two examples, this superlative 
form is not incorporated in a noun phrase, but oc-
curs freely in the sentence. The same applies to 
fastest in example [7], which is an adverbial super-
lative. The comparison here is between First Class 
mail and other mail delivery services. Finally, ex-
amples [8] to [11] are not proper comparisons: best 
actress in [8] is an idiomatic expression, earliest in 
[9] is part of a so-called PP superlative construc-
tion (Corver and Matushansky, 2006), and [10] and 
[11] describe two non-comparative uses of most, as 
an intensifier and a proportional quantifier, respec-
tively (Huddleston and Pullum, 2002). 

Initially, I will focus on cases like [4], which I 
call IS-A superlatives because they make explicit 
the IS-A relation that holds between target and 
comparison set (cf. Relation 2 in Section 3). They 
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are a good initial focus for a computational ap-
proach because both their target and comparison 
set are explicitly realised in the text (usually, 
though not necessarily, in the same sentence). 
Common surface forms of IS-A superlatives in-
volve the verb “to be” ([12]-[14]), appositive posi-
tion [15], and other copula verbs or expressions 
([16] and [17]): 

[12] The blue whale is the largest mammal. 
[13] The blue whale is the largest of all mammals. 
[14] Of all mammals, the blue whale is the largest. 
[15] The largest mammal, the blue whale, weighs... 
[16] The ostrich is considered the largest bird. 
[17] Mexico claimed to be the most peaceful country 

in the Americas. 

IS-A superlatives are also the most frequent type of 
superlative comparison, with 176 instances in 
SubWSJ (ca. 30% of all superlative forms), and 
350 instances in SubAC (ca. 33% of all superlative 
forms).  

The second major problem in a computational 
treatment of superlatives is to correctly identify 
and interpret the comparison set. The challenge lies 
in the fact that it can be restricted in a variety of 
ways, for example by preceding possessives and 
premodifiers, or by postmodifiers such as PPs and 
various kinds of clauses. Consider for example: 

[18] VW is [Europe’s largest maker of cars]. 
[19] VW is [the largest European car maker with this 

product range]. 
[20] VW is [the largest car maker in Europe] with an 

impressive product range. 
[21] In China, VW is by far [the largest car maker]. 

The phrases of cars and car in [18] and [19] 
both have the role of specifying the type of maker 
that constitutes the comparison set. The phrases 
Europe’s, European and in Europe occur in deter-
minative, premodifying, and postmodifying posi-
tion, respectively, but all have the role of restrict-
ing the set of car makers to the ones in Europe. 
And finally, the “with” PP phrases in [19] and [20] 
both occur in postmodifying position, but differ in 
that the one in [19] is involved in the comparison, 
while the one in [20] is non-restrictive. In addition, 
restrictors of the comparison can also occur else-
where in the sentence, as shown by the PP phrase 
and adverbial in [21]. It is evident that in order to 
extract useful and reliable information, a thorough 
syntactic and semantic analysis of superlative con-
structions is required. 

5 Previous Approaches 

5.1 Jindal and Liu (2006) 

Jindal and Liu (2006) propose the study of com-
parative sentence mining, by which they mean the 
study of sentences that express “an ordering 
relation between two sets of entities with respect to 
some common features” (2006). They consider 
three kinds of relations: non-equal gradable (e.g. 
better), equative (e.g. as good as) and superlative 
(e.g. best). Having identified comparative sen-
tences in a given text, the task is to extract com-
parative relations from them, in form of a vector 
like (relationWord, features, entityS1, entityS2), 
where relationWord represents the keyword used 
to express a comparative relation, features are a set 
of features being compared, and entityS1 and enti-
tyS2 are the sets of entities being compared, where 
entityS1 appears to the left of the relation word and 
entityS2 to the right. Thus, for a sentence like 
“Canon’s optics is better than those of Sony and 
Nikon”, the system is expected to extract the vector 
(better, {optics}, { Canon}, { Sony, Nikon}). 

For extracting the comparative relations, Jindal 
and Liu use what they call label sequential rules 
(LSR), mainly based on POS tags. Their overall F-
score for this extraction task is 72%, a big im-
provement to the 58% achieved by their baseline 
system. Although this result suggests that their sys-
tem represents a powerful way of dealing with su-
perlatives computationally, a closer inspection of 
their approach, and in particular of the gold stan-
dard data set, reveals some serious problems.  

Jindal and Liu claim that for superlatives, the 
entityS2 slot is “normally empty” (2006). Assum-
ing that the members of entityS2 usually represent 
the comparison set, this is somewhat counter-
intuitive. A look at the data shows that even in 
cases where the comparison set is explicitly men-
tioned in the sentence, the entityS2 slot remains 
empty. For example, although the comparison set 
in [22] is represented by the string these 2nd gen-
eration jukeboxes ( ipod , archos , dell , samsung ), 
it is not annotated as entityS2 in the gold standard: 

[22] all reviews i 've seen seem to in-
dicate that the creative mp3 jukeboxes 
have the best sound quality of these 
2nd generation jukeboxes ( ipod , ar-
chos , dell , samsung ) .  

(best, {sound quality}, {creative mp3 jukeboxes}, {--}) 

Jindal and Liu (2006) 
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Furthermore, Jindal and Liu do not distinguish 
between different types of superlatives. In con-
structions where the superlative form is incorpo-
rated into an NP, Jindal and Liu consistently inter-
pret the string following the superlative form as a 
“feature”, which is appropriate for cases like [22], 
but does not apply to superlative sentences involv-
ing the copula verb “to be” (as e.g. in [4]), where 
the NP head denotes the comparison set rather than 
a feature. A further major problem is that restric-
tions on the comparison set as the ones discussed 
in Section 4 and negation are not considered at all. 
Therefore, the reliability of the output produced by 
the system is questionable. 

5.2 Bos and Nissim (2006) 

In contrast to Jindal and Liu (2006), Bos and 
Nissim’s (2006) approach to superlatives is explic-
itly semantic. They describe an implementation of 
a system that can automatically detect superlatives, 
and determine the correct comparison set for at-
tributive cases, where the superlative form is in-
corporated into an NP. For example in [23], the 
comparison set of the superlative oldest spans from 
word 3 to word 7: 

[23]  wsj00 1690 [...] Scope: 3-7 
The oldest bell-ringing group in the 
country  , the Ancient Society of Col-
lege Youths , founded in 1637 , re-
mains male-only , [...] .  

(Bos and Nissim 2006) 

Bos and Nissim’s system, called DLA (Deep Lin-
guistic Analysis), uses a wide-coverage parser to 
produce semantic representations of superlative 
sentences, which are then exploited to select the 
comparison set among attributive cases. Compared 
with a baseline result, the results for this are very 
good, with an accuracy of 69%-83%. 

The results are clearly very promising and show 
that comparison sets can be identified with high 
accuracy. However, this only represents a first step 
towards the goal of the present work. Apart from 
the superlative keyword oldest, the only informa-
tion example [23] provides is that the comparison 
set spans from word 3 to word 7. However, what 
would be interesting to know is that the target of 
the comparison appears in the same sentence and 
spans from word 9 to word 14 (the Ancient Society 
of College Youths). Furthermore, no analysis of the 
semantic roles of the constituents of the resulting 
string is carried out: We lose the information that 

the Ancient Society of College Youths IS-A kind of 
bell-ringing group, and that the set of bell-ringing 
groups is restricted in location (in the country). 

6 Applications 

The proposed work will be beneficial for a vari-
ety of areas in NLP, for example Question An-
swering (QA), Sentiment Detection/Opinion Ex-
traction, Ontology Learning, or Natural Language 
Generation. In this section I will discuss applica-
tions in the first two areas. 

6.1 Question Answering 

In open-domain QA, the proposed work will be 
useful for answering two question types. A super-
lative sentence like [24], found in a corpus, can be 
used to answer both a factoid question [25] and a 
definition question [26]:  

[24] A: The Nile is the longest river in the world. 
[25] Q: What is the world’s longest river?  
[26] Q: What is the Nile? 

Here I will focus on the latter. The common as-
sumption that superlatives are useful with respect 
to answering definition questions is based on the 
observation that superlatives like the one in [24] 
both place an entity in a generalisation hierarchy, 
and distinguish it from its contrast set. 

To investigate this assumption, I carried out a 
study involving the TREC QA “other” question 
nuggets3, which are snippets of text that contain 
relevant information for the definition of a specific 
topic. In a recent study of judgement consistency 
(Lin and Demner-Fushman, 2006), relevant nug-
gets were judged as either 'vital' or 'okay' by 10 
different judges rather than the single assessor 
standardly used in TREC. For example, the first 
three nuggets for the topic “Merck & Co.” are: 

[27] Qid 75.8: 'other' question for target Merck & Co. 
75.8  1   vital   World's largest drug company. 
75.8  2   okay   Spent $1.68 billion on RandD in 

1997. 
75.8  3   okay   Has experience finding new uses 

for established drugs. 

(taken from TREC 2005; 'vital' and 'okay' reflect 
the opinion of the TREC evaluator.) 

My investigation of the nugget judgements in 
Lin and Demner-Fushman's study yielded two in-

                                                 
3 http://trec.nist.gov/data/qa.html 
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teresting results: First of all, a relatively high pro-
portion of relevant nuggets contains superlatives: 
On average, there is one superlative nugget for at 
least half of the TREC topics. Secondly, of 69 
superlative nuggets altogether, 32 (i.e. almost half) 
are judged “vital” by more than 9 assessors.  

Furthermore, I found that the nuggets can be dis-
tinguished by how the question target (i.e. the 
TREC topic, referred to as T1) relates to the super-
lative target (T2): In the first case, T1 and T2 coin-
cide (referred to as class S1). In the second one, T2 
is part of or closely related to T1, or T2 is part of 
the comparison set (class S2). In the third case, T1 
is unrelated or only distantly related to T2 (S3). 
Table 1 shows examples of each class: 

 T1 nugget (T2 in bold) 
S1 Merck & Co. World's largest drug company 
S2 Florence 

Nightingale 
Nightingale Medal highest  
international nurses award 

S3 Kurds Irbil largest city controlled by 
Kurds 

Table 1. Examples of superlative nuggets. 

Of the 69 nuggets containing superlatives, 46 
fall into subclass S1, 15 into subclass S2 and 8 into 
subclass S3. While I noted earlier that 32/69 (46%) 
of superlative-containing nuggets were judged vital 
by more than 9 assessors, these judgements are not 
equally distributed over the subclasses: Table 2 
shows that 87% of S1 judgements are 'vital', while 
only 38% of S3 judgements are.  

 number of 
instances 

% of “vital” 
judgements 

% of “okay” 
judgements 

S1 46 87% 13% 
S2 15 59% 40% 
S3 8 38% 60% 

Table 2. Ratings of the classes S1, S2, and S3. 

These results strongly suggest that the presence 
of superlatives, and in particular S1 membership, is 
a good indicator of the importance of nuggets, and 
thus for answering definition questions. Some ex-
periments carried out in the framework of TREC 
2006 (Kaisser et al., 2006), however, showed that 
superlatives alone are not a winning indicator of 
nugget importance, but S1 membership may be. A 
similar simple technique was used by Ahn et al. 
(2005) and by Razmara and Kosseim (2007). All 
just looked for the presence of a superlative and 
raised the score without further analysing the type 
of superlative or its role in the sentence. This calls 

for a more sophisticated approach, where class S1 
superlatives can be distinguished. 

6.2 Sentiment Detection/Opinion Extraction 

Like adjectives and adverbs, superlatives can be 
objective or subjective. Compare for example: 

[28] The Black Forest is the largest forest in 
Germany.                [objective] 
[29] The Black Forest is the most beautiful area 
in Germany.               [subjective] 

So far, none of the studies in sentiment detection 
(e.g. Wilson et al., 2005; Pang et al., 2002) or opin-
ion extraction (e.g. Hu and Liu, 2004; Popescu and 
Etzioni, 2005) have specifically looked at the role 
of superlatives in these areas. 

Like subjective adjectives, subjective superla-
tives can either express positive or negative opin-
ions. This polarity depends strongly on the adjec-
tive or adverb that the superlative is derived from.4 
As superlatives place the adjective or adverb at the 
highest or lowest point of the comparison scale (cf. 
Section 2), the question of interest is how this af-
fects the polarity of the adjective/adverb. If the 
intensity of the polarity increases in a likewise 
manner, then subjective superlatives are bound to 
express the strongest or weakest opinions possible. 
If this hypothesis holds true, an “extreme opinion” 
extraction system could be created by combining 
the proposed superlative extraction system with a 
subjectivity recognition system that can identify 
subjective superlatives. This would clearly be of 
interest to many companies and market researchers. 

Initial searches in Hu and Liu’s annotated cor-
pus of customer reviews (2004) look promising. 
Sentences in this corpus are annotated with infor-
mation about positive and negative opinions, 
which are located on a six-point scale, where [+/-3] 
stand for the strongest positive/negative opinions, 
and [+/-1] stand for the weakest positive/negative 
opinions. A search for annotated sentences con-
taining superlatives shows that an overwhelming 
majority are marked with strongest opinion labels. 

7 Summary and Future Work 

This paper proposed the task of automatically ex-
tracting useful information from superlatives oc-

                                                 
4 It may, however, also depend on whether the superla-
tive expresses the highest ('most') or the lowest ('least') 
point in the scale.  
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curring in free text. It provided an overview of su-
perlative constructions and the main challenges 
that have to be faced, described previous computa-
tional approaches and their limitations, and dis-
cussed applications in two areas in NLP: QA and 
Sentiment Detection/Opinion Extraction.  

The proposed task can be seen as consisting of 
three subtasks:  

TASK 1: Decide whether a given sentence contains 
a superlative form  
TASK 2: Given a sentence containing a superlative 
form, identify what type of superlative it is (ini-
tially: IS-A superlative or not?) 
TASK 3: For set comparisons, identify the target 
and the comparison set, as well as the superlative 
relation 

Task 1 can be tackled by a simple approach rely-
ing on POS tags (e.g. JJS and RBS in the Penn 
Treebank tagset). For Task 2, I have carried out a 
thorough analysis of the different types of superla-
tive forms and postulated a new classification for 
them. My present efforts are on the creation of a 
gold standard data set for the extraction task. As 
superlatives are particularly frequent in encyclo-
paedic language (cf. Section 3), I am considering 
using the Wikipedia5 as a knowledge base. The 
main challenge is to devise a suitable annotation 
scheme which can account for all syntactic struc-
tures in which IS-A superlatives occur and which 
incorporates their semantic properties in an ade-
quate way (semantic role labelling). Finally, for 
Task 3, I plan to use both manually created rules 
and machine learning techniques. 
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Abstract

There is little consensus on a standard ex-
perimental design for the compound inter-
pretation task. This paper introduces well-
motivated general desiderata for semantic
annotation schemes, and describes such a
scheme for in-context compound annotation
accompanied by detailed publicly available
guidelines. Classification experiments on an
open-text dataset compare favourably with
previously reported results and provide a
solid baseline for future research.

1 Introduction

There are a number of reasons why the interpreta-
tion of noun-noun compounds has long been a topic
of interest for NLP researchers. Compounds oc-
cur very frequently in English and many other lan-
guages, so they cannot be avoided by a robust se-
mantic processing system. Compounding is a very
productive process with a highly skewed type fre-
quency spectrum, and corpus information may be
very sparse. Compounds are often highly ambigu-
ous and a large degree of “world knowledge” seems
necessary to understand them. For example, know-
ing that a cheese knife is (probably) a knife for
cutting cheese and (probably) not a knife made of
cheese (cf. plastic knife) does not just require an
ability to identify the senses of cheese and knife but
also knowledge about what one usually does with
cheese and knives. These factors combine to yield
a difficult problem that exhibits many of the chal-
lenges characteristic of lexical semantic process-
ing in general. Recent research has made signifi-

cant progress on solving the problem with statisti-
cal methods and often without the need for manu-
ally created lexical resources (Lauer, 1995; Lapata
and Keller, 2004; Girju, 2006; Turney, 2006). The
work presented here is part of an ongoing project
that treats compound interpretation as a classifica-
tion problem to be solved using machine learning.

2 Selecting an Annotation Scheme

For many classification tasks, such as part-of-speech
tagging or word sense disambiguation, there is gen-
eral agreement on a standard set of categories that
is used by most researchers. For the compound
interpretation task, on the other hand, there is lit-
tle agreement and numerous classification schemes
have been proposed. This hinders meaningful com-
parison of different methods and results. One must
therefore consider how an appropriate annotation
scheme should be chosen.

One of the problems is that it is not immedi-
ately clear what level of granularity is desirable, or
even what kind of units the categories should be.
Lauer (1995) proposes a set of 8 prepositions that
can be used to paraphrase compounds: a cheese
knife is a knife FOR cheese but a kitchen knife is
a knife (used) IN a kitchen. An advantage of this
approach is that preposition-noun co-occurrences
can efficiently be mined from large corpora using
shallow techniques. On the other hand, interpret-
ing a paraphrase requires further disambiguation as
one preposition can map onto many semantic rela-
tions.1 Girju et al. (2005) and Nastase and Szpakow-
icz (2003) both present large inventories of seman-

1The interpretation of prepositions is itself the focus of a
Semeval task in 2007.
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tic relations that describe noun-noun dependencies.
Such relations provide richer semantic information,
but it is harder for both humans and machines to
identify their occurrence in text. Larger invento-
ries can also suffer from class sparsity; for exam-
ple, 14 of Girju et al.’s 35 relations do not occur in
their dataset and 7 more occur in less than 1% of
the data. Nastase and Szpakowicz’ scheme mitigates
this problem by the presence of 5 supercategories.

Each of these proposals has its own advantages
and drawbacks, and there is a need for principled cri-
teria for choosing one. As the literature on semantic
annotation “best practice” is rather small,2 I devised
a novel set of design principles based on empirical
and theoretical considerations:

1. The inventory of informative categories should
account for as many compounds as possible

2. The category boundaries should be clear and
categories should describe a coherent concept

3. The class distribution should not be overly
skewed or sparse

4. The concepts underlying the categories should
generalise to other linguistic phenomena

5. The guidelines should make the annotation pro-
cess as simple as possible

6. The categories should provide useful semantic
information

These intuitively appear to be desirable principles
for any semantic annotation scheme. The require-
ment of class distribution balance is motivated by
the classification task. Where one category domi-
nates, the most-frequent-class baseline can be diffi-
cult to exceed and care must be taken in evaluation
to consider macro-averaged performance as well as
raw accuracy. It has been suggested that classifiers
trained on skewed data may perform poorly on mi-
nority classes (Zhang and Oles, 2001). Of course,
this is not a justification for conflating concepts with
little in common, and it may well be that the natural
distribution of data is inherently skewed.

There is clearly a tension between these criteria,
and only a best-fit solution is possible. However, it
was felt that a new scheme might satisfy them more
optimally than existing schemes. Such a proposal

2One relevant work is Wilson and Thomas (1997).

Relation Distribution Example
BE 191 (9.55%) steel knife
HAVE 199 (9.95%) street name
IN 308 (15.40%) forest hut
INST 266 (13.30%) rice cooker
ACTOR 236 (11.80%) honey bee
ABOUT 243 (12.15%) fairy tale
REL 81 (4.05%) camera gear
LEX 35 (1.75%) home secretary
UNKNOWN 9 (0.45%) simularity crystal
MISTAG 220 (11.00%) blazing fire
NONCOMP 212 (10.60%) [real tennis] club

Table 1: Sample class frequencies

necessitates a method of evaluation. Not all the cri-
teria are easily evaluable. It is difficult to prove gen-
eralisability and usefulness conclusively, but it can
be maximised by building on more general work on
semantic representation; for example, the guidelines
introduced here use a conception of events and par-
ticipants compatible with that of FrameNet (Baker
et al., 1998). Good results on agreement and base-
line classification will provide positive evidence for
the coherence and balance of the classes; agreement
measures can confirm ease of annotation.

In choosing an appropriate level of granularity, I
wished to avoid positing a large number of detailed
but rare categories. Levi’s (1978) set of nine se-
mantic relations was used as a starting point. The
development process involved a series of revisions
over six months, aimed at satisfying the six criteria
above and maximising interannotator agreement in
annotation trials. The nature of the decisions which
had to be made is exemplified by the compound car
factory, whose standard referent seems to qualify as
FOR, CAUSE, FROM and IN in Levi’s scheme (and
causes similar problems for the other schemes I am
aware of). Likewise there seems to be no princi-
pled way to choose between a locative or purposive
label for dining room. Such examples led to both
redefinition of category boundaries and changes in
the category set; for example, FOR was replaced by
INST and AGENT, which are independent of purpo-
sivity. This resulted in the class inventory shown in
Table 1 and a detailed set of annotation guidelines.3

3The guidelines are publicly available at http://www.
cl.cam.ac.uk/˜do242/guidelines.pdf.
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The scheme’s development is described at length in
Ó Séaghdha (2007b).

Many of the labels are self-explanatory. AGENT
and INST(rument) apply to sentient and non-
sentient participants in an event respectively, with
ties (e.g., stamp collector) being broken by a hier-
archy of coarse semantic roles. REL is an OTHER-
style category for compounds encoding non-specific
association. LEX(icalised) applies to compounds
which are semantically opaque without prior knowl-
edge of their meanings. MISTAG and NON-
COMP(ound) labels are required to deal with se-
quences that are not valid two-noun compounds but
have been identified as such due to tagging errors
and the simple data extraction heuristic described in
Section 3.1. Coverage is good, as 92% of valid com-
pounds in the dataset described below were assigned
one of the six main semantic relations.

3 Annotation Experiment

3.1 Data

A simple heuristic was used to extract noun se-
quences from the 90 million word written part of the
British National Corpus.4 The corpus was parsed
using the RASP parser5 and all sequences of two
common nouns were extracted except those adjacent
to another noun and those containing non-alphabetic
characters. This yielded almost 1.6 million tokens
with 430,555 types. 2,000 unique tokens were ran-
domly drawn for use in annotation and classification
experiments.

3.2 Method

Two annotators were used: the current author and
an annotator experienced in lexicography but with-
out any special knowledge of compounds or any role
in the development of the annotation scheme. In all
the trials described here, each compound was pre-
sented alongside the sentence in which it was found
in the BNC. The annotators had to assign one of the
labels in Table 1 and the rule that licensed that la-
bel in the annotation guidelines. For example, the
compound forest hut in its usual sense would be an-
notated IN,2,2.1.3.1 to indicate the semantic

4http://www.natcorp.ox.ac.uk/
5http://www.informatics.susx.ac.uk/

research/nlp/rasp/

relation, the direction of the relation (it is a hut in
a forest, not a forest in a hut) and that the label is
licensed by rule 2.1.3.1 in the guidelines (N1/N2 is
an object spatially located in or near N2/N1).6 Two
trial batches of 100 compounds were annotated to
familiarise the second annotator with the guidelines
and to confirm that the guidelines were indeed us-
able for others. The first trial resulted in agreement
of 52% and the second in agreement of 73%. The
result of the second trial, corresponding to a Kappa
beyond-chance agreement estimate (Cohen, 1960)
of κ̂ = 0.693, was very impressive and it was de-
cided to proceed to a larger-scale task. 500 com-
pounds not used in the trial runs were drawn from
the 2,000-item set and annotated.
3.3 Results and Analysis

Agreement on the test set was 66.2% with κ̂ = 0.62.
This is less than the score achieved in the second
trial run, but may be a more accurate estimator of the
true population κ due to the larger sample size. On
the other hand, the larger dataset may have caused
annotator fatigue. Pearson standardised residuals
(Haberman, 1973) were calculated to identify the
main sources of disagreement.7 In the context of
inter-annotator agreement one expects these residu-
als to have large positive values on the agreement di-
agonal and negative values in all other cells. Among
the six main relations listed at the top of Table 1,
a small positive association was observed between
INST and ABOUT, indicating that borderline topics
such as assessment task and gas alarm were likely
to be annotated as INST by the first annotator and
ABOUT by the second. It seems that the guidelines
might need to clarify this category boundary.

It is clear from analysis of the data that the REL,
LEX and UNKNOWN categories show very low
agreement. They all have low residuals on the agree-
ment diagonal (that for UNKNOWN is negative) and
numerous positive entries off it. REL and LEX are
also the categories for which it is most difficult to

6The additional information provided by the direction and
rule annotations could be used to give a richer classification
scheme but has not yet been used in this way in my experiments.

7The standardised residual of cell ij is calculated as

eij =
nij − p̂i+p̂+j√

p̂i+p̂+j(1− p̂i+)(1− p̂+j)

where nij is the observed value of cell ij and p̂i+, p̂+j are row
and column marginal probabilities estimated from the data.
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provide clear guidelines. On the other hand, the
MISTAG and NONCOMP categories showed good
agreement, with slightly higher agreement residu-
als than the other categories. To get a rough idea
of agreement on the six categories used in the clas-
sification experiments described below, agreement
was calculated for all items which neither annota-
tor annotated with any of REL, LEX, UNKNOWN,
MISTAG and NONCOMP. This left 343 items with
agreement of 73.6% and κ̂ = 0.683.

3.4 Discussion

This is the first work I am aware of where com-
pounds were annotated in their sentential context.
This aspect is significant, as compound meaning is
often context dependent (compare school manage-
ment decided. . . and principles of school manage-
ment) and in-context interpretation is closer to the
dynamic of real-world language use. Context can
both help and hinder agreement, and it is not clear
whether in- or out-of-context annotation is easier.

Previous work has given out-of-context agree-
ment figures for corpus data. Kim and Bald-
win (2005) report an experiment using 2,169 com-
pounds taken from newspaper text and the categories
of Nastase and Szpakowicz (2003). Their annota-
tors could assign multiple labels in case of doubt
and were judged to agree on an item if their anno-
tations had any label in common. This less strin-
gent measure yielded agreement of 52.31%. Girju
et al. (2005) report agreement for annotation using
both Lauer’s 8 prepositional labels (κ̂ = 0.8) and
their own 35 semantic relations (κ̂ = 0.58). These
figures are difficult to interpret as annotators were
again allowed assign multiple labels (for the prepo-
sitions this occurred in “almost all” cases) and the
multiply-labelled items were excluded from the cal-
culation of Kappa. This entails discarding the items
which are hardest to classify and thus most likely to
cause disagreement.

Girju (2006) has recently published impressive
agreement results on a related task. This involved
annotating 2,200 compounds extracted from an on-
line dictionary, each presented in five languages, and
resulted in a Kappa score of 0.67. This task may
have been facilitated by the data source and its mul-
tilingual nature. It seems plausible that dictionary
entries are more likely to refer to familiar concepts

than compounds extracted from a balanced corpus,
which are frequently context-dependent coinages or
rare specialist terms. Furthermore, the translations
of compounds in Romance languages often pro-
vide information that disambiguates the compound
meaning (this aspect was the main motivation for the
work) and translations from a dictionary are likely
to correspond to an item’s most frequent meaning.
A qualitative analysis of the experiment described
above suggests that about 30% of the disagreements
can confidently be attributed to disagreement about
the semantics of a given compound (as opposed to
how a given meaning should be annotated).8

4 SVM Learning with Co-occurrence Data

4.1 Method

The data used for classification was taken from the
2,000 items used for the annotation experiment, an-
notated by a single annotator. Due to time con-
straints, this annotation was done before the second
annotator had been used and was not changed af-
terwards. All compounds annotated as BE, HAVE,
IN, INST, AGENT and ABOUT were used, giving a
dataset of 1,443 items. All experiments were run us-
ing Support Vector Machine classifiers implemented
in LIBSVM.9 Performance was measured via 5-fold
cross-validation. Best performance was achieved
with a linear kernel and one-against-all classifica-
tion. The single SVM parameter C was estimated
for each fold by cross-validating on the training set.
Due to the efficiency of the linear kernel the optimi-
sation, training and testing steps for each fold could
be performed in under an hour.

I investigated what level of performance could
be achieved using only corpus information. Feature
vectors were extracted from the written BNC for
each modifier and head in the dataset under the
following conditions:

w5, w10: Each word within a window of 5 or 10
words on either side of the item is a feature.
Rbasic, Rmod, Rverb, Rconj: These feature sets

8For example, one annotator thought peat boy referred to a
boy who sells peat (AGENT) while the other thought it referred
to a boy buried in peat (IN).

9http://www.csie.ntu.edu.tw/˜cjlin/
libsvm
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use the grammatical relation output of the RASP
parser run over the written BNC. The Rbasic feature
set conflates information about 25 grammatical
relations; Rmod counts only prepositional, nominal
and adjectival noun modification; Rverb counts
only relations among subjects, objects and verbs;
Rconj counts only conjunctions of nouns. In each
case, each word entering into one of the target
relations with the item is a feature and only the
target relations contribute to the feature values.

Each feature vector counts the target word’s co-
occurrences with the 10,000 words that most fre-
quently appear in the context of interest over the en-
tire corpus. Each compound in the dataset is rep-
resented by the concatenation of the feature vectors
for its head and modifier. To model aspects of co-
occurrence association that might be obscured by
raw frequency, the log-likelihood ratio G2 was used
to transform the feature space.10

4.2 Results and Analysis
Results for these feature sets are given in Table 2.
The simple word-counting conditions w5 and w10
perform relatively well, but the highest accuracy is
achieved by Rconj. The general effect of the log-
likelihood transformation cannot be stated categor-
ically, as it causes some conditions to improve and
others to worsen, but the G2-transformed Rconj fea-
tures give the best results of all with 54.95% ac-
curacy (53.42% macro-average). Analysis of per-
formance across categories shows that in all cases
accuracy is lower (usually below 30%) on the BE
and HAVE relations than on the others (often above
50%). These two relations are least common in the
dataset, which is why the macro-averaged figures are
slightly lower than the micro-averaged accuracy.

4.3 Discussion
It is interesting that the conjunction-based features
give the best performance, as these features are also
the most sparse. This may be explained by the fact
that words appearing in conjunctions are often tax-
onomically similar (Roark and Charniak, 1998) and
that taxonomic information is particularly useful for

10This measure is relatively robust where frequency counts
are low and consistently outperformed other association mea-
sures in the empirical evaluation of Evert (2004).

Raw G2

Accuracy Macro Accuracy Macro
w5 52.60% 51.07% 51.35% 49.93%
w10 51.84% 50.32% 50.10% 48.60%
Rbasic 51.28% 49.92% 51.83% 50.26%
Rmod 51.35% 50.06% 48.51% 47.03%
Rverb 48.79% 47.13% 48.58% 47.07%
Rconj 54.12% 52.44% 54.95% 53.42%

Table 2: Performance of BNC co-occurrence data

compound interpretation, as evidenced by the suc-
cess of WordNet-based methods (see Section 5).

In comparing reported classification results, it is
difficult to disentangle the effects of different data,
annotation schemes and classification methods. The
results described here should above all be taken to
demonstrate the feasibility of learning using a well-
motivated annotation scheme and to provide a base-
line for future work on the same data. In terms of
methodology, Turney’s (2006) Vector Space Model
experiments are most similar. Using feature vec-
tors derived from lexical patterns and frequencies re-
turned by a Web search engine, a nearest-neighbour
classifier achieves 45.7% accuracy on compounds
annotated with 5 semantic classes. Turney improves
accuracy to 58% with a combination of query ex-
pansion and linear dimensionality reduction. This
method trades off efficiency for accuracy, requiring
many times more resources in terms of time, stor-
age and corpus size than that described here. Lap-
ata and Keller (2004) obtain accuracy of 55.71% on
Lauer’s (1995) prepositionally annotated data using
simple search engine queries. Their method has the
advantage of not requiring supervision, but it cannot
be used with deep semantic relations.

5 SVM Classification with WordNet

5.1 Method

The experiments reported in this section make a ba-
sic use of the WordNet11 hierarchy. Binary feature
vectors are used whereby a vector entry is 1 if the
item belongs to or is a hyponym of the synset corre-
sponding to that feature, and 0 otherwise. Each com-
pound is represented by the concatenation of two
such vectors, for the head and modifier. The same

11http://wordnet.princeton.edu/
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classification method is used as in Section 4.

5.2 Results and Discussion

This method achieves accuracy of 56.76% and
macro-averaged accuracy of 54.59%, slightly higher
than that achieved by the co-occurrence features.
Combining WordNet and co-occurrence vectors by
simply concatenating the G2-transformed Rconj
vector and WordNet feature vector for each com-
pound gives a further boost to 58.35% accuracy
(56.70% macro-average).

These results are higher than those reported for
similar approaches on open-text data (Kim and
Baldwin, 2005; Girju et al., 2005), though the same
caveat applies about comparison. The best results
(over 70%) reported so far for compound inter-
pretation use a combination of multiple lexical re-
sources and detailed additional annotation (Girju et
al., 2005; Girju, 2006).

6 Conclusion and Future Directions

The annotation scheme described above has been
tested on a rigorous multiple-annotator task and
achieved superior agreement to comparable results
in the literature. Further refinement should be possi-
ble but would most likely yield diminishing returns.
In the classification experiments, my goal was to
see what level of performance could be gained by
using straightforward techniques so as to provide
a meaningful baseline for future research. Good
results were achieved with methods that rely nei-
ther on massive corpora or broad-coverage lexical
resources, though slightly better performance was
achieved using WordNet. An advantage of resource-
poor methods is that they can be used for the many
languages where compounding is common but such
resources are limited.

The learning approach described here only cap-
tures the lexical semantics of the individual con-
situents. It seems intuitive that other kinds of corpus
information would be useful; in particular, contexts
in which the head and modifier of a compound both
occur may make explicit the relations that typically
hold between their referents. Kernel methods for us-
ing such relational information are investigated in Ó
Séaghdha (2007a) with promising results, and I am
continuing my research in this area.
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Abstract 

This paper investigates the use of machine 

learning algorithms to label modifier-noun 
compounds with a semantic relation. The 

attributes used as input to the learning algo-

rithms are the web frequencies for phrases 
containing the modifier, noun, and a prepo-

sitional joining term. We compare and 

evaluate different algorithms and different 
joining phrases on Nastase and Szpako-

wicz’s (2003) dataset of 600 modifier-noun 

compounds. We find that by using a Sup-

port Vector Machine classifier we can ob-
tain better performance on this dataset than 

a current state-of-the-art system; even with 

a relatively small set of prepositional join-
ing terms. 

1 Introduction 

Noun-modifier word pairs occur frequently in 

many languages, and the problem of semantic dis-
ambiguation of these phrases has many potential 

applications in areas such as question-answering 

and machine translation. One very common ap-
proach to this problem is to define a set of seman-

tic relations which capture the interaction between 

the modifier and the head noun, and then attempt 

to assign one of these semantic relations to each 
noun-modifier pair. For example, the phrase “flu 

virus” could be assigned the semantic relation 

“causal” (the virus causes the flu); the relation for 

“desert storm” could be “location” (the storm is 

located in the desert). 

There is no consensus as to which set of seman-
tic relations best captures the differences in mean-

ing of various noun phrases. Work in theoretical 

linguistics has suggested that noun-noun com-

pounds may be formed by the deletion of a predi-
cate verb or preposition (Levi 1978). However, 

whether the set of possible predicates numbers 5 or 

50, there are likely to be some examples of noun 
phrases that fit into none of the categories and 

some that fit in multiple categories. 

Modifier-noun phrases are often used inter-
changeably with paraphrases which contain the 

modifier and the noun joined by a preposition or 

simple verb. For example, the query “morning ex-

ercise” returns 133,000 results from the Yahoo 
search engine, and a query for the phrase “exercise 

in the morning” returns 47,500 results. Sometimes 

people choose to use a modifier-noun compound 
phrase to describe a concept, and sometimes they 

choose to use a paraphrase which includes a prepo-

sition or simple verb joining head noun and the 

modifier. One method for deducing semantic rela-
tions between words in compounds involves gath-

ering n-gram frequencies of these paraphrases, 

containing a noun, a modifier and a “joining term” 
that links them. Some algorithm can then be used 

to map from joining term frequencies to semantic 

relations and so find the correct relation for the 
compound in question. This is the approach we use 

in our experiments. We choose two sets of joining 

terms, based on the frequency with which they oc-

cur in between nouns in the British National Cor-
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pus (BNC). We experiment with three different 

learning algorithms; Nearest Neighbor, Multi-
Layer Perceptron and Support Vector Machines 

(SVM). 

2 Motivation 

The motivation for this paper is to discover which 

joining terms are good predictors of a semantic 

relation, and which learning algorithms perform 
best at the task of mapping from joining terms to 

semantic relations for modifier-noun compounds. 

2.1 Joining Terms 

Choosing a set of joining terms in a principled 
manner in the hope of capturing the semantic rela-

tion between constituents in the noun phrase is dif-

ficult, but there is certainly some correlation be-

tween a prepositional term or short linking verb 
and a semantic relation. For example, the preposi-

tion “during” indicates a temporal relation, while 

the preposition “in” indicates a locative relation, 
either temporal or spatial. 

   In this paper, we are interested in whether the 

frequency with which a joining term occurs be-
tween two nouns is related to how it indicates a 

semantic interaction. This is in part motivated by 

Zipf’s theory which states that the more frequently 

a word occurs in a corpus the more meanings or 
senses it is likely to have (Zipf 1929). If this is 

true, we would expect that very frequent preposi-

tions, such as “of”, would have many possible 
meanings and therefore not reliably predict a se-

mantic relation. However, less frequent preposi-

tions, such as “while” would have a more limited 

set of senses and therefore accurately predict a se-
mantic relation. 

2.2 Machine Learning Algorithms 

We are also interested in comparing the perform-

ance of machine learning algorithms on the task of 
mapping from n-gram frequencies of joining terms 

to semantic relations. For the experiments we use 

Weka, (Witten and Frank, 1999) a machine learn-
ing toolkit which allows for fast experimentation 

with many standard learning algorithms. In Section 

5 we present the results obtained using the nearest-

neighbor, neural network (i.e. multi-layer percep-
tron) and SVM. The mechanisms of these different 

learning approaches will be discussed briefly in 

Section 4. 

3 Related Work 

3.1   Web Mining 

Much of the recent work conducted on the problem 

of assigning semantic relations to noun phrases has 

used the web as a corpus. The use of hit counts 

from web search engines to obtain lexical 
information was introduced by Turney (2001). The 

idea of searching a large corpus for specific lexico-

syntactic phrases to indicate a semantic relation of 
interest was first described by Hearst (1992). 

 A lexical pattern specific enough to indicate a 

particular semantic relation is usually not very 

frequent, and using the web as a corpus alleviates 
the data sparseness problem. However, it also 

introduces some problems. 

• The query language permitted by the large 

search engines is somewhat limited.  

• Two of the major search engines (Google and 

Yahoo) do not provide exact frequencies, but 

give rounded estimates instead. 

• The number of results returned is unstable as 

new pages are created and deleted all the time. 
  Nakov and Hearst (2005) examined the use of 

web-based n-gram frequencies for an NLP task and 

concluded that these issues do not greatly impact 

the interpretation of the results. Keller and Lapata 
(2003) showed that web frequencies correlate 

reliably with standard corpus frequencies. 

  Lauer (1995) tackles the problem of semantically 
disambiguating noun phrases by trying to find the 

preposition which best describes the relation 

between the modifier and head noun. His method 
involves searching a corpus for occurrences 

paraphrases of the form “noun preposition 

modifier”. Whichever preposition is most frequent 

in this context is chosen. Lapata and Keller (2005) 
improved on Lauer's results at the same task by 

using the web as a corpus. Nakov and Hearst 

(2006) use queries of the form “noun that * 
modifier” where '*' is a wildcard operator. By 

retrieving the words that most commonly occurred 

in the place of the wildcard they were able to 

identify very specific predicates that are likely to 
represent the relation between noun and modifier. 
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3.2 Machine Learning Approaches 

There have been two main approaches used when 
applying machine learning algorithms to the se-

mantic disambiguation of modifier-noun phrases. 

  The first approach is to use semantic properties of 
the noun and modifier words as attributes, using a 

lexical hierarchy to extract these properties. This 

approach was used by Rosario and Hearst (2001) 

within a specific domain – medical texts. Using an 
ontology of medical terms they train a neural net-

work to semantically classify nominal phrases, 

achieving 60% accuracy over 16 classes. 
   Nastase and Szpakowicz (2003) use the position 

of the noun and modifier words within general se-

mantic hierarchies (Roget's Thesaurus and Word-
Net) as attributes for their learning algorithms. 

They experiment with various algorithms and con-

clude that a rule induction system is capable of 

generalizing to characterize the noun phrases. 
Moldovan et al (2004) also use WordNet. They 

experiment with a Bayesian algorithm, decision 

trees, and their own algorithm; semantic scattering.  
There are some drawbacks to the technique of us-

ing semantic properties extracted from a lexical 

hierarchy. Firstly, it has been noted that the distinc-
tions between word senses in WordNet are very 

fine-grained, making the task of word-sense dis-

ambiguation tricky. Secondly, it is usual to use a 

rule-based learning algorithm when the attributes 
are properties of the words rather than n-gram fre-

quency counts. As Nastase and Szpakowicz (2003) 

point out, a large amount of labeled data is re-
quired to allow these rule-based learners to effec-

tively generalize, and manually labeling thousands 

of modifier-noun compounds would be a time-

consuming task. 

Table 1: Examples for each of the five relations 

The second approach is to use statistical informa-
tion about the occurrence of the noun and modifier 

in a corpus to generate attributes for a machine 

learning algorithm. This is the method we will de-

scribe in this paper. Turney and Littman (2005)  

use a set of 64 short prepositional and conjunctive 

phrases they call “joining terms” to generate exact 
queries for AltaVista of the form “noun joining 

term modifier”, and “modifier joining term noun”.  

  These hit counts were used with a nearest 
neighbor algorithm to assign the noun phrases se-

mantic relations. Over the set of 5 semantic rela-

tions defined by Nastase and Szpakowicz (2003), 

they achieve an accuracy of 45.7% for the task of 
assigning one of 5 semantic relations to each of the 

600 modifier-noun phrases. 

4   Method 

  The method described in this paper is similar to 

the work presented in Turney and Littman (2005). 

We collect web frequencies for queries of the form 
“head joining term modifier”. We did not collect 

queries of the form “modifier joining term head”; 

in the majority of paraphrases of noun phrases the 
head noun occurs before the modifying word. As 

well as trying to achieve reasonable accuracy, we 

were interested in discovering what kinds of join-
ing phrases are most useful when trying to predict 

the semantic relation, and which machine learning 

algorithms perform best at the task of using vectors 

of web-based n-gram frequencies to predict the 
semantic relation. 

  For our experiments we used the set of 600 la-

beled noun-modifier pairs of Nastase and Szpako-
wicz (2003). This data was also used by Turney 

and Littman (2005). Of the 600 modifier-noun 

phrases, three contained hyphenated or two-word 
modifier terms, for example “test-tube baby”. We 

omitted these three examples from our experi-

ments, leaving a dataset of 597 examples. 

  The data is labeled with two different sets of 
semantic relations: one set of 30 relations with 

fairly specific meanings, and another set of 5 rela-

tions with more abstract meanings. For our ex-
periments we focused on the set of 5 relations. One 

reason for this is that dividing a set of 600 in-

stances into 30 classes results in a fairly sparse and 

uneven dataset. Table 1 is a list of the relations 
used and examples of compounds that are labeled 

with each relation. 

4.1 Collecting Web Frequencies 

In order to collect the n-gram frequencies, we used 
the Yahoo Search API. Collecting frequencies for 

causal flu virus, onion tear 

temporal summer travel, morning class 

spatial west coast, home remedy 

participant mail sorter, blood donor 

quality rice paper, picture book 

81



 

 

600 noun-modifier pairs, using 28 different joining 

terms required 16,800 calls to the search engine. 
We will discuss our choice of the joining terms in 

the next section.  

  When collecting web frequencies we took advan-
tage of the OR operator provided by the search 

engine. For each joining term, we wanted to sum 

the number of hits for the term on its own, the term 

followed by 'a' and the term followed by 'the'. In-
stead of conducting separate queries for each of 

these forms, we were able to sum the results with 

just one search. For example, if the noun phrase 
was “student invention” and the joining phrase was 

“by”; one of the queries would be:  

“invention by student” OR “invention by a student” OR 

“invention by the student” 

This returns the sum of the number of pages 

matched by each of these three exact queries. The 

idea is that these sensible paraphrases will return 
more hits than nonsense ones, such as: 

 “invention has student” OR “invention has a student” 

OR “invention has the student” 

It would be possible to construct a set of hand-

coded rules to map from joining terms to semantic 
relations; for example “during” maps to temporal, 

“by” maps to causal and so on. However, we hope 

that the classifiers will be able to identify combina-

tions of prepositions that indicate a relation. 

4.2 Choosing a Set of Joining Terms 

Possibly the most difficult problem with this 

method is deciding on a set of joining terms which 

is likely to provide enough information about the 
noun-modifier pairs to allow a learning algorithm 

to predict the semantic relation. Turney and Litt-

man (2005) use a large and varied set of joining 
terms. They include the most common preposi-

tions, conjunctions and simple verbs like “has”, 

“goes” and “is”. Also, they include the wildcard 

operator '*' in many of their queries; for example 
“not”, “* not” and “but not” are all separate que-

ries. In addition, they include prepositions both 

with and without the definite article as separate 
queries, for example “for” and “for the”. 

  The joining terms used for the experiments in this 

paper were chosen by examining which phrases 

most commonly occurred between two nouns in 

the BNC. We counted the frequencies with which 

phrases occurred between two nouns and chose the 
28 most frequent of these phrases as our joining 

terms. We excluded conjunctions and determiners 

from the list of the most frequent joining terms. 
We excluded conjunctions on the basis that in most 

contexts a conjunction merely links the two nouns 

together for syntactic purposes; there is no real 

sense in which one of the nouns modifies another 
semantically in this context. We excluded deter-

miners on the basis that the presence of a deter-

miner does not affect the semantic properties of the 
interaction between the head and modifier. 

4.3 Learning Algorithms 

  There were three conditions experimented with 

using three different algorithms. For the first con-
dition, the attributes used by the learning algo-

rithms consisted of vectors of web hits obtained 

using the 14 most frequent joining terms found in  

the BNC. The next condition used a vector of web 
hits obtained using the joining terms that occurred  

Table 2: Joining terms ordered by the frequency  

with which they occurred between two nouns in 
the BNC. 

from position 14 to 28 in the list of the most fre-

quent terms found in the BNC. The third condition 

used all 28 joining terms. The joining terms are 
listed in Table 2.  We used the log of the web 

counts returned, as recommended in previous work 

(Keller and Lapata, 2003). 
  The first learning algorithm we experimented 

with was the nearest neighbor algorithm ‘IB1’, as 

1-14 15-28 

of 

in 

to 

for 

on 

with 
at 

is 

from 

as 

by 

between 

about 

has 

against 

within 

during 

through 

over 

towards 
without 

across 

because 

behind 

after 

before 

while 

under 
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implemented in Weka. This algorithm considers 

the vector of n-gram frequencies as a multi-
dimensional space, and chooses the label of the 

nearest example in this space as the label for each 

new example. Testing for this algorithm was done 
using leave-one-out cross validation.  

   The next learning algorithm we used was the 

multi-layer perceptron, or neural network. The 

network was trained using the backpropagation of 
error technique implemented in Weka. For the first 

two sets of data we used a network with 14 input 

nodes, one hidden layer with 28 nodes, and 5 out-
put nodes. For the final condition, which uses the 

frequencies for all 28 joining terms, we used 28 

input nodes, one hidden layer with 56 nodes, and 
again 5 outputs, one for each class. We used 20-

fold cross validation with this algorithm. 

   The final algorithm we tested was an SVM 

trained with the Sequential Minimal Optimization 
method provided by Weka. A support vector ma-

chine is a method for creating a classification func-

tion which works by trying to find a hypersurface 
in the space of possible inputs that splits the posi-

tive examples from the negative examples for each 

class. For this test we again used 20-fold cross 
validation. 

5. Results  

The accuracy of the algorithms on each of the con-
ditions is illustrated below in Table 3. Since the 

largest class in the dataset accounts for 43% of the 

examples, the baseline accuracy for the task 
(guessing “participant” all the time) is 43%. 

    The condition containing the counts for the less 

frequent joining terms performed slightly better 

than that containing the more frequent ones, but 
the best accuracy resulted from using all 28 fre-

quencies. The Multi-Layer Perceptron performed 

better than the nearest neighbor algorithm on all 
three conditions. There was almost no difference in 

accuracy between the first two conditions, and 

again using all of the joining terms produced the 

best results. 

  The SVM algorithm produced the best accuracy 
of all, achieving 50.1% accuracy using the com-

bined set of joining terms. The less frequent join-

ing terms achieve slightly better accuracy using the 
Nearest Neighbor and SVM algorithms, and very 

slightly worse accuracy using the neural network. 

Using all of the joining terms resulted in a signifi-

cant improvement in accuracy for all algorithms. 
The SVM consistently outperformed the baseline; 

neither of the other algorithms did so. 

6. Discussion and Future Work 

Our motivation in this paper was twofold. Firstly, 

we wanted to compare the performance of different 

machine learning algorithms on the task of map-
ping from a vector of web frequencies of para-

phrases containing joining terms to semantic rela-

tions. Secondly, we wanted to discover whether the 
frequency of joining terms was related to their ef-

fectiveness at predicting a semantic relation. 

6.1 Learning Algorithms 

The results suggest that the nearest neighbor ap-
proach is not the most effective algorithm for the 

classification task. Turney and Littman (2005) 

achieve an accuracy of 45.7%, where we achieve a 

maximum accuracy of 38.1% on this dataset using 
a nearest neighbor algorithm. However, their tech-

nique uses the cosine of the angle between the vec-

tors of web counts as the similarity metric, while 
the nearest neighbor implementation in Weka uses 

the Euclidean distance.  

Also, they use 64 joining terms and gather 

counts for both the forms “noun joining term modi-
fier” and “modifier joining term noun” (128 fre-

quencies in total); while we use only the former 

construction with 28 joining terms. By using the 
SVM classifier, we were able to achieve a higher 

accuracy than Turney and Littman (50.1% versus 

45.7%) with significantly fewer joining terms (28 
versus 128).  However, one issue with the SVM is 

Table 3:  Accuracy for each algorithm using each set of joining terms on the Nastase and Szpako-
wicz test set of modifier-noun compounds. 

 Joining Terms 1-14 Joining terms 15-28 All 28 Joining terms 

Nearest Neighbor 32.6 34.7 38.1 

Multi Layer Perceptron 37.6 37.4 42.2 

Support Vector Machine 44.2 45.9 50.1 
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that it never predicted the class “causal” for any of 

the examples. The largest class in our dataset is 
“participant”, which is the label for 43% of the 

examples; the smallest is “temporal”, which labels 

9% of the examples. “Causal” labels 14% of the 
data. It is difficult to explain why the algorithm 

fails to account for the “causal” class; a useful task 

for future work would be to conduct a similar ex-

periment with a more balanced dataset. 

6.2 Joining Terms 

The difference in accuracy achieved by the two 

sets of joining terms is quite small, although for 

two of the algorithms the less frequent terms did 
achieve slightly better results. The difficulty is that 

the task of deducing a semantic relation from a 

paraphrase such as “storm in the desert” requires 
many different types of information. It requires 

knowledge about the preposition “in”; i.e. that it 

indicates a location. It requires knowledge about 

the noun “desert”, i.e. that it is a location in space 
rather than time, and it requires the knowledge that 

a “storm” may refer both to an event in time and an 

entity in space. It may be that a combination of 
semantic information from an ontology and statis-

tical information about paraphrases could be used 

together to achieve better performance on this task. 

  Another interesting avenue for future work in 
this area is investigation into exactly how “joining 

terms” relate to semantic relations. Given Zipf's 

observation that high frequency words are more 
ambiguous than low frequency words, it is possible 

that there is a relationship between the frequency 

of the preposition in a paraphrase such as “storm 
in the desert” and the ease of understanding that 

phrase. For example, the preposition 'of' is very 

frequent and could be interpreted in many ways. 

Therefore, the ‘of’ may be used in phrases where 
the semantic relation can be easily deduced from 

the nominals in the phrase alone. Less common 

(and therefore more informative) prepositions such 
as ‘after’ or ‘because’ may be used more often in 

phrases where the nominals alone do not contain 

enough information to deduce the relation, or the 
relation intended is not the most obvious one given 

the two nouns. 
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Abstract

This paper describes a new method for 
computing lexical chains. These are 
sequences of semantically related words 
that reflect a text’s cohesive structure. In 
contrast to previous methods, we are able 
to select chains based on their cohesive
strength. This is achieved by analyzing the 
connectivity in graphs representing the 
lexical chains. We show that the generated 
chains significantly improve performance 
of automatic text summarization and 
keyphrase indexing. 

1 Introduction

Text understanding tasks such as topic detection, 
automatic summarization, discourse analysis and 
question answering require deep understanding of 
the text’s meaning. The first step in determining 
this meaning is the analysis of the text’s concepts
and their inter-relations. Lexical chains provide a 
framework for such an analysis. They combine
semantically related words across sentences into 
meaningful sequences that reflect the cohesive 
structure of the text. 

Lexical chains, introduced by Morris and Hirst 
(1991), have been studied extensively in the last 
decade, since large lexical databases are available 
in digital form. Most approaches use WordNet or 
Roget’s thesaurus for computing the chains and 
apply the results for text summarization.

We present a new approach for computing 
lexical chains by treating them as graphs, where 

nodes are document terms and edges reflect
semantic relations between them. In contrast to 
previous methods, we analyze the cohesive 
strength within a chain by computing the diameter 
of the chain graph. Weakly cohesive chains with a 
high graph diameter are decomposed by a graph 
clustering algorithm into several highly cohesive 
chains. We use WordNet and alternatively a 
domain-specific thesaurus for obtaining semantic 
relations between the terms.

We first give an overview of existing methods 
for computing lexical chains and related areas. 
Then we discuss the motivation behind the new 
approach and describe the algorithm in detail. Our 
evaluation demonstrates the advantages of using
extracted lexical chains for the task of automatic 
text summarization and keyphrase indexing, 
compared to a simple baseline approach. The 
results are compared to annotations produced by a 
group of humans.

2 Related Work

Morris and Hirst (1991) provide the theoretical 
background behind lexical chains and demonstrate 
how they can be constructed manually from
Roget’s thesaurus. The algorithm was re-
implemented as soon as digital WordNet and 
Roget’s became available (Barzilay and Elhadad, 
1997) and its complexity was improved (Silber and 
McCoy, 2002; Galley and McKeown, 2003). All 
these algorithms perform explicit word sense 
disambiguation while computing the chains. For 
each word in a document the algorithm chooses 
only one sense, the one that relates to members of 
existing lexical chains. Reeve et al. (2006)
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compute lexical chains with a medical thesaurus 
and suggest an implicit disambiguation: once the 
chains are computed, weak ones containing
irrelevant senses are eliminated. We also follow 
this approach.

One of the principles of building lexical chains 
is that each term must belong to exactly one chain. 
If several chains are possible, Morris and Hirst
(1991) choose the chain to whose overall score the
term contributes the most. This score is a sum over
weights of semantic relations between chain 
members. This approach produces different lexical 
chains depending on the order of words in the 
document. This is not justified, as the same content 
can be expressed with different sequences of 
statements. We propose an alternative order 
independent approach, where a graph clustering 
algorithm calculates the chain to which a term 
should belong.

3 Lexical Chains

The following notation is used throughout the 
paper. A lexical chain is a graph G = (V,E) with 
nodes viV being terms and edges (vi, vj, wij)E
representing semantic relations between them, 
where wij is a weight expressing the strength of the 
relation. 1 A set of terms and semantic relations
building a graph is a valid lexical chain if the graph
is connected, i.e. there are no unconnected nodes 
and no isolated groups of nodes.

The graph distance d(vi, vj) between two nodes 
vi and vj is the minimum length of the path
connecting them. And the graph diameter is the 
“longest shortest distance” between any two nodes 
in a graph, defined as:

(1) ),(max , jivv vvdm
ji

 .

                                                
1 The initial experiments presented in this paper use an 
unweighted graph with wi,j = 1 for any semantic relation.

Because semantic relations are either bi-
directional or inverse, we treat lexical chains as 
undirected graphs.

3.1 The Cohesive Strength

Lexical cohesion is the property of lexical 
entities to “stick together” and function as a whole 
(Morris and Hirst, 1991). How strongly the 
elements of a lexical chain “stick together,” that is
the cohesive strength of the chain, has been 
defined as the sum of semantic relations between 
every pair of chain members (e.g. Morris and Hirst, 
1991; Silber and McCoy, 2002). This number 
increases with the length of a chain, but longer 
lexical chains are not necessarily more cohesive 
than shorter ones.

Instead, we define the cohesive strength as the 
diameter of the chain graph. Depending on their 
diameter we propose to group lexical chains as
follows: 

1. Strongly cohesive lexical chains (Fig. 1a) 
build fully connected graphs where each term is 
related to all other chain members and m = 1.

2. Weakly cohesive lexical chains (Fig. 1b) 
connect terms without cycles and with a diameter 
m = |V|  1.

3. Moderately cohesive lexical chains (Fig. 1c) 
are in-between the above cases with m [1, |V| 1]. 

To detect individual topics in texts it is more 
useful to extract strong lexical chains. For 
example, Figure 1a describes “physiographic 
features” and 1c refers to “seafood,” while it is 
difficult to summarize the weak chain 1b with a 
single term. The goal is to compute lexical chains 
with the highest possible cohesion. Thus, the 
algorithm must have a way to control the selection. 

physiographic 
features

valleys    lowland           plains    lagoons

(a) strong m = 1

symptoms eyes

vision

senses

pain

(b) weak m = 4

shelfish

seafoods

squids

foods
fish

(c) average m = 2

Semantic relation:            broader term               sister term                related term

physiographic 
features

valleys    lowland           plains    lagoons

(a) strong m = 1

symptoms eyes

vision

senses

pain

(b) weak m = 4

shelfish

seafoods

squids

foods
fish

(c) average m = 2

Semantic relation:            broader term               sister term                related term

Figure 1. Lexical chains of different cohesive strength.
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3.2 Computing Lexical Chains

The algorithm consists of two stages. First, we 
compute lexical chains in a text with only one 
condition: to be included into a chain a term needs
to be related to at least one of its members. Then, 
we apply graph clustering on the resulting weak 
chains to determine their strong subchains.

I. Determining all chains. First, the documents’ 
n-grams are mapped onto terms in the thesaurus. 
To improve conflation we ignore stopwords and 
sort the remaining stemmed words alphabetically. 
Second, for each thesaurus term t that was found in 
the document we search for an appropriate lexical 
chain. We iterate over the list L containing
previously created chains and check whether term t
is related to any of the members of each chain. The 
following cases are possible:

1. No lexical chains were found. 
A new lexical chain with the term t as a 
single element is created and included in L.

2. One lexical chain was found. 
This chain is updated with the term t.

3. Two or more lexical chains were found.
We merge these chains into a single new 
chain, and remove the old chains from L.

II. Clustering within the weak chains.
Algorithms for graph clustering divide sparsely 
connected graphs into dense subgraphs with a 
similar diameter. We consider each lexical chain in 
L with diameter 3m as a weak chain and apply 
graph clustering to identify highly cohesive 
subchains within this chain. The list L is updated 
with the newly generated chains and the original 
chain is removed. 

A popular graph clustering algorithm, Markov 
Clustering (MCL) is based on the idea that “a 
random walk that visits a dense cluster will likely 
not leave the cluster until many of its vertices have 
been visited” (van Dongen, 2000). MCL is
implemented as a sequence of iterative operations
on a matrix representing the graph. We use 
ChineseWhispers (Biemann, 2006), a special case 
of MCL that performs the iteration in a more 
aggressive way, with an optimized linear 
complexity with the number of graph edges. 

Figure 2 demonstrates how an original weakly 
cohesive lexical chain has been divided by 
ChineseWhispers into five strong chains.

4 Lexical Chains for Text Summarization

Lexical chains are usually evaluated in terms of their 
performance on the automatic text summarization 
task, where the most significant sentences are 
extracted from a document into a summary of a 
predefined length. The idea is to use the cohesive 
information about sentence members stored in 
lexical chains. We first describe the summarization
approach and then compare results to manually 
created summaries.

4.1 Identifying the Main Sentences

The algorithm takes one document at a time and 
computes its lexical chains as described in Section 
3.2, using the lexical database WordNet. First, we 
consider all semantic senses of each document 
term. However, after weighting the chains we 
eliminate senses appearing in low scored chains.

Doran et al. (2004) state that changes in 
weighting schemes have little effect on summaries.
We have observed significant differences between 
reported functions on our data and achieved best 
results with the formula produced by Barzilay and 
Elhadad (1997):

(2)  



LCt

LCt

tfreq
tfreq

LC
LCScore )()

)(

||
1()(

Here, |LC| is the length of the chain and freq(t) is 
the frequency of the term t in the document. All 
lexical chains with score lower than a threshold 
contain irrelevant word senses and are eliminated.

Next we identify the main sentences for the final 
summary of the document. Different heuristics
have been proposed for sentence extraction based 
on the information in lexical chains. For each top
scored chain, Barzilay and Elhadad (1997) extract

econometrics

statistsical 
methods

economic
analysis

case
studies

methods

measurement

evaluation

statistical
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data
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data
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Figure 2. Clustering of a weak chain 
with ChineseWhispers.
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  Rater 2
Positive Negative

Positive a bRater 1
Negative c d

Table 1. Possible choices for any two raters

that sentence which contains the first appearance 
of a chain member. Doran et al. (2004) sum up the 
weights all words in the sentence, which 
correspond to the chain weights in which these 
words occur. We choose the latter heuristic 
because it significantly outperforms the former 
method in our experiments. 

The highest scoring sentences from the 
document, presented in their original order, form
the automatically generated summary. How many 
sentences are extracted depends on the requested 
summary length, which is defined as the
percentage of the document length.

4.2 Experimental Settings

For evaluation we used a subset of a manually 
annotated corpus specifically created to evaluate
text summarization systems (Hasler et al. 2003). 
We concentrate only on documents with at least 
two manually produced summaries: 11 science and 
29 newswire articles with two summaries each, and
7 articles additionally annotated by a third person. 
This data allows us to compare the consistency of 
the system with humans to their consistency with 
each other. 

The results are evaluated with the Kappa 
statistic , defined for Table 1 as follows:

(3)
))(()9)((

)(2

badbcca

bcab






It takes into account the probability of chance 
agreement and is widely used to measure inter-
rater agreement (Hripcsak and Rothshild, 2005). 
The ideal automatic summarization algorithm 
should have as high agreement with human 
subjects as they have with each other.

We also use a baseline approach (BL) to 
estimate the advantage of using the proposed
lexical chaining algorithm (LCA). It extracts text
summaries in exactly the manner described in 
Section 4.1, with the exception of the lexical 
chaining stage. Thus, when weighting sentences, 
the frequencies of all WordNet mappings are taken 
into account without the implicit word sense 
disambiguation provided by lexical chains.

Humans BL LCA
S1 0.19 0.2029 newswire 

articles S2
0.32

0.20 0.24
S1 0.08 0.1311 science

articles S2
0.34

0.13 0.22

Table 2. Kappa agreement on 40 summaries

vs. human 
2,3 and 1 vs. BL vs. LCA

human 1 0,41 0,30 0,30
human 2 0,38 0,22 0,24
human 3 0,28 0,17 0,24

average 0,36 0,23 0,26

Table 3. Kappa agreement on 7 newswire articles

4.3 Results

Table 2 compares the agreement among the human 
annotators and their agreement with the baseline 
approach BL and the lexical chain algorithm LCA. 
The agreement between humans is low, which 
confirms that sentence extraction is a highly 
subjective task. The lexical chain approach LCA 
significantly outperforms the baseline BL, 
particularly on the science articles.

While the average agreement of the LCA with 
humans is still low, the picture changes when we 
look at the agreement on individual documents.
Human agreement varies a lot (stdev = 0.24), while 
results produced by LCA are more consistent
(stdev = 0.18). In fact, for over 50% of documents 
LCA has greater or the same agreement with one 
or both human annotators than they with each 
other. The overall superior performance of humans 
is due to exceptionally high agreement on a few 
documents, whereas on another couple of 
documents LCA failed to produce a consistent 
summary with both subjects. This finding is similar 
to the one mentioned by Silber and McCoy (2002). 

Table 3 shows the agreement values for 7
newswire articles that were summarized by three 
human annotators. Again, LCA clearly 
outperforms the baseline BL. Interestingly, both 
systems have a greater agreement with the first 
subject than the first and the third human subjects 
with each other. 

5 Lexical Chains for Keyphrase Indexing

Keyphrase indexing is the task of identifying the 
main topics in a document. The drawback of 
conventional indexing systems is that they analyze
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Professional Indexers
1 2 3 4 5 6 Avg

1 61 51 64 57 57 58
2 61 48 53 60 52 55
3 51 48 54 44 61 51
4 64 53 54 51 57 56
5 57 60 44 51 49 52
6 57 52 61 57 49 55

BL 42 39 37 39 39 35 39
LCA 43 42 40 40 39 40 41

Table 4. Topic consistency over 30 documents

document terms individually. Lexical chains enable
topical indexing, where first highly cohesive terms 
are organized into larger topics and then the main 
topics are selected. Properties of chain members 
help to identify terms that represent each 
keyphrases. To compute lexical chains and assign 
keyphrases this time we use a domain-specific 
thesaurus instead of WordNet.

5.1 Finding Keyphrases in Lexical Chains

The ranking of lexical chains is essential for 
determining the main topics of a document. Unlike 
in summarization, it should capture the specificity 
of the individual chains. Also, for some topics, e.g. 
proper nouns, the number of terms to express it can 
be limited; therefore we average frequencies over 
all chain members. Our measure of chain 
specificity combines TFIDFs and term length, 2

which boosts chains containing specific terms that 
are particularly frequent in a given document:

(4)
LC

tlengthtTFIDF
LCScore LCtLCt







)()(
)(

We assume that the top ranked weighted lexical 
chains represent the main topics in a document. To 
determine the keyphrases, for each lexical chain 
we need to choose a term that describes this chain 
in the best way, just as “seafood” is the best 
descriptor for the chain in Figure 1c. 

Each member of the chain t is scored as follows: 

(5) )()()()( tlengthtNDtTFIDFtScore 

where ND(t) is the node degree, or the number of 
edges connecting term t to other chain members. 
The top scored term is chosen as a keyphrase. 

                                                
2 Term length, measured in words, gives an indirect but 
simple measure of its specificity. E.g., “tropical rain 
forests” is more specific than “forests”.

Professional indexers tend to choose more than 
one term for a document’s most prominent topics. 
Thus, we extract the top two keyphrases from the 
top two lexical chains with |LC|  3. If the second 
keyphrase is a broader or a narrower term of the 
first one, this rule does not apply. 

5.2 Evaluation of the Extracted Keyphrases

This approach is evaluated on 30 documents 
indexed each by 6 professional indexers from the 
UN’s Food and Agriculture Organization. The 
keyphrases are driven from the agricultural 
thesaurus Agrovoc3 with around 40,000 terms and 
30,000 semantic relations between them.

The effectiveness of the lexical chains is shown 
in comparison to a baseline approach, which given 
a document simply defines keyphrases as Agrovoc 
terms with top TFIDF values. 

Indexing consistency is computed with the F-
Measure F, which can be expressed in terms of 
Table 1 (Section 4.1) as following:4

(6)
cba

a
F




2

2

The overlap between two keyphrase sets a is 
usually computed by exact matching of keyphrases. 
However, discrepancies between professional 
human indexers show that there are no “correct” 
keyphrases. Capturing main topics rather than 
exact term choices is more important. Lexical 
chains provide a way of measuring this so called 
topical consistency. Given a set of lexical chains 
extracted from a document, we first compute 
chains that are covered in its keyphrase set and 
then compute consistency in the usual manner.

5.3 Results

Table 4 shows topical consistency between each 
pair of professional human indexers, as well as 
between the indexers and the two automatic 
approaches, baseline BL and the lexical chain 
algorithm LCA, averaged over 30 documents.

The overall consistency between the human 
indexers is 55%. The baseline BL is 16 percentage 
points less consistent with the 6 indexers, while 

                                                
3 http://www.fao.org/agrovoc/
4 When vocabulary is large, the consistency is the same,
whether it is computed with the Kappa statistic or the F-
Measure (Hripcsak and Rothshild, 2005).
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LCA is 1 to 5 percentage points more consistent 
with each indexer than the baseline. 

6 Discussion

Professional human indexers first perform 
conceptual analysis of a document and then 
translate the discovered topics into keyphrases. We 
show how these two indexing steps are realized 
with lexical chain approach that first builds an
intermediate semantic representation of a 
document and then translates chains into 
keyphrases. Conceptual analysis with lexical 
chains in text summarization helps to identify
irrelevant word senses. 

The initial results show that lexical chains 
perform better than baseline approaches in both 
experiments. In automatic summarization, lexical 
chains produce summaries that in most cases have 
higher consistency with human annotators than 
they with each other, even using a simplified 
weighting technique. Integrating lexical chaining 
into existing keyphrase indexing systems is a 
promising step towards their improvement. 

The lexical chaining does not require any 
resources other than a controlled vocabulary. We 
have shown that it performs well with a general 
lexical database and with a domain-specific 
thesaurus. We use the Semantic Knowledge 
Organization Standard 5 which allows easy inter-
changeability of thesauri. Thus, this approach is
domain and language independent.

7 Conclusions

We have shown a new method for computing 
lexical chains based on graph clustering. While 
previous chaining algorithms did not analyze the 
lexical cohesion within each chain, we force our 
algorithm to produce highly cohesive lexical 
chains based on the minimum diameter of the chain 
graph. The required cohesion can be controlled by 
increasing the diameter value and adjusting 
parameters of the graph clustering algorithm.

Experiments on text summarization and key-
phrase indexing show that the lexical chains
approach produces good results. It combines
symbolic analysis with statistical features and 

                                                
5 http://www.w3.org/2004/02/skos/

outperforms a purely statistical baseline. The 
future work will be to further improve the lexical 
chaining technique and integrate it into a more 
complex topical indexing system.
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Abstract

Our paper reports an attempt to apply an un-
supervised clustering algorithm to a Hun-
garian treebank in order to obtain seman-
tic verb classes. Starting from the hypo-
thesis that semantic metapredicates underlie
verbs’ syntactic realization, we investigate
how one can obtain semantically motivated
verb classes by automatic means. The 150
most frequent Hungarian verbs were clus-
tered on the basis of their complementation
patterns, yielding a set of basic classes and
hints about the features that determine ver-
bal subcategorization. The resulting classes
serve as a basis for the subsequent analysis
of their alternation behavior.

1 Introduction

For over a decade, automatic construction of wide-
coverage structured lexicons has been in the center
of interest in the natural language processing com-
munity. On the one hand, structured lexical data-
bases are easier to handle and to expand because
they allow making generalizations over classes of
words. On the other hand, interest in the automatic
acquisition of lexical information from corpora is
due to the fact that manual construction of such re-
sources is time-consuming, and the resulting data-
base is difficult to update. Most of the work in
the field of acquisition of verbal lexical properties
aims at learning subcategorization frames from cor-
pora e.g. (Pereira et al., 1993; Briscoe and Car-
roll, 1997; Sass, 2006). However, semantic group-

ing of verbs on the basis of their syntactic distribu-
tion or other quantifiable features has also gained at-
tention (Schulte im Walde, 2000; Schulte im Walde
and Brew, 2002; Merlo and Stevenson, 2001; Dorr
and Jones, 1996). The goal of these investigations is
either the validation of verb classes based on (Levin,
1993), or finding algorithms for the categorization of
new verbs.

Unlike these projects, we report an attempt to
cluster verbs on the basis of their syntactic proper-
ties with the further goal of identifying the seman-
tic classes relevant for the description of Hungarian
verbs’ alternation behavior. The theoretical ground-
ing of our clustering attempts is provided by the
so-called Semantic Base Hypothesis (Levin, 1993;
Koenig et al., 2003). It is founded on the observation
that semantically similar verbs tend to occur in simi-
lar syntactic contexts, leading to the assumption that
verbal semantics determines argument structure and
the surface realization of arguments. While in Eng-
lish semantic argument roles are mapped to confi-
gurational positions in the tree structure, Hungarian
codes complement structure in its highly rich nom-
inal inflection system. Therefore, we start from the
examination of case-marked NPs in the context of
verbs.

The experiment discussed in this paper is the first
stage of an ongoing project for finding the semantic
verb classes which are syntactically relevant in Hun-
garian. As we do not have presuppositions about
which classes have to be used, we chose an unsu-
pervised clustering method described in (Schulte
im Walde, 2000). The 150 most frequent Hunga-
rian verbs were categorized according to their comp-
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lementation structures in a syntactically annotated
corpus, the Szeged Treebank (Csendes et al., 2005).
We are seeking the answer to two questions:

1. Are the resulting clusters semantically coherent
(thus reinforcing the Semantic Base Hypothe-
sis)?

2. If so, what are the alternations responsible for
their similar behavior?

The subsequent sections present the input features
[2] and the clustering methods [3], followed by the
presentation of our results [4]. Problematic issues
raised by the evaluation are discussed in [5]. Future
work is outlined in [6]. The paper ends with the con-
clusions [7].

2 Feature Space

As currently available Hungarian parsers (Babarczy
et al., 2005; Gábor and Héja, 2005) cannot be used
satisfactorily for extracting verbal argument struc-
tures from corpora, the first experiment was carried
out using a manually annotated Hungarian corpus,
the Szeged Treebank. Texts of the corpus come from
different topic areas such as business news, daily
news, fiction, law, and compositions of students. It
currently comprises 1.2 million words with POS tag-
ging and syntactic annotation which extends to top-
level sentence constituents but does not differentiate
between complements and adjuncts.

When applying a classification or clustering algo-
rithm to a corpus, a crucial question is which quan-
tifiable features reflect the most precisely the lin-
guistic properties underlying word classes. (Brent,
1993) uses regular patterns. (Schulte im Walde,
2000; Schulte im Walde and Brew, 2002; Briscoe
and Carroll, 1997) use subcategorization frame
frequencies obtained from parsed corpora, poten-
tially completed by semantic selection information.
(Merlo and Stevenson, 2001) approximates diathesis
alternations by hand-selected grammatical features.
While this method has the advantage of working on
POS-tagged, unparsed corpora, it is costly with res-
pect to time and linguistic expertise. To overcome
this drawback, (Joanis and Stevenson, 2003) de-
velop a general feature space for supervised verb
classification. (Stevenson and Joanis, 2003) inves-
tigate the applicability of this general feature space

to unsupervised verb clustering tasks. As unsuper-
vised methods are more sensitive to noisy features,
the key issue is to filter out the large number of
probably irrelevant features. They propose a semi-
supervised feature selection method which outper-
forms both hand-selection of features and usage of
the full feature set.

As in our experiment we do not have a pre-defined
set of semantic classes, we need to apply unsu-
pervised methods. Neither have we manually de-
fined grammatical cues, not knowing which alter-
nations should be approximated. Hence, similarly
to (Schulte im Walde, 2000), we represent verbs by
their subcategorization frames.

In accordance with the annotation of the treebank,
we included both complements and adjuncts in sub-
categorization patterns. It is important to note, how-
ever, that not only practical considerations lead us
to this decision. First, there are no reliable syntactic
tests for differentiating complements from adjuncts.
This is due to the fact that Hungarian is a highly in-
flective, non-configurational language, where con-
stituent order does not reveal dependency relations.
Indeed, complements and adjuncts of verbs tend to
mingle. In parallel, Hungarian presents a very rich
nominal inflection system: there are 19 case suf-
fixes, and most of them can correspond to more than
one syntactic function, depending on the verb class
they occur with. Second, we believe that adjuncts
can be at least as revealing of verbal meaning as
complements are: many of them are not productive
(in the sense that they cannot be added to any verb),
they can only appear with predicates the meaning of
which is compatible with the semantic role of the ad-
junct. For these considerations we chose to include
both complements and adjuncts in subcategorization
patterns.

Subcategorization frames to be extracted from
the treebank are composed of case-marked NPs
and infinitives that belong to a children node of
the verb’s maximal projection. As Hungarian is a
non-configurational language, this operation simply
yields a non-ordered list of the verb’s syntactic de-
pendents. There was no upper bound on the num-
ber of syntactic dependents to be included in the
frame. Frame types were obtained from individual
frames by omitting lexical information as well as
every piece of morphosyntactic description except
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for the POS tag and the case suffix. The generaliza-
tion yielded 839 frame types altogether.1

3 Clustering Methods

In accordance with our goal to set up a basis for
a semantic classification, we chose to perform the
first clustering trial on the 150 most frequent verbs
in the Szeged Treebank. The representation of verbs
and the clustering process were carried out based on
(Schulte im Walde, 2000). The data to be compared
were the maximum likelihood estimates of the pro-
bability distribution of verbs over the possible frame
types:

p(t|v) =
f(v, t)
f(v)

(1)

with f(v) being the frequency of the verb, and
f(v, t) being the frequency of the verb in the frame.
These values have been calculated for each of the
150 verbs and 839 frame types.

Probability distributions were compared using re-
lative entropy as a distance measure:

D(x‖y) =
n∑

i=1

xi · log
xi

yi
(2)

Due to the large number of subcategorization
frame types, verbs’ representation comprise a lot of
zero probability figures. Using relative entropy as
a distance measure compels us to apply a smoothing
technique to be able to deal with these figures. How-
ever, we do not want to lose the information coded
in zero frequencies - namely, the presumable incom-
patibility of the verb with certain semantic roles as-
sociated with specific case suffixes. Since we work
with the 150 most frequent verbs, we wish to use
a method which is apt to reflect that a gap in the
case of a high-frequency lemma is more likely to be
an impossible event than in the case of a relatively
less frequent lemma (where it might as well be acci-
dental). That is why we have chosen the smoothing
technique below:

fe =
0, 001
f(v)

if

fc(t, v) = 0
(3)

1The order in which syntactic dependents appear in the sen-
tence was not taken into account.

where fe is the estimated and fc is the observed fre-
quency.
Two alternative bottom-up clustering algorithms
were then applied to the data:

1. First we employed an agglomerative clustering
method, starting from 150 singleton clusters.
At every iteration we merged the two most sim-
ilar clusters and re-counted the distance mea-
sures. The problem with this approach, as
Schulte im Walde notes on her experiment, is
that verbs tend to gather in a small number of
big classes after a few iterations. To avoid this,
we followed her in setting to four the maximum
number of elements occuring in a cluster. This
method - and the size of the corpus - allowed
us to categorize 120 out of 150 verbs into 38
clusters, as going on with the process would
have led us to considerably less coherent clus-
ters. However, the results confronted us with
the chaining effect, i.e. some of the clusters
had a relatively big distance between their least
similar members.

2. In the second experiment we put a restriction
on the distance between each pair of verbs be-
longing to the same cluster. That is, in order for
a new verb to be added to a cluster, its distance
from all of the current cluster members had to
be smaller than the maximum distance stated
based on test runs. In this experiment we could
categorize 71 verbs into 23 clusters. The con-
venience of this method over the first one is its
ability to produce popular yet coherent clusters,
which is a particularly valuable feature given
that our goal at this stage is to establish basic
verb classes for Hungarian. However, we are
also planning to run a top-down clustering al-
gorithm on the data to get a probably more pre-
cise overview of their structure.

4 Results

With both methods we describe in Section 3, a big
part of the verbs showed a tendency to gather to-
gether in a few but popular clusters, while the rest
of them were typically paired with their nearest
synonym (e.g.: zár (close) with végez (finish) or
antonym (e.g.: ül (sit) with áll (stand)). Naturally,
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method 1 (i.e. placing an upper limit on the num-
ber of verbs within a cluster) produced more clus-
ters and gave more valuable results on the least fre-
quent verbs. On the other hand, method 2 (i.e. plac-
ing an upper limit on the distance between each pair
of verbs within the class) is more efficient for iden-
tifying basic verb classes with a lot of members.
Given our objective to provide a Levin-type classi-
fication for Hungarian, we need to examine whether
the clusters are semantically coherent, and if so,
what kind of semantic properties are shared among
class members. The three most popular verb clusters
were investigated first, because they contain many
of the most frequent verbs and yet are characterized
by strong inter-cluster coherence due to the method
used. The three clusters absorbed one third of the 71
categorized verbs. The clusters are the following:

C-1 VERBS OF BEING: marad (remain), van (be),
lesz (become), nincs (not being)

C-2 MODALS: megpróbál (try out), próbál (try),
szokik (used to), szeret (like), akar (want),
elkezd (start), fog (will), kı́ván (wish), kell
(must)

C-3 MOVEMENT VERBS: indul (leave), jön (come),
elindul (depart), megy (go), kimegy (go out),
elmegy (go away)

Verb clusters C-1 and C-3 exhibit intuitively
strong semantic coherence, whereas C-2 is best de-
fined along syntactic lines as ’modals’. A subclass
of C-2 is composed of verbs which express some
mental attitude towards undertaking an action, e.g.
(szeret (like), akar (want), kı́ván (wish)), but for the
rest of the verbs it is hard to capture shared meaning
components.
It can be said in general about the clusters ob-
tained that many of them can be anchored to ge-
neral semantic metapredicates or one of the argu-
ments’ semantic role, e.g.: CHANGE OF STATE

VERBS (erősödik (get stronger), gyengül (intransi-
tive weaken), emelkedik (intransitive rise)), verbs
with a beneficiary role (biztosı́t (guarantee), ad
(give), nyújt (provide), készı́t(make)), VERBS OF

ABILITY (sikerül (succeed), lehet (be possible), tud
(be able, can)). Some clusters seem to result from a
tighter semantic relation, e.g. VERBS OF APPEA-

RANCE or VERBS OF JUDGEMENT were put to-
gether. In other cases the relation is broader as verbs
belonging to the class seem to share only aspectual
characteristics, e.g. AGENTIVE VERBS OF CONTI-
NUOS ACTIVITIES (ül (be sitting), áll (be standing),
lakik (live somewhere), dolgozik (work)). At the
other end of the scale we find one group of verbs
which ’accidentally’ share the same syntactic pat-
terns without being semantically related (foglalkozik
(deal with sg), találkozik (meet sy), rendelkezik (dis-
pose of sg)).

5 Evaluation and Discussion

As (Schulte im Walde, 2007) notes, there is no
widely accepted practice of evaluating semantic
verb classes. She divides the methods into two major
classes. The first type of methods assess whether the
resulting clusters are coherent enough, i. e. elements
belonging to the same cluster are closer to each other
than to elements outside the class, according to an
independent similarity/distance measure. However,
relying on such a method would not help us eva-
luating the semantic coherence of our classes. The
second type of methods use gold standards. Widely
accepted gold standards in this field are Levin’s verb
classes or verbal WordNets. As we do not dispose
of a Hungarian equivalent of Levin’s classification
– that is exactly why we experiment with automatic
clustering – we cannot use it directly.

We also run across difficulties when considering
Hungarian verbal WordNet (Kuti et al., 2005) as the
standard for evaluation. Mapping verb clusters to
the net would require to state semantic relatedness
in terms of WordNet-type hierarchy relations. How-
ever, if we try to capture the distance between verbal
meanings by the number of intermediary nodes in
the WordNet, we face the problem that the semantic
distance between mother-children nodes is not uni-
form.

As our work is about obtaining a Levin-type verb
classification, it could be an obvious choice to eva-
luate semantic classes by collecting alternations spe-
cific to the given class. Hungarian language hardly
lends itself to this method because of its peculiar
syntactic features. The large number of subcatego-
rization frames and the optionality of most comple-
ments and adjuncts yield too much possible alterna-
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acc ins abl ela
indul - ins/com source source
jön - ins/com source source

elindul - ins/com source source
megy - ins/com source source

kimegy - ins/com source source
elmegy - ins/com source source

Table 1: The semantic roles of cases beside C-3 verb
cluster

tions. Hence, we decided to narrow down the scope
of investigation. We start from verb clusters and the
meaning components their members share. Then we
attempt to discover which semantic roles can be li-
cenced by these meaning components. If verbs in
the same cluster agree both in being compatible with
the same semantic roles and in the syntactic encod-
ing of these roles, we consider that they form a cor-
rect cluster.

To put it somewhat more formally, we represent
verb classes by matrices with a) nominal case suf-
fixes in columns and b) individual verb lemmata in
rows. The first step of the evaluation process is to fill
in the cells with the semantic roles the given suffix
can code in the context of the verb. We consider the
clusters correct, if the corresponding matrices meet
two requirements:

1. They have to be specific to the cluster.

2. Cells in the same column have to contain the
same semantic role.

Tables 1. and 2. illustrate coherent and distinctive
case matrices2.

According to Table 1. ablative case, just as e-
lative, codes a physical source in the environment
of movement verbs. Both cases having the same
semantic role, the decision between them is deter-
mined by the semantics of the corresponding NP.
These cases code an other semantic role – cause –
in the case of verbs of existence (Table 2).

It is important to note that we do not dispose of a
preliminary list of semantic roles. To avoid arbitrary

2Com is for comitative – approximately encoding the mean-
ing ’together with’ , ins is for the instrument of the described
event, source denotes a starting point in the space, cause refers
to entity which evoked the eventuality described by the verb.

acc ins abl ela
marad - com cause material

van - com cause material
lesz - com cause material

nincs - com cause material

Table 2: The semantic roles of cases beside C-1 verb
cluster

or vague role specifications, we need more than one
persons to fill in the cells, based on example sen-
tences.

6 Future Work

There are two major directions regarding our fu-
ture work. With respect to the automatic cluster-
ing process, we have the intention of widening the
scope of the grammatical features to be compared
by enriching subcategorization frames by other mor-
phological properties. We are also planning to test
top-down clustering methods such as the one de-
scribed in (Pereira et al., 1993). On the long run, it
will be inevitable to make experiments on larger cor-
pora. The obvious choice is the 180 million words
Hungarian National Corpus (Váradi, 2002). It is a
POS-tagged corpus but does not contain any syntac-
tic annotation; hence its use would require at least
some partial parsing such as NP analysis to be em-
ployable for our purposes. The other future direc-
tion concerns evaluation and linguistic analysis of
verb clusters. We define well-founded verb classes
on the basis of semantic role matrices. These se-
mantic roles can be filled in a sentence by case-
marked NPs. Therefore, evaluation of automatically
obtained clusters presupposes the definition of such
matrices, which is our major linguistic task in the
future. When we have the supposed matrices at our
disposal, we can start evaluating the clusters via ex-
ample sentences which illustrate case suffix alterna-
tions or roles characteristic to specific classes.

7 Conclusions

The experiment of clustering the 150 most frequent
Hungarian verbs is the first step towards finding the
semantic verb classes underlying verbs’ syntactic
distribution. As we did not have presuppositions
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about the relevant classes, neither any gold standard
for automatic evaluation, the results have to serve
as input for a detailed linguistic analysis to find out
at what extent they are usable for the syntactic des-
cription of Hungarian. However, as demonstrated
in Section 4, the verb clusters we got show surpris-
ingly transparent semantic coherence. These results,
obtained from a corpus which is by several orders of
magnitude smaller than what is usual for such pur-
poses, is a reinforcement of the usability of the Se-
mantic Base Hypothesis for language analysis. Our
further work will emphasize both the refinement of
the clustering methods and the linguistic interpre-
tation of the resulting classes.
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