
ACL 2007

Proceedings of the
Student Research

Workshop

June 25–26, 2007

Prague, Czech Republic

Production and Manufacturing by
Omnipress
2600 Anderson Street
Madison, WI 53704
USA

c©2007 Association for Computational Linguistics

Order copies of this and other ACL proceedings from:

Association for Computational Linguistics (ACL)
209 N. Eighth Street
Stroudsburg, PA 18360
USA
Tel: +1-570-476-8006
Fax: +1-570-476-0860
acl@aclweb.org

ii

Preface

On behalf of the Organizing Committee, we are pleased to present the proceedings of the Student
Research Workshop held at the 45th Annual Meeting of the Association for Computational Linguistics
(ACL) in Prague, Czech Republic, June 25–27, 2007. The Student Research Workshop is an established
tradition at the Annual Meetings of the Association for Computational Linguistics and builds on the
success of no less than 16 previous student sessions at ACL meetings.

Students in Computational Linguistics, Natural Language Processing and related fields were offered
the possibility to present their work in a setting embedded in the main conference. The workshop plays
an integral role in ACL’s efforts to build and maintain a research community by investing in young
researchers that will shape the field in the years to come. Theworkshop aimed at providing feedback
from senior to beginner researchers. In the call for papers,we explicitly aimed at students in an early
stage of their Ph.D. work. We felt that this group could gain the most benefit from this event, as the
experts’ feedback can still influence their research directions.

The Program Committee was compiled such that about half of the reviewers were students or young
researchers, and the other half consisted of senior scientists. This mixture ensures that the scientific
quality of reviews is high, while student-specific issues are well understood by the committee members.
We are indebted to our 52 reviewers for their elaborate, thoughtful and high quality reviews, which will
also be of great help to those students whose work could not beaccepted for presentation.

We received 52 submissions from all over the world, of which 16 were accepted for presentation: 9 for
oral presentation and 7 for poster presentation. The presentation format was assigned based on thoughts
about how the work could be presented best, and does not indicate a quality difference among papers,
which are all fixed to the same length of 6 pages.

This year’s workshop features contributions from a wide range of topics. Various issues on grammar are
dealt with in five papers: Richard Johansson uses logistic online learning for incremental dependency
parsing, Nathan C. Sanders measures syntactic differencesin British English, Elias Ponvert induces
combinatory categorial grammars with genetic algorithms,Bart Cramer investigates limitations of
current grammar induction techniques, and Aleksander Buczyński describes an implementation that
combines partial parsing and morphosyntactic disambiguation.

Another five contributions can be subsumed under the scope ofsemantics: Radosław Moszczyński
provides a classification of multi-word expressions especially for highly inflected languages, Paul
Nulty classifies noun phrases along semantic properties using web counts and machine learning,
Diarmuid Ó Séaghdha annotates and learns compound noun semantics, Kata Gábor and Enikő Héja
cluster Hungarian verbs by complementation patterns, and Silke Scheible lays out foundations of a
computational treatment of superlatives.

Research on dialects and different languages is carried outby three papers: Andrea Mulloni performs
cognate prediction in a bilingual setting, Yves Scherrer presents adaptive measures to graphemic
similarity for inducing dialect lexicons, and Jelena Prokić identifies linguistic structure in a quantitative
analysis of Bulgarian dialects. For opinionated Chinese Information Retrieval, Taras Zagibalov
examines the utility of various features. Structuring texts is the topic of two papers: Olena Medelyan

iii

uses graph clustering to compute lexical chains, and Martina Naughton exploits structure for event
discovery using the MDI algorithm.

Following the workshop tradition, a panel of senior researchers will take part in the presentation of
papers, providing in-depth comments on the work of each author either immediately after the oral
presentation or in front of the poster. We would like to thankthe panelists in advance for fulfilling such
an important role.

Many people contributed to the success of this year’s Student Research Workshop. Apart from Program
Committee members and panelists, we would like to thank the ACL conference organizers for involving
us in their planning, the webmasters for swiftly handling update requests for the SRW page, the
publication chair for providing us the facilities to compile this volume, and, most of all, the students
for their hard work in preparing their submissions. Finally, we are grateful to the National Science
Foundation for generously sponsoring our event: All student presenters received reimbursement of
registration and accommodation as well as almost full coverage of travel costs.

The ACL 2007 Student Research Workshop Co-Chairs
Chris Biemann, Violeta Seretan, Ellen Riloff

iv

Organizers

Chairs:

Chris Biemann, University of Leipzig, Germany
Violeta Seretan, University of Geneva, Switzerland

Faculty advisor:

Ellen Riloff, University of Utah, USA

Program Committee:

Laura Alonso i Alemany, Universidad de la República, Uruguay
and Universidad Nacional de Córdoba, Argentina
Galia Angelova, Bulgarian Academy of Sciences, Bulgaria
Timothy Baldwin, University of Melbourne, Australia
Raffaella Bernardi, Free University of Bozen-Bolzano, Italy
Stephan Bloehdorn, University of Karlsruhe, Germany
Gemma Boleda, Universitat Pompeu Fabra, Spain
Kalina Bontcheva, University of Sheffield, UK
Monojit Choudhury, Indian Institute of Technology, Kharagpur, India
Philipp Cimiano, University of Karlsruhe, Germany
Alexander Clark, Royal Holloway, University of London, UK
Gaël Harry Dias, University of Beira Interior, Portugal
Katrin Erk, University of Texas at Austin, USA
Stefan Evert, University of Osnabrück, Germany
Afsaneh Fazly, University of Toronto, Canada
Alexander Gelbukh, National Polytechnic Institute, Mexico
Alfio Gliozzo, ITC-irst, Trento, Italy
Yoav Goldberg, Ben-Gurion University of the Negev, Israel
Jean-Philippe Goldman, University of Geneva, Switzerland
Günther Görz, University of Erlangen, Germany
Iryna Gurevych, Darmstadt University of Technology, Germany
Catalina Hallett, The Open University, UK
Laura Hasler, University of Wolverhampton, UK
Janne Bondi Johannessen, University of Oslo, Norway
Philipp Koehn, University of Edinburgh, UK
Zornitsa Kozareva, University of Alicante, Spain
Chin-Yew Lin, Microsoft Research Asia, China
Berenike Loos, European Media Laboratory GmbH, Heidelberg, Germany
Bernardo Magnini, ITC-irst, Trento, Italy
Irina Matveeva, University of Chicago, USA
Rada Mihalcea, University of North Texas, USA
Andrea Mulloni, University of Wolverhampton, UK

v

Roberto Navigli, University of Roma “La Sapienza”, Italy
Malvina Nissim, University of Bologna, Italy
Joakim Nivre, Växjö University and Uppsala University, Sweden
Constantin Orasan, University of Wolverhampton, UK
Rainer Osswald, FernUniversität in Hagen, Germany
Sebastian Padó, Saarland University, Germany
Adam Przepiórkowski, Polish Academy of Sciences, Poland
Reinhard Rapp, Universitat Rovira i Virgili, Tarragona, Spain
Bettina Schrader, University of Osnabrück, Germany
Sabine Schulte im Walde, Universität Stuttgart, Germany
Serge Sharoff, University of Leeds, UK
Yihai Shen, The Hong Kong University of Science and Technology, Hong Kong
Anders Søgaard, University of Copenhagen, Denmark
Lucia Specia, University of São Paulo, Brasil
Joel Tetreault, University of Pittsburgh, USA
Reut Tsarfaty, University of Amsterdam, The Netherlands
Begoña Villada Moirón, University of Groningen, The Netherlands
Stephen Wan, Macquarie University, Australia
Janyce M. Wiebe, University of Pittsburgh, USA
Hans Friedrich Witschel, University of Leipzig, Germany
Bing Zhao, Carnegie Mellon University, USA

vi

Table of Contents

Measuring Syntactic Difference in British English
Nathan C. Sanders . 1

Inducing Combinatory Categorial Grammars with Genetic Algorithms
Elias Ponvert . 7

An Implementation of Combined Partial Parser and Morphosyntactic Disambiguator
Aleksander Buczyński . 13

A Practical Classification of Multiword Expressions
Radosław Moszczyński . 19

Automatic Prediction of Cognate Orthography Using Support Vector Machines
Andrea Mulloni . 25

Exploiting Structure for Event Discovery Using the MDI Algorithm
Martina Naughton . 31

Kinds of Features for Chinese Opinionated Information Retrieval
Taras Zagibalov . 37

Limitations of Current Grammar Induction Algorithms
Bart Cramer . 43

Logistic Online Learning Methods and Their Application to Incremental Dependency Parsing
Richard Johansson . 49

Adaptive String Distance Measures for Bilingual Dialect Lexicon Induction
Yves Scherrer . 55

Identifying Linguistic Structure in a Quantitative Analysis of Dialect Pronunciation
Jelena Prokić . 61

Towards a Computational Treatment of Superlatives
Silke Scheible .67

Annotating and Learning Compound Noun Semantics
Diarmuid Ó Séaghdha . 73

Semantic Classification of Noun Phrases Using Web Counts and Learning Algorithms
Paul Nulty . 79

Computing Lexical Chains with Graph Clustering
Olena Medelyan. .85

Clustering Hungarian Verbs on the Basis of Complementation Patterns
Kata Gábor and Enikő Héja . 91

vii

Conference Program

Monday, June 25, 2007

14:45–16:35 Poster Session

Posters

Measuring Syntactic Difference in British English
Nathan C. Sanders

Inducing Combinatory Categorial Grammars with Genetic Algorithms
Elias Ponvert

An Implementation of Combined Partial Parser and Morphosyntactic
Disambiguator
Aleksander Buczyński

A Practical Classification of Multiword Expressions
Radosław Moszczyński

Automatic Prediction of Cognate Orthography Using Support Vector Machines
Andrea Mulloni

Exploiting Structure for Event Discovery Using the MDI Algorithm
Martina Naughton

Kinds of Features for Chinese Opinionated Information Retrieval
Taras Zagibalov

ix

Tuesday, June 26, 2007

9:15–9:25 Opening Remarks

Grammar and the Lexicon

09:25–09:50 Limitations of Current Grammar Induction Algorithms
Bart Cramer

09:50-10:15 Logistic Online Learning Methods and Their Application to Incremental Dependency
Parsing
Richard Johansson

10:15-10:40 Adaptive String Distance Measures for Bilingual Dialect Lexicon Induction
Yves Scherrer

Quantitative and Formal Linguistics

14:30-14:55 Identifying Linguistic Structure in a Quantitative Analysis of Dialect Pronunciation
Jelena Prokić

14:55-15:20 Towards a Computational Treatment of Superlatives
Silke Scheible

Semantics

15:45-16:10 Annotating and Learning Compound Noun Semantics
Diarmuid Ó Séaghdha

16:10-16:35 Semantic Classification of Noun Phrases Using Web Counts and Learning Algorithms
Paul Nulty

16:35-17:00 Computing Lexical Chains with Graph Clustering
Olena Medelyan

17:00-17:25 Clustering Hungarian Verbs on the Basis of Complementation Patterns
Kata Gábor and Enikő Héja

x

Proceedings of the ACL 2007 Student Research Workshop, pages 1–6,
Prague, June 2007. c©2007 Association for Computational Linguistics

Measuring Syntactic Difference in British English

Nathan C. Sanders
Department of Linguistics

Indiana University
Bloomington, IN 47405, USA
ncsander@indiana.edu

Abstract

Recent work by Nerbonne and Wiersma
(2006) has provided a foundation for mea-
suring syntactic differences between cor-
pora. It uses part-of-speech trigrams as an
approximation to syntactic structure, com-
paring the trigrams of two corpora for sta-
tistically significant differences.

This paper extends the method and its appli-
cation. It extends the method by using leaf-
path ancestors of Sampson (2000) instead
of trigrams, which capture internal syntactic
structure—every leaf in a parse tree records
the path back to the root.

The corpus used for testing is the Interna-
tional Corpus of English, Great Britain (Nel-
son et al., 2002), which contains syntacti-
cally annotated speech of Great Britain. The
speakers are grouped into geographical re-
gions based on place of birth. This is dif-
ferent in both nature and number than pre-
vious experiments, which found differences
between two groups of Norwegian L2 learn-
ers of English. We show that dialectal varia-
tion in eleven British regions from the ICE-
GB is detectable by our algorithm, using
both leaf-ancestor paths and trigrams.

1 Introduction

In the measurement of linguistic distance, older
work such as Séguy (1973) was able to measure dis-
tance in most areas of linguistics, such as phonology,
morphology, and syntax. The features used for com-
parison were hand-picked based on linguistic knowl-
edge of the area being surveyed. These features,

while probably lacking in completeness of coverage,
certainly allowed a rough comparison of distance in
all linguistic domains. In contrast, computational
methods have focused on a single area of language.
For example, a method for determining phonetic dis-
tance is given by Heeringa (2004). Heeringa and
others have also done related work on phonologi-
cal distance in Nerbonne and Heeringa (1997) and
Gooskens and Heeringa (2004). A measure of syn-
tactic distance is the obvious next step: Nerbonne
and Wiersma (2006) provide one such method. This
method approximates internal syntactic structure us-
ing vectors of part-of-speech trigrams. The trigram
types can then be compared for statistically signifi-
cant differences using a permutation test.

This study can be extended in a few ways. First,
the trigram approximation works well, but it does
not necessarily capture all the information of syntac-
tic structure such as long-distance movement. Sec-
ond, the experiments did not test data for geograph-
ical dialect variation, but compared two generations
of Norwegian L2 learners of English, with differ-
ences between ages of initial acquisition.

We address these areas by using the syntactically
annotated speech section of the International Cor-
pus of English, Great Britain (ICE-GB) (Nelson et
al., 2002), which provides a corpus with full syntac-
tic annotations, one that can be divided into groups
for comparison. The sentences of the corpus, be-
ing represented as parse trees rather than a vector
of POS tags, are converted into a vector of leaf-
ancestor paths, which were developed by Sampson
(2000) to aid in parser evaluation by providing a way
to compare gold-standard trees with parser output
trees.

In this way, each sentence produces its own vec-

1

tor of leaf-ancestor paths. Fortunately, the permu-
tation test used by Nerbonne and Wiersma (2006) is
already designed to normalize the effects of differing
sentence length when combining POS trigrams into
a single vector per region. The only change needed
is the substitution of leaf-ancestor paths for trigrams.

The speakers in the ICE-GB are divided by place
of birth into geographical regions of England based
on the nine Government Office Regions, plus Scot-
land and Wales. The average region contains a lit-
tle over 4,000 sentences and 40,000 words. This
is less than the size of the Norwegian corpora, and
leaf-ancestor paths are more complex than trigrams,
meaning that the amount of data required for obtain-
ing significance should increase. Testing on smaller
corpora should quickly show whether corpus size
can be reduced without losing the ability to detect
differences.

Experimental results show that differences can be
detected among the larger regions: as should be ex-
pected with a method that measures statistical sig-
nificance, larger corpora allow easier detection of
significance. The limit seems to be around 250,000
words for leaf-ancestor paths, and 100,000 words for
POS trigrams, but more careful tests are needed to
verify this. Comparisons to judgments of dialectolo-
gists have not yet been made. The comparison is dif-
ficult because of the difference in methodology and
amount of detail in reporting. Dialectology tends to
collect data from a few informants at each location
and to provide a more complex account of relation-
ship than the like/unlike judgments provided by per-
mutation tests.

2 Methods

The methods used to implement the syntactic dif-
ference test come from two sources. The primary
source is the syntactic comparison of Nerbonne and
Wiersma (2006), which uses a permutation test, ex-
plained in Good (1995) and in particular for linguis-
tic purposes in Kessler (2001). Their permutation
test collects POS trigrams from a random subcorpus
of sentences sampled from the combined corpora.
The trigram frequencies are normalized to neutral-
ize the effects of sentence length, then compared to
the trigram frequencies of the complete corpora.

The principal difference between the work of Ner-

bonne and Wiersma (2006) and ours is the use of
leaf-ancestor paths. Leaf-ancestor paths were devel-
oped by Sampson (2000) for estimating parser per-
formance by providing a measure of similarity of
two trees, in particular a gold-standard tree and a
machine-parsed tree. This distance is not used for
our method, since for our purposes, it is enough that
leaf-ancestor paths represent syntactic information,
such as upper-level tree structure, more explicitly
than trigrams.

The permutation test used by Nerbonne and
Wiersma (2006) is independent of the type of item
whose frequency is measured, treating the items
as atomic symbols. Therefore, leaf-ancestor paths
should do just as well as trigrams as long as they
do not introduce any additional constraints on how
they are generated from the corpus. Fortunately, this
is not the case; Nerbonne and Wiersma (2006) gen-
erate N − 2 POS trigrams from each sentence of
length N ; we generate N leaf-ancestor paths from
each parsed sentence in the corpus. Normalization
is needed to account for the frequency differences
caused by sentence length variation; it is presented
below. Since the same number (minus two) of tri-
grams and leaf-ancestor paths are generated for each
sentence the same normalization can be used for
both methods.

2.1 Leaf-Ancestor Paths
Sampson’s leaf-ancestor paths represent syntactic
structure by aggregating nodes starting from each
leaf and proceeding up to the root—for our exper-
iment, the leaves are parts of speech. This maintains
constant input from the lexical items of the sentence,
while giving the parse tree some weight in the rep-
resentation.

For example, the parse tree

S

||
||

||
||

DD
DD

DD
DD

D

NP

yy
yy

yy
yy

VP

Det N V

the dog barks

creates the following leaf-ancestor paths:

2

• S-NP-Det-The

• S-NP-N-dog

• S-VP-V-barks

There is one path for each word, and the root ap-
pears in all four. However, there can be ambigui-
ties if some node happens to have identical siblings.
Sampson gives the example of the two trees

A

��
��

��
�

??
??

??
?

B

��
��

��
�

B

>>
>>

>>
>>

p q r s

and

A

B

pppppppppppppp

��
��

��
�

>>
>>

>>
>>

NNNNNNNNNNNNNN

p q r s

which would both produce

• A-B-p

• A-B-q

• A-B-r

• A-B-s

There is no way to tell from the paths which
leaves belong to which B node in the first tree, and
there is no way to tell the paths of the two trees apart
despite their different structure. To avoid this ambi-
guity, Sampson uses a bracketing system; brackets
are inserted at appropriate points to produce

• [A-B-p

• A-B]-q

• A-[B-r

• A]-B-s

and

• [A-B-p

• A-B-q

• A-B-r

• A]-B-s

Left and right brackets are inserted: at most one
in every path. A left bracket is inserted in a path
containing a leaf that is a leftmost sibling and a right
bracket is inserted in a path containing a leaf that is
a rightmost sibling. The bracket is inserted at the
highest node for which the leaf is leftmost or right-
most.

It is a good exercise to derive the bracketing of
the previous two trees in detail. In the first tree, with
two B siblings, the first path is A-B-p. Since p is a
leftmost child, a left bracket must be inserted, at the
root in this case. The resulting path is [A-B-p. The
next leaf, q, is rightmost, so a right bracket must be
inserted. The highest node for which it is rightmost
is B, because the rightmost leaf of A is s. The result-
ing path is A-B]-q. Contrast this with the path for
q in the second tree; here q is not rightmost, so no
bracket is inserted and the resulting path is A-B-q. r
is in almost the same position as q, but reversed: it is
the leftmost, and the right B is the highest node for
which it is the leftmost, producing A-[B-r. Finally,
since s is the rightmost leaf of the entire sentence,
the right bracket appears after A: A]-B-s.

At this point, the alert reader will have noticed
that both a left bracket and right bracket can be in-
serted for a leaf with no siblings since it is both left-
most and rightmost. That is, a path with two brack-
ets on the same node could be produced: A-[B]-c.
Because of this redundancy, single children are ex-
cluded by the bracket markup algorithm. There is
still no ambiguity between two single leaves and a
single node with two leaves because only the second
case will receive brackets.

2.2 Permutation Significance Test
With the paths of each sentence generated from the
corpus, then sorted by type into vectors, we now try
to determine whether the paths of one region occur
in significantly different numbers from the paths of
another region. To do this, we calculate some mea-
sure to characterize the difference between two vec-
tors as a single number. Kessler (2001) creates a

3

simple measure called the RECURRENCE metric (R
hereafter), which is simply the sum of absolute dif-
ferences of all path token counts cai from the first
corpus A and cbi from the second corpus B.

R = Σi|cai − c̄i| where c̄i =
cai + cbi

2

However, to find out if the value of R is signifi-
cant, we must use a permutation test with a Monte
Carlo technique described by Good (1995), fol-
lowing closely the same usage by Nerbonne and
Wiersma (2006). The intuition behind the technique
is to compare the R of the two corpora with the R
of two random subsets of the combined corpora. If
the random subsets’ Rs are greater than the R of the
two actual corpora more than p percent of the time,
then we can reject the null hypothesis that the two
were are actually drawn from the same corpus: that
is, we can assume that the two corpora are different.

However, before the R values can be compared,
the path counts in the random subsets must be nor-
malized since not all paths will occur in every sub-
set, and average sentence length will differ, causing
relative path frequency to vary. There are two nor-
malizations that must occur: normalization with re-
spect to sentence length, and normalization with re-
spect to other paths within a subset.

The first stage of normalization normalizes the
counts for each path within the pair of vectors a
and b. The purpose is to neutralize the difference
in sentence length, in which longer sentences with
more words cause paths to be relatively less fre-
quent. Each count is converted to a frequency f

f =
c

N

where c is either cai or cbi from above and N is the
length of the containing vector a or b. This produces
two frequencies, fai and fbi.Then the frequency is
scaled back up to a redistributed count by the equa-
tion

∀j ∈ a, b : c′
ji =

fji(cai + cbi)
fai + fbi

This will redistribute the total of a pair from a and b
based on their relative frequencies. In other words,
the total of each path type cai + cbi will remain the
same, but the values of cai and cbi will be balanced
by their frequency within their respective vectors.

For example, assume that the two corpora have 10
sentences each, with a corpus a with only 40 words
and another, b, with 100 words. This results in Na =
40 and Nb = 100. Assume also that there is a path
i that occurs in both: cai = 8 in a and cbi = 10
in b. This means that the relative frequencies are
fai = 8/40 = 0.2 and fbi = 10/100 = 0.1. The
first normalization will redistribute the total count
(18) according to relative size of the frequencies. So

c′
ai =

0.2(18)
0.2 + 0.1

= 3.6/0.3 = 12

and

c′
bi =

0.1(18)
0.2 + 0.1

= 1.8/0.3 = 6

Now that 8 has been scaled to 12 and 10 to 6, the
effect of sentence length has been neutralized. This
reflects the intuition that something that occurs 8 of
40 times is more important than something that oc-
curs 10 of 100 times.

The second normalization normalizes all values in
both permutations with respect to each other. This
is simple: find the average number of times each
path appears, then divide each scaled count by it.
This produces numbers whose average is 1.0 and
whose values are multiples of the amount that they
are greater than the average. The average path count
is N/2n, where N is the number of path tokens in
both the permutations and n is the number of path
types. Division by two is necessary since we are
multiplying counts from a single permutation by to-
ken counts from both permutations. Each type entry
in the vector now becomes

∀j ∈ a, b : sji =
2nc′

ji

N

Starting from the previous example, this second
normalization first finds the average. Assuming 5
unique paths (types) for a and 30 for b gives

n = 5 + 30 = 35

and
N = Na + Nb = 40 + 100 = 140

Therefore, the average path type has 140/2(35) = 2
tokens in a and b respectively. Dividing c′

ai and c′
bi

by this average gives sai = 6 and sbi = 3. In other
words, sai has 6 times more tokens than the average
path type.

4

Region sentences words
East England 855 10471
East Midlands 1944 16924
London 24836 244341
Northwest England 3219 27070
Northeast England 1012 10199
Scotland 2886 27198
Southeast England 11090 88915
Southwest England 939 7107
West Midlands 960 12670
Wales 2338 27911
Yorkshire 1427 19092

Table 1: Subcorpus size

3 Experiment and Results

The experiment was run on the syntactically anno-
tated part of the International Corpus of English,
Great Britain corpus (ICE-GB). The syntactic an-
notation labels terminals with one of twenty parts
of speech and internal nodes with a category and a
function marker. Therefore, the leaf-ancestor paths
each started at the root of the sentence and ended
with a part of speech. For comparison to the exper-
iment conducted by Nerbonne and Wiersma (2006),
the experiment was also run with POS trigrams. Fi-
nally, a control experiment was conducted by com-
paring two permutations from the same corpus and
ensuring that they were not significantly different.

ICE-GB reports the place of birth of each speaker,
which is the best available approximation to which
dialect a speaker uses. As a simple, objective parti-
tioning, the speakers were divided into 11 geograph-
ical regions based on the 9 Government Office Re-
gions of England with Wales and Scotland added as
single regions. Some speakers had to be thrown out
at this point because they lacked brithplace informa-
tion or were born outside the UK. Each region varied
in size; however, the average number of sentences
per corpus was 4682, with an average of 44,726
words per corpus (see table 1). Thus, the average
sentence length was 9.55 words. The average corpus
was smaller than the Norwegian L2 English corpora
of Nerbonne and Wiersma (2006), which had two
groups, one with 221,000 words and the other with
84,000.

Significant differences (at p < 0.05) were found

Region Significantly different (p < 0.05)
London East Midlands, NW England

SE England, Scotland
SE England Scotland

Table 2: Significant differences, leaf-ancestor paths

Region Significantly different (p < 0.05)
London East Midlands, NW England,

NE England, SE England,
Scotland, Wales

SE England London, East Midlands,
NW England, Scotland

Scotland London, SE England, Yorkshire

Table 3: Significant differences, POS trigrams

when comparing the largest regions, but no signifi-
cant differences were found when comparing small
regions to other small regions. The significant differ-
ences found are given in table 2 and 3. It seems that
summed corpus size must reach a certain threshold
before differences can be observed reliably: about
250,000 words for leaf-ancestor paths and 100,000
for trigrams. There are exceptions in both direc-
tions; the total size of London compared to Wales
is larger than the size of London compared to the
East Midlands, but the former is not statistically dif-
ferent. On the other hand, the total size of Southeast
England compared to Scotland is only half of the
other significantly different comparisons; this dif-
ference may be a result of more extreme syntactic
differences than the other areas. Finally, it is inter-
esting to note that the summed Norwegian corpus
size is around 305,000 words, which is about three
times the size needed for significance as estimated
from the ICE-GB data.

4 Discussion

Our work extends that of Nerbonne and Wiersma
(2006) in a number of ways. We have shown that
an alternate method of representing syntax still al-
lows the permutation test to find significant differ-
ences between corpora. In addition, we have shown
differences between corpora divided by geographi-
cal area rather than language proficiency, with many
more corpora than before. Finally, we have shown
that the size of the corpus can be reduced somewhat

5

and still obtain significant results.
Furthermore, we also have shown that both leaf-

ancestor paths and POS trigrams give similar results,
although the more complex paths require more data.

However, there are a number of directions that this
experiment should be extended. A comparison that
divides the speakers into traditional British dialect
areas is needed to see if the same differences can be
detected. This is very likely, because corpus divi-
sions that better reflect reality have a better chance
of achieving a significant difference.

In fact, even though leaf-ancestor paths should
provide finer distinctions than trigrams and thus re-
quire more data for detectable significance, the re-
gional corpora presented here were smaller than
the Norwegian speakers’ corpora in Nerbonne and
Wiersma (2006) by up to a factor of 10. This raises
the question of a lower limit on corpus size. Our ex-
periment suggests that the two corpora must have at
least 250,000 words, although we suspect that better
divisions will allow smaller corpus sizes.

While we are reducing corpus size, we might as
well compare the increasing numbers of smaller and
smaller corpora in an advantageous order. It should
be possible to cluster corpora by the point at which
they fail to achieve a significant difference when
split from a larger corpus. In this way, regions
could be grouped by their detectable boundaries, not
a priori distinctions based on geography or existing
knowledge of dialect boundaries.

Of course this indirect method would not be
needed if one had a direct method for clustering
speakers, by distance or other measure. Develop-
ment of such a method is worthwhile research for
the future.

References

Phillip Good. 1995. Permutation Tests. Springer, New
York.

Charlotte S. Gooskens and Wilbert J. Heeringa. 2004.
Perceptive evaluations of levenshtein dialect distance
measurements using norwegian dialect data. Lan-
guage Variation and Change, 16(3):189–207.

Wilbert J. Heeringa. 2004. Measuring Dialect Pronun-
ciation Differences using Levenshtein Distance. Doc-
toral dissertation, University of Groningen.

Brett Kessler. 2001. The Significance of Word Lists.
CSLI Press, Stanford.

Gerald Nelson, Sean Wallis, and Bas Aarts. 2002.
Exploring Natural Language: working with the
British component of the International Corpus of En-
glish. John Benjamins Publishing Company, Amster-
dam/Philadelphia.

John Nerbonne and Wilbert Heeringa. 1997. Measuring
dialect distance phonetically. In John Coleman, editor,
Workshop on Computational Phonology, pages 11–18,
Madrid. Special Interest Group of the Assocation for
Computational Linguistics.

John Nerbonne and Wybo Wiersma. 2006. A mea-
sure of aggregate syntactic distance. In John Ner-
bonne and Erhard Hinrichs, editors, Linguistic Dis-
tances, pages 82–90, Sydney, July. International Com-
mittee on Computational Linguistics and the Assoca-
tion for Computational Linguistics.

Geoffrey Sampson. 2000. A proposal for improving the
measurement of parse accuracy. International Journal
of Corpus Linguistics, 5(1):53–68, August.

Jean Séguy. 1973. La dialectometrie dans l’atlas linguis-
tique de la gascogne. Revue de linguistique romane,
37:1–24.

6

Proceedings of the ACL 2007 Student Research Workshop, pages 7–12,
Prague, June 2007. c©2007 Association for Computational Linguistics

Inducing Combinatory Categorial Grammars with Genetic Algorithms

Elias Ponvert
Department of Linguistics

University of Texas at Austin
1 University Station B5100

Austin, TX 78712-0198 USA
ponvert@mail.utexas.edu

Abstract

This paper proposes a novel approach to the
induction of Combinatory Categorial Gram-
mars (CCGs) by their potential affinity with
the Genetic Algorithms (GAs). Specifically,
CCGs utilize a rich yet compact notation for
lexical categories, which combine with rela-
tively few grammatical rules, presumed uni-
versal. Thus, the search for a CCG consists
in large part in a search for the appropri-
ate categories for the data-set’s lexical items.
We present and evaluates a system utilizing
a simple GA to successively search and im-
prove on such assignments. The fitness of
categorial-assignments is approximated by
the coverage of the resulting grammar on the
data-set itself, and candidate solutions are
updated via the standard GA techniques of
reproduction, crossover and mutation.

1 Introduction

The discovery of grammars from unannotated ma-
terial is an important problem which has received
much recent research. We propose a novel approach
to this effort by leveraging the theoretical insights of
Combinatory Categorial Grammars (CCG) (Steed-
man, 2000), and their potential affinity with Ge-
netic Algorithms (GA) (Goldberg, 1989). Specifi-
cally, CCGs utilize an extremely small set of gram-
matical rules, presumed near-universal, which op-
erate over a rich set of grammatical categories,
which are themselves simple and straightforward
data structures. A search for a CCG grammar for
a language can be construed as a search for ac-
curate category assignments to the words of that

language, albeit over a large landscape of poten-
tial solutions. GAs are biologically-inspired general
purpose search/optimization methods that have suc-
ceeded in these kinds of environments: wherein so-
lutions are straightforwardly coded, yet nevertheless
the solution space is complex and difficult.

We evaluate a system that uses a GA to suc-
cessively refine a population of categorial lexicons
given a collection of unannotated training material.

This is an important problem for several reasons.
First of all, the development of annotated training
material is expensive and difficult, and so schemes
to discover linguistic patterns from unannotated text
may help cut down the cost of corpora development.
Also, this project is closely related to the problem of
resolving lexical gaps in parsing, which is a dogged
problem for statistical parsing systems in CCG, even
trained in a supervised manner. Carrying over tech-
niques from this project to that could help solve a
major problem in CCG parsing technology.

Statistical parsing with CCGs is an active area
of research. The development of CCGbank (Hock-
enmaier and Steedman, 2005) based on the Penn
Treebank has allowed for the development of wide-
coverage statistical parsers. In particular, Hock-
enmaier and Steedman (2001) report a generative
model for CCG parsing roughly akin to the Collins
parser (Collins, 1997) specific to CCG. Whereas
Hockenmaier’s parser is trained on (normal-form)
CCG derivations, Clark and Curran (2003) present
a CCG parser trained on the dependency structures
within parsed sentences, as well as the possible
derivations for them, using a log-linear (Maximum-
Entropy) model. This is one of the most accurate
parsers for producing deep dependencies currently
available. Both systems, however, suffer from gaps

7

in lexical coverage.
The system proposed here was evaluated against

a small corpus of unannotated English with the goal
of inducing a categorial lexicon for the fragment.
The system is not ultimately successful and fails to
achieve the baseline category assignment accuracy,
however it does suggest directions for improvement.

2 Background

2.1 Genetic Algorithms

The basic insight of a GA is that, given a problem
domain for which solutions can be straightforwardly
encoded as chromosomes, and for which candidate
solutions can be evaluated using a faithful fitness
function, then the biologically inspired operations of
reproduction, crossover and mutation can in certain
cases be applied to multisets or populations of can-
didate solutions toward the discovery of true or ap-
proximate solutions.

Among the applications of GA to computational
linguistics, (Smith and Witten, 1995) and (Korkmaz
and Üçoluk, 2001) each present GAs for the induc-
tion of phrase structure grammars, applied success-
fully over small data-sets. Similarly, (Losee, 2000)
presents a system that uses a GA to learn part-of-
speech tagging and syntax rules from a collection of
documents. Other proposals related specifically to
the acquisition of categorial grammars are cited in
§2.3.

2.2 Combinatory Categorial Grammar

CCG is a mildly context sensitive grammatical for-
malism. The principal design features of CCG is that
it posits a small set of grammatical rules that oper-
ate over rich grammatical categories. The categories
are, in the simplest case, formed by the atomic cate-
gories s (for sentence), np (noun phrase), n (com-
mon noun), etc., closed under the slash operators
/, \. There is not a substantive distinction between
lexical and phrasal categories. The intuitive inter-
pretation of non-atomic categories is as follows: a
word for phrase of type A/B is looking for an item
of type B on the right, to form an item of type A.
Likewise, an item of type A\B is looking for an item
of type B on the left. type A. For example, in the
derivation in Figure 1, “scores” combines with the
np “another goal” to form the verb phrase “scores

Ronaldinho

np

scores

(s\np)/np

another

np/n

goal

n
>

np
>

s\np
<

s

Figure 1: Example CCG derivation

Application
A/B B ⇒> A B A\B ⇒< A

Composition
A/B B/C ⇒>B A/C B\C A\B ⇒<B A\C

Crossed-Composition
A/B B\C ⇒>B× A\C B/C A\B ⇒<B× A/C

Figure 2: CCG Rules

another goal”. This, in turn, combines with the np
“Ronaldinho” to form a sentence.

The example illustrates the rule of Application,
denoted with < and > in derivations. The schemata
for this rule, along with the Composition rule (B)
and the Crossed-Composition rule (B×), are given in
Figure 2. The rules of CCG are taken as universals,
thus the acquisition of a CCG grammar can be seen
as the acquisition of a categorial lexicon.

2.3 Related Work
In addition to the supervised grammar systems out-
lined in §1, the following proposals have been put
forward toward the induction of categorial gram-
mars.

Watkinson and Mandahar (2000) report a Catego-
rial Grammar induction system related to that pro-
posed here. They generate a Categorial Grammar
using a fixed and limited set of categories and, uti-
lizing an unannotated corpus, successively refine the
lexicon by testing it against the corpus sentences one
at a time. Using a constructed corpus, their strategy
worked extremely well: 100% accuracy on lexical
category selection as well as 100% parsing accuracy
with the resulting statistical CG parser. With natu-
rally occurring text, however, their system does not
perform as well: approximately 77% lexical accu-
racy and 37% parsing accuracy.

One fundamental difference between the strategy
proposed here and that of Watkinson and Manda-

8

har is that we propose to successively generate and
evaluate populations of candidate solutions, rather
than refining a single solution. Also, while Watkin-
son and Mandahar use logical methods to construct
a probabilistic parser, the present system uses ap-
proximate methods and yet derives symbolic parsing
systems. Finally, Watkinson and Mandahar utilize
an extremely small set of known categories, smaller
than the set used here.

Clark (1996) outlines a strategy for the acquisi-
tion of Tree-Adjoining Grammars (Joshi, 1985) sim-
ilar to the one proposed here: specifically, he out-
lines a learning model based on the co-evolution of a
parser, which builds parse trees given an input string
and a set of category-assignments, and a shred-
der, which chooses/discovers category-assignments
from parse-trees. The proposed strategy is not im-
plemented and tested, however.

Briscoe (2000) models the acquisition of catego-
rial grammars using evolutionary techniques from a
different perspective. In his experiments, language
agents induced parameters for languages from other
language agents generating training material. The
acquisition of languages is not induced using GA per
se, but the evolutionary development of languages is
modeled using GA techniques.

Also closely related to the present proposal is the
work of Villavicencio (2002). Villavicencio presents
a system that learns a unification-based categorial
grammar from a semantically-annotated corpus of
child-directed speech. The learning algorithm is
based on a Principles-and-Parameters language ac-
quisition scheme, making use of logical forms and
word order to induce possible categories within a
typed feature-structure hierarchy. Her system has
the advantage of not having to pre-compile a list of
known categories, as did Watkinson and Mandahar
as well as the present proposal. However, Villav-
icencio does make extensive use of the semantics
of the corpus examples, which the current proposal
does not. This is related to the divergent motivations
of two proposals: Villavicencio aims to present a
psychologically realistic language learner and takes
it as psychologically plausible that logical forms are
accessible to the language learner; the current pro-
posal is preoccupied with grammar induction from
unannotated text, and assumes (sentence-level) log-
ical forms to be inaccessible.

n is the size of the population
A are candidate category assignments
F are fitness scores
E are example sentences
m is the likelihood of mutation

Initialize:
for i← 1 to n :

A[i]← RANDOMASSIGNMENT()
Loop:

for i← 1 to length[A] :
F [i]← 0
P← NEWPARSER(A[i])
for j← 1 to length[E] :

F [i]← F [i]+ SCORE(P.PARSE(E[i]))
A← REPRODUCE(A,F)
. Crossover:
for i← 1 to n−1 :

CROSSOVER(A[i],A[i+1])
. Mutate:
for i← 1 to n :

if RANDOM() < m :
MUTATE(A[i])

Until: End conditions are met

Figure 3: Pseudo-code for CCG induction GA.

3 System

As stated, the task is to choose the correct CCG cat-
egories for a set of lexical items given a collection of
unannotated or minimally annotated strings. A can-
didate solution genotype is an assignment of CCG
categories to the lexical items (types rather than to-
kens) contained in the textual material. A candi-
date phenotype is a CCG parser initialized with these
category assignments. The fitness of each candi-
date solution is evaluated by how well its phenotype
(parser) parses the strings of the training material.

Pseudo-code for the algorithm is given in Fig. 3.
For the most part, very simple GA techniques were
used; specifically:

• REPRODUCE The reproduction scheme utilizes
roulette wheel technique: initialize a weighted
roulette wheel, where the sections of the wheel
correspond to the candidates and the weights
of the sections correspond to the fitness of the
candidate. The likelihood that a candidate is
selected in a roulette wheel spin is directly pro-
portionate to the fitness of the candidate.

• CROSSOVER The crossover strategy is a simple
partition scheme. Given two candidates C and

9

D, choose a center point 0 ≤ i ≤ n where n the
number of genes (category-assignments), swap
C[0, i]← D[0, i] and D[i, n]← C[i, n].

• MUTATE The mutation strategy simply swaps
a certain number of individual assignments in
a candidate solution with others. For the ex-
periments reported here, if a given candidate
is chosen to be mutated, 25% of its genes are
modified. The probability a candidate was se-
lected is 10%.

In the implementation of this strategy, the follow-
ing simplifying assumptions were made:

• A given candidate solution only posits a single
CCG category for each lexical item.

• The CCG categories to assign to the lexical
items are known a priori.

• The parser only used a subset of CCG – pure
CCG (Eisner, 1996) – consisting of the Appli-
cation and Composition rules.

3.1 Chromosome Encodings
A candidate solution is a simplified assignment of
categories to lexical items, in the following manner.
The system creates a candidate solution by assigning
lexical items a random category selection, as in:

Ronaldinho (s\np)/np
Barcelona pp

kicks (s\np)/(s\np)
...

Given the fixed vocabulary, and the fixed category
list, the representation can be simplified to lists of
indices to categories, indexed to the full vocabulary
list:

0 Ronaldinho
1 Barcelona
2 kicks

...

...
15 (s\np)/np

...
37 (s\np)/(s\np)

...
Then the category assignment can be construed as
a finite function from word-indices to category-
indices {0 7→ 15,1 7→ 42,2 7→ 37, ...} or simply the
vector 〈15,42,37, ...〉. The chromosome encodings
for the GA scheme described here are just this: vec-
tors of integer category indices.

3.2 Fitness

The parser used is straightforward implementation
of the normal-form CCG parser presented by Eis-
ner (1996). The fitness of the parser is evaluated on
its parsing coverage on the individual strings, which
is a score based on the chart output. Several chart
fitness scores were evaluated, including:

• SPANS The number of spans parsed

• RELATIVE The number of spans the string
parsed divided by the string length

• WEIGHTED The sum of the lengths of the spans
parsed

See §5.1 for a comparison of these fitness metrics.
Additionally, the following also factored into

scoring parses:

• S-BONUS Add an additional bonus to candi-
dates for each sentence they parse completely.

• PSEUDO-SMOOTHING Assign all parses at
least a small score, to help avoid premature
convergence. The metrics that count singleton
spans do this informally.

4 Evaluation

The system was evaluated on a small data-set of ex-
amples taken from the World Cup test-bed included
with the OpenCCG grammar development system1

and simplified considerably. This included 19 ex-
ample sentences with a total of 105 word-types and
613 tokens from (Baldridge, 2002).

In spite of the simplifying assumption that an in-
dividual candidate only assigns a single category to
a lexical item, one can derive a multi-assignment of
categories to lexemes from the population by choos-
ing the top category elected by the candidates. It
is on the basis of these derived assignments that the
system was evaluated. The examples chosen require
only 1-to-1 category assignment, hence the relevant
category from the test-bed constitutes the gold stan-
dard (minus Baldridge (2002)’s modalities). The
baseline for this dataset, assigning np to all lexical
items, was 28.6%. The hypothesis is that optimizing

1http://openccg.sf.net

10

Fitness Metric Accuracy
COUNT 18.5
RELATIVE 22.0
WEIGHTED 20.4

Table 1: Final accuracy of the metrics

parsing coverage with a GA scheme would correlate
with improved category-accuracy.

The end-conditions apply if the parsing coverage
for the derived grammar exceeds 90%. Such end-
conditions generally were not met; otherwise, ex-
periments ran for 100 generations, with a popula-
tion of 50 candidates. Because of the heavy reliance
of GAs on pseudo-random number generation, indi-
vidual experiments can show idiosyncratic success
or failure. To control for this, the experiments were
replicated 100 times each. The results presented
here are averages over the runs.

5 Results

5.1 Fitness Metrics

The various fitness metrics were each evaluated, and
their final accuracies are reported in Table 1. The re-
sults were negative, as category accuracy did not ap-
proach the baseline. Examining the average system
accuracy over time helps illustrate some of the issues
involved. Figure 4 shows the growth of category ac-
curacy for each of the metrics. Pathologically, the
random assignments at the start of each experiment
have better accuracy than after the application of GA
techniques.

Figure 5 compares the accuracy of the category
assignments to the GA’s internal measure of its fit-
ness, using the Count Spans metric as a point of ref-
erence. (The fitness metric is scaled for compari-
son with the accuracy.) While fitness, in the average
case, steadily increases, accuracy does not increase
with such steadiness and degrades significantly in
the early generations.

The intuitive reason for this is that, initially,
the random assignment of categories succeeds by
chance in many cases, however the likelihood of ac-
curate or even compatible assignments to words that
occur adjacent in the examples is fairly low. The
GA promotes these assignments over others, appar-

10

15

20

25

30

0 10 20 30 40 50 60 70 80 90 100
Generations

Count
Relative

Weighted
Baseline

Figure 4: Comparison of fitness metrics

10

15

20

25

30

0 10 20 30 40 50 60 70 80 90 100
Generations

Accuracy
Fitness

Baseline

Figure 5: Fitness and accuracy: COUNT

ently committing the candidates to incorrect assign-
ments early on and not recovering from these com-
mitments. The WEIGHTED and RELATIVE metrics
are designed to try to overcome these effects by pro-
moting grammars that parse longer spans, but they
do not succeed. Perhaps exponential rather than lin-
ear bonus for parsing spans of length greater than
two would be effective.

6 Conclusions

This project attempts to induce a grammar from
unannotated material, which is an extremely diffi-
cult problem for computational linguistics. Without
access to training material, logical forms, or other
relevant features to aid in the induction, the system
attempts to learn from string patterns alone. Using
GAs may aid in this process, but, in general, in-
duction from string patterns alone takes much larger
data-sets than the one discussed here.

The GA presented here takes a global perspective
on the progress of the candidates, in that the indi-
vidual categories assigned to the individual words
are not evaluated directly, but rather as members of
candidates that are scored. For a system such as

11

this to take advantage of the patterns that arise out
of the text itself, a much more fine-grained perspec-
tive is necessary, since the performance of individ-
ual category-assignments to words being the focus
of the task.

7 Acknowledgements

I would like to thank Jason Baldridge, Greg Kobele,
Mark Steedman, and the anonymous reviewers for
the ACL Student Research Workshop for valuable
feedback and discussion.

References
Jason Baldridge. 2002. Lexically Specified Derivational

Control in Combinatory Categorial Grammar. Ph.D.
thesis, University of Edinburgh.

Ted Briscoe. 2000. Grammatical acquisition: Inductive
bias and coevolution of language and the language ac-
quisition device. Language, 76:245–296.

Stephen Clark and James R Curran. 2003. Log-linear
models for wide-coverage CCG parsing. In Proceed-
ings of EMNLP-03, pages 97–105, Sapporo, Japan.

Robin Clark. 1996. Complexity and the induction of
Tree Adjoining Grammars. Unpublished manuscript,
University of Pennsylvania.

Michael Collins. 1997. Three generative, lexicalised
models for statistical parsing. In Proceedings of ACL-
97, pages 16–23, Madrid, Spain.

Jason Eisner. 1996. Efficient normal-form parsing for
Combinatory Categorial Grammar. In Proceedings of
ACL-96, pages 79–86, Santa Cruz, USA.

David E. Goldberg. 1989. Genetic Algorithms in Search,
Optimization and Machine Learning. Addison-
Wesley.

Julia Hockenmaier and Mark Steedman. 2001. Gener-
ative models for statistical parsing with Combinatory
Categorial Grammar. In Proceedings of ACL, pages
335–342, Philadelphia, USA.

Julia Hockenmaier and Mark Steedman. 2005. CCG-
bank: User’s manual. Technical Report MC-SIC-05-
09, Department of Computer and Information Science,
University of Pennsylvania.

Aravind Joshi. 1985. An introduction to Tree Adjoining
Grammars. In A. Manaster-Ramer, editor, Mathemat-
ics of Language. John Benjamins.

Emin Erkan Korkmaz and Göktürk Üçoluk. 2001. Ge-
netic programming for grammar induction. In 2001
Genetic and Evolutionary Computation Conference:
Late Breaking Papers, pages 245–251, San Francisco,
USA.

Rober M. Losee. 2000. Learning syntactic rules and tags
with genetic algorithms for information retrieval and
filtering: An empirical basis for grammatical rules. In-
formation Processing and Management, 32:185–197.

Tony C. Smith and Ian H. Witten. 1995. A genetic algo-
rithm for the induction of natural language grammars.
In Proc. of IJCAI-95 Workshop on New Approaches to
Learning for Natural Language Processing, pages 17–
24, Montreal, Canada.

Mark Steedman. 2000. The Syntactic Process. MIT,
Cambridge, Mass.

Aline Villavicencio. 2002. The Acquisition of a
Unification-Based Generalised Categorial Grammar.
Ph.D. thesis, University of Cambridge.

Stephen Watkinson and Suresh Manandhar. 2000. Un-
supervised lexical learning with categorial grammars
using the LLL corpus. In James Cussens and Sašo
Džeroski, editors, Language Learning in Logic, pages
16–27, Berlin. Springer.

12

Proceedings of the ACL 2007 Student Research Workshop, pages 13–18,
Prague, June 2007. c©2007 Association for Computational Linguistics

An Implementation of Combined Partial Parser
and Morphosyntactic Disambiguator

Aleksander Buczyński
Institute of Computer Science
Polish Academy of Sciences

Ordona 21, 01-237 Warszawa, Poland
olekb@ipipan.waw.pl

Abstract

The aim of this paper is to present a simple
yet efficient implementation of a tool for si-
multaneous rule-based morphosyntactic tag-
ging and partial parsing formalism. The
parser is currently used for creating a tree-
bank of partial parses in a valency acquisi-
tion project over the IPI PAN Corpus of Pol-
ish.

1 Introduction

1.1 Motivation

Usually tagging and partial parsing are done sep-
arately, with the input to a parser assumed to
be a morphosyntactically fully disambiguated text.
Some approaches (Karlsson et al., 1995; Schiehlen,
2002; Müller, 2006) interweave tagging and parsing.
(Karlsson et al., 1995) is actually using the same for-
malism for both tasks — it is possible, because all
words in this dependency-based approach come with
all possible syntactic tags, so partial parsing is re-
duced to rejecting wrong hypotheses, just as in case
of morphosyntactic tagging.

Rules used in rule-based tagging often implicitly
identify syntactic constructs, but do not mark such
constructs in texts. A typical such rule may say that
when an unambiguous dative-taking preposition is
followed by a number of possibly dative adjectives
and a noun ambiguous between dative and some
other case, then the noun should be disambiguated
to dative. Obviously, such a rule actually identifies
a PP and some of its structure.

Following the observation that both tasks, mor-
phosyntactic tagging and partial constituency pars-
ing, involve similar linguistic knowledge, a for-
malism for simultaneous tagging and parsing was
proposed in (Przepiórkowski, 2007). This paper
presents a revised version of the formalism and
a simple implementation of a parser understanding
rules written according to it. The input to the rules
is a tokenised and morphosyntactically annotated
XML text. The output contains disambiguation an-
notation and two new levels of constructions: syn-
tactic words and syntactic groups.

2 The Formalism

2.1 Terminology

In the remainder of this paper we call the smallest in-
terpreted unit, i.e., a sequence of characters together
with their morphosyntactic interpretations (lemma,
grammatical class, grammatical categories) a seg-
ment. A syntactic word is a non-empty sequence of
segments and/or syntactic words. Syntactic words
are named entities, analytical forms, or any other se-
quences of tokens which, from the syntactic point of
view, behave as single words. Just as basic words,
they may have a number of morphosyntactic inter-
pretations. By a token we will understand a segment
or a syntactic word. A syntactic group (in short:
group) is a non-empty sequence of tokens and/or
syntactic groups. Each group is identified by its syn-
tactic head and semantic head, which have to be to-
kens. Finally, a syntactic entity is a token or a syn-
tactic group; it follows that syntactic groups may be
defined as a non-empty sequence of entities.

13

2.2 The Basic Format
Each rule consists of up to 4 parts: Match describes
the sequence of syntactic entities to find; Left and
Right — restrictions on the context; Actions —
a sequence of morphological and syntactic actions
to be taken on the matching entities.

For example:

Left:
Match: [pos~~"prep"][base~"co|kto"]
Right:
Actions: unify(case,1,2);

group(PG,1,2)

means:

• find a sequence of two tokens such that
the first token is an unambiguous preposition
([pos~~"prep"]), and the second token is
a possible form of the lexeme CO ‘what’ or KTO

‘who’ ([base~"co|kto"]),

• if there exist interpretations of these two tokens
with the same value of case, reject all interpre-
tations of these two tokens which do not agree
in case (cf. unify(case,1,2));

• if the above unification did not fail, mark
thus identified sequence as a syntactic group
(group) of type PG (prepositional group),
whose syntactic head is the first token (1) and
whose semantic head is the second token (2;
cf. group(PG,1,2));

Left and Right parts of a rule may be empty;
in such a case the part may be omitted.

2.3 Left, Match and Right
The contents of parts Left, Match and Right
have the same syntax and semantics. Each of them
may contain a sequence of the following specifica-
tions:

• token specification, e.g., [pos~~"prep"] or
[base~"co|kto"]; these specifications ad-
here to segment specifications of the Poliqarp
(Janus and Przepiórkowski, 2006) corpus
search engine; in particular there is a distinc-
tion between certain and uncertain information
— a specification like [pos~~"subst"]
says that all morphosyntactic interpretations
of a given token are nominal (substantive),

while [pos~"subst"] means that there ex-
ists a nominal interpretation of a given token;

• group specification, extending the Poliqarp
query as proposed in (Przepiórkowski, 2007),
e.g., [semh=[pos~~"subst"]] specifies a
syntactic group whose semantic head is a token
whose all interpretations are nominal;

• one of the following specifications:

– ns: no space,
– sb: sentence beginning,
– se: sentence end;

• an alternative of such sequences in parentheses.

Additionally, each such specification may be modi-
fied with one of the three standard regular expression
quantifiers: ?, * and +.

An example of a possible value of Left, Match
or Right might be:
[pos~"adv"] ([pos~~"prep"]
[pos~"subst"] ns? [pos~"interp"]?
se | [synh=[pos~~"prep"]])

2.4 Actions

The Actions part contains a sequence of mor-
phological and syntactic actions to be taken when
a matching sequence of syntactic entities is found.
While morphological actions delete some interpre-
tations of specified tokens, syntactic actions group
entities into syntactic words or syntactic groups. The
actions may also include conditions that must be sat-
isfied in order for other actions to take place, for ex-
ample case or gender agreement between tokens.

The actions may refer to entities matched by
the specifications in Left, Match and Right by
numbers. These specifications are numbered from
1, counting from the first specification in Left
to the last specification in Right. For example,
in the following rule, there should be case agree-
ment between the adjective specified in the left
context and the adjective and the noun specified
in the right context (cf. unify(case,1,4,5)),
as well as case agreement (possibly of a different
case) between the adjective and noun in the match
(cf. unify(case,2,3)).

Left: [pos~~"adj"]
Match: [pos~~"adj"][pos~~"subst"]

14

Right: [pos~~"adj"][pos~~"subst"]
Actions: unify(case,2,3);

unify(case,1,4,5)

The exact repertoire of actions still evolves, but
the most frequent are:

• agree(<cat>,...,<tok>,...) - check
if the grammatical categories (<cat>,...)
of entities specified by subsequent numbers
(<tok>,...) agree;

• unify(<cat>,...,<tok>,...) - as
above, plus delete interpretations that do not
agree;

• delete(<cond>,<tok>,...) - delete all
interpretations of specified tokens match-
ing the specified condition (for example
case~"gen|acc")

• leave(<cond>,<tok>,...) - leave only
the interpretations matching the specified con-
dition;

• nword(<tag>,<base>) - create a new
syntactic word with given tag and base form;

• mword(<tag>,<tok>) - create a new syn-
tactic word by copying and appropriately mod-
ifying all interpretations of the token specified
by number;

• group(<type>,<synh>,<semh>) - cre-
ate a new syntactic group with syntactic head
and semantic head specified by numbers.

The actions agree and unify take a vari-
able number of arguments: the initial argu-
ments, such as case or gender, specify
the grammatical categories that should simulta-
neously agree, so the condition agree(case
gender,1,2) is properly stronger than the
sequence of conditions: agree(case,1,2),
agree(gender,1,2). Subsequent arguments of
agree are natural numbers referring to entity spec-
ifications that should be taken into account when
checking agreement.

A reference to entity specification refers to all
entities matched by that specification, so, e.g.,
in case 1 refers to specification [pos~adj]*,
unify(case,1) means that all adjectives
matched by that specification must be rid of all

interpretations whose case is not shared by all these
adjectives.

When a reference refers to a syntactic group, the
action is performed on the syntactic head of that
group. For example, assuming that the following
rule finds a sequence of a nominal segment, a multi-
segment syntactic word and a nominal group, the
action unify(case,1) will result in the unifica-
tion of case values of the first segment, the syntactic
word as a whole and the syntactic head of the group.

Match: ([pos~~"subst"] |
[synh=[pos~~"subst"]])+

Action: unify(case,1)

The only exception to this rule is the semantic head
parameter in the group action; when it references
a syntactic group, the semantic, not syntactic, head
is inherited.

For mword and nword actions we assume that
the orthographic form of the created syntactic word
is always a simple concatenation of all orthographic
forms of all tokens immediately contained in that
syntactic word, taking into account information
about space or its lack between consecutive tokens.

The mword action is used to copy and possibly
modify all interpretations of the specified token. For
example, a rule identifying negated verbs, such as
the rule below, may require that the interpretations
of the whole syntactic word be the same as the in-
terpretations of the verbal segment, but with neg
added to each interpretation.

Left: ([pos!~"prep"]|[case!~"acc"])
Match: [orth~"[Nn]ie"][pos~~"verb"]

(ns [orth~"by[mś]?"])?
(ns [pos~~"aglt"])?

Actions: leave(pos~"qub", 2);
mword(neg,3)

The nword action creates a syntactic word with
a new interpretation and a new base form (lemma).
For example, the rule below will create, for a se-
quence like mimo tego, że or Mimo że ‘in spite of,
despite’, a syntactic word with the base form MIMO

ŻE and the conjunctive interpretation.

Match: [orth~"[Mm]imo"]
[orth~"to|tego"]?
(ns [orth~","])? [orth~"że"]

Actions: leave(pos~"prep",1);

15

leave(pos~"subst",2);
nword(conj, mimo że)

The group(<type>,<synh>,<semh>) ac-
tion creates a new syntactic group, where <type>
is the categorial type of the group (e.g., PG), while
<synh> and <semh> are references to appropriate
token specifications in the Match part. For exam-
ple, the following rule may be used to create a nu-
meral group, syntactically headed by the numeral
and semantically headed by the noun:

Left: [pos~~"prep"]
Match: [pos~"num"][pos~"adj"]*

[pos~"subst"]
Actions: group(NumG,2,4)

Of course, the rules should be constructed in
such a way that references <synh> and <semh>
refer to specifications of single entities, e.g.,
([pos~"subst"]|[synh=[pos~"subst"]])
but not [case~"nom"]+

3 The Implementation

3.1 Objectives

The goal of the implementation was a combined par-
tial parser and tagger that would be reasonably fast,
but at the same time easy to modify and maintain. At
the time of designing and implementing the parser,
neither the set of rules, nor the specific repertoire of
possible actions within rules was known, hence, the
flexibility and modifiability of the design was a key
issue.

3.2 Input and Output

The parser currently takes as input the version of
the XML Corpus Encoding Standard (Ide et al.,
2000) assumed in the IPI PAN Corpus of Polish
(korpus.pl). The tagset is configurable, there-
fore the tool can be possibly used for other lan-
guages as well.

Rules may modify the input in one of two ways.
Morphological actions may delete certain interpre-
tations of certain tokens; this fact is marked by
the attribute disamb="0" added to <lex> ele-
ments representing these interpretations. On the
other hand, syntactic actions modify the input by
adding <syntok> and <group> elements, mark-
ing syntactic words and groups.

3.3 Algorithm Overview

During the initialisation phase, the parser loads the
external tagset specification and the ruleset, and con-
verts the latter to a set of compiled regular expres-
sions and actions. Then input files are parsed one
by one (for each input file a corresponding output
file containing parsing results is created). To reduce
memory usage, the parsing is done by chunks de-
fined in the input files, such as sentences or para-
graphs. In the remainder of the paper we assume the
chunks are sentences.

During the parsing, a sentence has dual represen-
tation:

1. object-oriented syntactic entity tree, used for
easy manipulation of entities (for example dis-
abling certain interpretations or creating new
syntactic words) and preserving all necessary
information to generate the final output;

2. compact string for quick regexp matching, con-
taining only the informations important for
these rules which have not been applied yet.

The entity tree is initialised as a flat (one level
deep) tree with all leaves (segments and possibly
special entities, like no space, sentence beginning,
sentence end) connected directly to the root. Appli-
cation of a syntactic action means inserting a new
node (syntacting word or group) to the tree, between
the root and a few of the existing nodes. As the pars-
ing processes, the tree changes its shape: it becomes
deeper and narrower.

The string representations is consistently updated
to always represent the top level of the tree (the chil-
dren of the root). Therefore, the searched string’s
length tends to decrease with every action applied
(as opposed to increasing in a naïve implementa-
tion, with single representation and syntactic / dis-
ambiguation markup added). This is not a strictly
monotonous process, as creating new syntactic en-
tities containing only one segment may temporarily
increase the length, but the increase is offset with
the next rule applied to this entity (and generally the
point of parsing is to eventually find groups longer
than one segment).

Morphological actions do not change the shape
of the tree, but also reduce the string representation

16

length by deleting from the string certain interpreta-
tions. The interpretations are preserved in the tree to
produce the final output, but are not interesting for
further stages of parsing.

3.4 Representation of Sentence

The string representation is a compromise between
XML and binary representation, designed for easy,
fast and precise matching, with the use of existing
regular expression libraries.

The representation describes the top level of the
current state of the sentence tree, including only the
informations that may be used by rule matching. For
each child of the tree root, the following informa-
tions are preserved in the string: type (token / group
/ special) and identifier (allowing to find the entity
in the tree in case an action should be applied to it).
The further part of the string depends on the type —
for token it is orthografic forms and a list of interpre-
tations; for group — number of heads of the group
and lists of interpretations of syntactic and semantic
head.

Every interpretation consists of a base form and
a morphosyntactic tag (part of speech, case, gender,
numer, degree, etc.). Because the tagset used in the
IPI PAN Corpus is intended to be human readable,
the morphosyntactic tag is fairly descriptive (long
values) and, on the other hand, compact (may have
many parts ommited, for example when the category
is not applicable to the given part of speech). To
make pattern matching easier, the tag is converted to
a string of fixed width. In the string, each charac-
ter corresponds to one morphological category from
the tagset (first part of speech, then number, case,
gender etc.) as for example in the Czech positional
tag system (Hajič and Hladká, 1997). The charac-
ters — upper- and lowercase letters, or 0 (zero) for
categories non-applicable for a given part of speech
— are assigned automatically, on the basis of the ex-
ternal tagset definition read at initialisation. A few
examples are presented in table 1.

3.5 Rule Matching

The conversion from the Left, Match and Right
parts of the rule to a regular expression over the
string representation is fairly straightforward. Two
exceptions — regular expressions as morphosyntac-
tic category values and the distinction between ex-

IPI PAN tag fixed length tag
adj:pl:acc:f:sup UBDD0C0000000
conj B000000000000
fin:pl:sec:imperf bB00B0A000000

Table 1: Examples of tag conversion between human
readable and inner positional tagset.

istential and universal quantification over interpreta-
tions — will be described in more detail below.

First, the rule might be looking for a token
whose grammatical category is described by a reg-
ular expresion. For example, [gender~"m."]
should match human masculine (m1), animate mas-
culine (m2), and inanimate masculine (m3) to-
kens; [pos~"ppron[123]+|siebie"] should
match various pronouns; [pos!~"num.*"]
should match all segments except for main and col-
lective numerals; etc. Because morphosyntactic tags
are converted to fixed length representations, the
regular expressions also have to be converted before
compilation.

To this end, the regular expression is matched
against all possible values of the given category.
Since, after conversion, every value is represented
as a single character, the resulting regexp can use
square brackets to represent the range of possible
values.

The conversion can be done only for attributes
with values from a well-defined, finite set. Since
we do not want to assume that we know all the text
to parse before compiling rules, we assume that the
dictionary is infinite (this is different from Poliqarp,
where dictionary is calculated during compilation of
corpus to binary form). The assumption makes it
difficult to convert requirements with negated orth
or base (for example [orth!~"[Nn]ie"]). As
for now, such requirements are not included in the
compiled regular expression, but instead handled as
an extra condition in the Action part.

Another issue that has to be taken into careful
consideration is the distinction between certain and
uncertain information. A segment may have many
interpretations and sometimes a rule may apply only
when all the interpretations meet the specified con-
dition (for example [pos~~"subst"]), while in
other cases one matching interpretation should be

17

enough to trigger the rule ([pos~"subst"]). The
aforementioned requirements translate respectively
to the following regular expressions:1

• (<N[^<>]+)+

• (<[^<>]+)*(<N[^<>]+)(<[^<>]+)*

Of course, a combination of existential and universal
requirements is a valid requirement as well, for ex-
ample: [pos~~"subst" case~"gen|acc"]
(all interpretations noun, at least one of them in gen-
itive or accusative case) should translate to:

(<N[^<>]+)*(<N.[BD][^<>]+)
(<N[^<>]+)*

3.6 Actions
When a match is found, the parser runs a sequence
of actions connected with the given rule, described
in 2.4. Each action may be condition, morphologi-
cal action, syntactic action or a combination of the
above (for example unify is both a condition and a
morphological action). The parser executes the se-
quence until it encounters an action which evaluates
to false (for example, unification of cases fails).

The actions affect both the tree and the string rep-
resentation of the parsed sentence. The tree is up-
dated instantly (cost of update is constant or linear
to match lenght), but the string update (cost linear to
sentence length) is delayed until it is really needed
(at most once per rule).

4 Conclusion and Future Work

Althought morphosyntactic disambiguation rules
and partial parsing rules often encode the same lin-
guistic knowledge, we are not aware of any partial
(or shallow) parsing systems accepting morphosyn-
tactically ambiguous input and disambiguating it
with the same rules that are used for parsing. This
paper presents a formalism and a working prototype
of a tool implementing simultaneous rule-based dis-
ambiguation and partial parsing.

Unlike other partial parsers, the tool does not ex-
pect a fully disambiguated input. The simplicity
of the formalism and its implementation makes it
possible to integrate a morphological analyser into

1< and > were chosen as convenient separators of interpre-
tations and entities, because they should not happen in the input
data (they have to be escaped in XML).

parser and allow a greater flexibility in input for-
mats.

On the other hand, the rule syntax can be extended
to take advantage of the metadata present in the cor-
pus (for example: style, media, or date of publish-
ing). Many rules, both morphological and syntactic,
may be applicable only to specific kinds of texts —
for example archaic or modern, official or common.

References
Jan Hajič and Barbara Hladká. 1997. Tagging of inflec-

tive languages: a comparison. In Proceedings of the
ANLP’9y, pages 136–143, Washington, DC.

Nancy Ide, Patrice Bonhomme, and Laurent Romary.
2000. XCES: An XML-based standard for linguistic
corpora. In Proceedings of the Linguistic Resources
and Evaluation Conference, pages 825–830, Athens,
Greece.

Daniel Janus and Adam Przepiórkowski. 2006. Poliqarp
1.0: Some technical aspects of a linguistic search en-
gine for large corpora. In Jacek Waliński, Krzysztof
Kredens, and Stanisław Goźdź-Roszkowski, editors,
The proceedings of Practical Applications of Linguis-
tic Corpora 2005, Frankfurt am Main. Peter Lang.

F. Karlsson, A. Voutilainen, J. Heikkilä, and A. Anttila,
editors. 1995. Constraint Grammar: A Language-
Independent System for Parsing Unrestricted Text.
Mouton de Gruyter, Berlin.

Frank Henrik Müller. 2006. A Finite State Approach to
Shallow Parsing and Grammatical Functions Annota-
tion of German. Ph. D. dissertation, Universität Tübin-
gen. Pre-final Version of March 11, 2006.

Adam Przepiórkowski. 2007. A preliminary formal-
ism for simultaneous rule-based tagging and partial
parsing. In Georg Rehm, Andreas Witt, and Lothar
Lemnitzer, editors, Datenstrukturen für linguistische
Ressourcen und ihre Anwendungen – Proceedings
der GLDV-Jahrestagung 2007, Tübingen. Gunter Narr
Verlag.

Adam Przepiórkowski. 2007. On heads and coordina-
tion in valence acquisition. In Alexander Gelbukh,
editor, Computational Linguistics and Intelligent Text
Processing (CICLing 2007), Lecture Notes in Com-
puter Science, Berlin. Springer-Verlag.

Michael Schiehlen. 2002. Experiments in German
noun chunking. In Proceedings of the 19th In-
ternational Conference on Computational Linguistics
(COLING 2002), Taipei.

18

Proceedings of the ACL 2007 Student Research Workshop, pages 19–24,
Prague, June 2007. c©2007 Association for Computational Linguistics

A Practical Classification of Multiword Expressions

Radosław Moszczyński

Institute of Computer Science

Polish Academy of Sciences

Ordona 21, 01-237 Warszawa, Poland

rm@ipipan.waw.pl

Abstract

The paper proposes a methodology for deal-

ing with multiword expressions in natu-

ral language processing applications. It

provides a practically justified taxonomy

of such units, and suggests the ways in

which the individual classes can be pro-

cessed computationally. While the study is

currently limited to Polish and English, we

believe our findings can be successfully em-

ployed in the processing of other languages,

with emphasis on inflectional ones.

1 Introduction

radosław moszczyńskiIt is generally acknowledged

that multiword expressions constitute a serious diffi-

culty in all kinds of natural language processing ap-

plications (Sag et al., 2002). It has also been shown

that proper handling of such expressions can result

in significantly better results in parsing (Zhang et

al., 2006).

The difficulties in processing multiword expres-

sions result from their lexical variability, and the

fact that many of them can undergo syntactic trans-

formations. Another problem is that the label “mul-

tiword expressions” covers many linguistic units

that often have little in common. We believe that

the past approaches to formalize the phenomenon,

such as IDAREX (Segond and Breidt, 1995) and

Phrase Manager (Pedrazzini, 1994), suffered from

trying to cover all multiword expressions as a

whole. Such an approach, as is shown below, can-

not efficiently cover all the phenomena related to

multiword expressions.

Therefore, in the present paper we formulate a

proposal of a taxonomy for multiword expressions,

useful for the purposes of natural language process-

ing. The taxonomy is based on the stages in the

NLP workflow in which the individual classes of

units can be processed successfully. We also sug-

gest the tools that can be used for processing the

units in each of the classes.

2 An NLP Taxonomy of Multiword

Expressions

At this stage of work, our taxonomy is composed

of two groups of multiword expressions. The first

one consists of units that should be processed be-

fore syntactic analysis, and the other one includes

expressions whose recognition should be combined

with the syntactic analysis process. The next sec-

tions describe both groups in more detail.

2.1 Morphosyntactically Idiosyncratic

Expressions

The first group consists of morphosyntactically id-

iosyncratic units. They follow unusual morpholog-

ical and syntactic patterns, which causes difficulties

for automatic analyzers.

By morphological idiosyncrasies we mean two

types of units. First of all, there are bound words

that do not inflect and cannot be used independently

outside of the given multiword expression. In Pol-

ish, there are many such units, which are typically

prepositional phrases functioning as complex adver-

bials, e.g.:1

1The asterisk in this and the following examples indicates
an untranslatable bound word.

19

(1) na

on

wskroś

*

‘thoroughly’

Secondly, there are unusual forms of otherwise

ordinary words that only appear in strictly defined

multiword expressions. An example is the follow-

ing unit, in which the genitive form of the noun

‘daddy’ is different than the one used outside this

particular construction:

(2) nie

Neg

rób

do-Imperative

z

of

tata

*daddy-Gen

wariata

fool

‘stop making a fool of me’

Morphological idiosyncrasies can be referred to

as “objective” in the sense that it can be proved by

doing corpus research that particular words only ap-

pear in a strictly limited set of constructions. Since

outside such constructions the words do not have

any meaning of their own, it is pointless to put them

in the lexicon of a morphological analyzer. From

the processing point of view, they are parts of com-

plex multiword lexemes which should be considered

as indivisible wholes.

Syntactically idiosyncratic phrases are those

whose structure or behavior is incorrect from the

point of view of a given grammar. In this sense,

they are “subjective”, because they depend on the

rules underlying a particular parser.

A typical parser of Polish is expected to accept

full sentences, i.e. phrases that contain a finite verb

phrase, but possibly not many phraseologisms that

are extremely common in texts and speech, and do

not constitute proper sentences from the point of

view of the grammar. This qualifies such phrases

to be included and formalized among the first group

we have distinguished. In Polish, such phrases in-

clude, e.g.:

(3) Precz

off

z

with

łapami!

hands-Inst

‘Get your hands off!’

Another group of multiword expressions that

should be processed before parsing consists of com-

plex adverbials that do not include any bound

words, but that could be interpreted wrongly by the

syntactic analyzer. Consider the following multi-

word expression:

(4) na

on

kolanach

knees-Loc

‘on one’s knees’ (‘groveling’)

This expression can be used in constructions of the

following type:

(5) Na

on

kolanach

knees-Loc

Kowalskiego

Kowalski-Gen

będą

be-Future;Pl;3rd

błagać.

beg-Infinitive

‘They will beg Kowalski on their knees.’

In the above example na kolanach is an adjunct

that is not subcategorized for by any of the remain-

ing constituents. However, since Kowalskiego is

genitive, the parser would be fooled to believe that

one of the possible interpretations is ‘They will beg

on Kowalski’s knees’, which is not correct and se-

mantically odd. Such complex adverbials are very

common in Polish, which is why we believe that for-

malizing them as wholes would allow us to achieve

better parsing results.

The last type of units that it is necessary to for-

malize for syntactic analysis are multiword text co-

hesion devices and interjections, whose syntactic

structure is hard to establish, as their constituents

belong to weakly defined classes. They can also

directly violate the grammar rules, as the coordina-

tion in the English example does:

(6) bądź

be-Imperative;Sg

co

what

bądź

be-Imperative;Sg

‘after all’

(7) by and large

Since the recognition and tagging of all the above

units will be performed before syntactic analysis, it

seems natural to combine this process with a gener-

alized mechanism of named entity recognition. We

intend to build a preprocessor for syntactic analy-

sis, along the lines of the ideas presented by Sagot

and Boullier (2005). However, in addition to the

set of named entities presented by the authors, we

also intend to formalize multiword expressions of

20

the types presented above, possibly with the use of

lxtransduce.2 This will allow us to prepare the

input to the parser in such a way as to eliminate all

the unparsable elements. This in turn should result

in significantly better parsing coverage.

2.2 Semantically Idiosyncratic Expressions

The other group in our classification consists of

multiword expressions that are idiosyncratic from

the point of view of semantics. It includes such

units as:

(8) NP-Nom

NP-Nom

wziąć

to take

nogi

legs-Acc

za

under

pas

belt-Acc

‘to run away’

From the syntactic analysis point of view, such

units are not problematic, as they follow regu-

lar grammatical patterns. They create difficulties

in other types of NLP-based applications, as their

meaning is not compositional, and cannot be pre-

dicted from the meaning of their constituents. Ex-

amples of such applications include electronic dic-

tionaries, which should be able to recognize idioms

and provide an appropriate, non-literal translation

(Prószéky and Földes, 2005).

Such expressions can be extremely complex due

to the lexical and word order variations they can

undergo, which is especially the case in such lan-

guages as Polish. The set of syntactic variations

that are possible in unit (8) is very large. First of

all, there is the subject (NP-Nom). English multi-

word expressions are usually encoded disregarding

the subject, as it can never break the continuity of

the other constituents. In Polish it is different —

the subject can be absent altogether, it can appear

at the very beginning of the multiword expression

without breaking its continuity, but it can also ap-

pear after the verb, between the core constituents.

The subject can be of arbitrary length and needs to

agree in morphosyntactic features (number, gender,

and person) with the verb.

The verb can be modified with adverbial phrases,

both on the left hand side and the right hand side.

2http://www.cogsci.ed.ac.uk/~richard/ltxml2/
lxtransduce.html

However, if the subject is postponed to a position

after the verb, all the potential right hand side ad-

verbials need to be attached after the subject, and

not directly after the verb. Thus, taking all the vari-

ation possibilities into account, it is not unlikely to

encounter such phrases in Polish:

(9) Wziął

take-1sg;Masc;Past

pan

you-1sg;Masc;Nom

przed

before

wszystkimi

everyone

nogi

legs-Acc

za

under

pas!

belt-Acc

‘You ran away before everyone else!’

Some of the English multiword expressions also

display properties that make them difficult to pro-

cess automatically. Although the word order is

more rigid, it is still necessary to handle, e.g., pas-

sivization and nominalization. This concerns the

canonical example of spill the beans, and many oth-

ers.

It follows that the units in the second group

should not, and probably cannot, be reliably en-

coded with the same means as the simpler units

from Section 2.1, which can be accounted for prop-

erly with simple methods based on regular gram-

mars and surface processing.

One possible solution is to encode the complex

units with the rules of a formal grammar of the

given language. Another solution could be con-

structing an appropriate valence dictionary for verbs

in such expressions. Both possibilities imply that

the recognition process should be performed simul-

taneously with syntactic analysis.

3 Rationale

The above classification was formulated during an

examination of the available formalisms for encod-

ing multiword expressions, which was a part of the

present work.

The attempts to formalize multiword expressions

for natural language processing can be roughly di-

vided into two groups. There are approaches that

aim at encoding such units with the rules of an

existing formal grammar, such as the approach de-

scribed by Debusmann (2004). On the other hand,

specialized, limited formalisms have been created,

21

whose purpose is to encode only multiword expres-

sions. Such formalisms include the already men-

tioned IDAREX (Segond and Breidt, 1995) and

Phrase Manager (Pedrazzini, 1994).

The first approach has two drawbacks. One of

them is that using the rules of a given grammar to

encode multiword expressions seems to have sense

only if the rest of the language is formalized in the

same way. Thus, such an approach makes the lexi-

con of multiword expressions heavily dependant on

a particular grammar, which might make its reuse

difficult or impossible.

The other disadvantage concerns complexity.

While full-blown grammars do have the means to

handle the most complex multiword expressions

and their transformational potential, they create too

much overhead in the case of simple units, such

as idiomatic prepositional phrases that function as

adverbials, which have been presented above.

Thus, we decided to encode Polish multiword ex-

pressions with an existing, specialized formalism.

However, after an evaluation of such formalisms

none of the ones we were able to find proved to

be adequate for Polish. This is mostly due to the

properties of the language — Polish is highly in-

flectional and has a relatively free word order. Both

of these properties also apply to multiword expres-

sions, which implies that in order to capture all their

possible variations in Polish, it is necessary to use

a powerful formalism (cf. the example in (9)).

Our analysis revealed that IDAREX, which is a

simple formalism based on regular grammars, is

not appropriate for handling expressions that have a

very variable word order and allow many modifica-

tions. In IDAREX, each multiword unit is encoded

with a regular expression, whose symbols are words

or POS-markers. The words are described in terms

of two-level morphology, and can appear either on

the lexical level (which permits inflection) or the

surface level (which restricts the word to the form

present in the regular expression). An example is

provided below:

(10) kick: :the :bucket;

Encoding the multiword expression in (8) with

IDAREX in such a way as to include all the pos-

sible variations leads to a description that suffers

from overgeneration. Also, IDAREX does not in-

clude any unification mechanisms. This makes it

unsuitable for any generation purposes (and reli-

able recognition purposes, too), as Polish requires

a means to enforce agreement between constituents.

Phrase Manager makes encoding multiword ex-

pressions difficult for other reasons. The method-

ology employed in the formalism requires each ex-

pression to be assigned to a predefined syntactic

class which determines the unit’s constituents, as

well as the modifications and transformations that

it can undergo:3

(11) SYNTAX-TREE

(VP V (NP Art Adj N AdvP))

MODIFICATIONS

V >

TRANSFORMATIONS

Passive, N-Adj-inversion

Since it is sometimes the case that multiword

expressions belonging to the same class differ in

respect of the syntactic operations they can undergo,

the classes are arranged into a tree-like structure in

which a class might be subdivided further on into a

subclass that allows passivization, another one that

allows nominalization and subject-verb inversion,

etc.

The problem with this approach is that it leads

to a proliferation of classes. At least in Polish,

multiword expressions that follow the same general

syntactic pattern often differ in the transformations

they allow. Besides, the formalism creates too much

overhead in the case of simple multiword expres-

sions. Consider the following example in Polish:

(12) No

oh

nie!

no

‘Oh, come on!’

In Phrase Manager it would be necessary to define

a syntactic class for this unit, which seems to be

both superfluous and problematic, as it is hard to

establish what parts of speech are the constituents

without taking purely arbitrary decisions.

To complicate matters further, the expression in

the example has a variant in which both constituents

3The transformations need to be defined with separate rules
elsewhere. The whole description is abbreviated.

22

switch their positions (with the meaning preserved).

In the case of such a simple expression, it is impos-

sible to “name” this transformation and assign any

syntactic or semantic prominence to it — it can

safely be treated as a simple permutation. How-

ever, Phrase Manager requires each operation to

be named and precisely defined in syntactic terms,

which in this case is more than it is worth.

In our opinion both those formalisms are in-

adequate for encoding all the phenomena labeled

as “multiword expressions”, especially in inflec-

tional languages. Such approaches might be suc-

cessful to a large extent in the case of fixed order

languages, such as English — both IDAREX and

Phrase Manager are reported to have been success-

fully employed for such purposes (Breidt and Feld-

weg, 1997; Tschichold, 2000). However, they fail

with languages that have richer inflection and per-

mit more word order variations. When used for

Polish, the surface processing oriented IDAREX

reaches the limits of its expressiveness; Phrase

Manager is inadequate for different reasons — the

assumptions it is based on would require something

not far from writing a complete grammar of Polish,

a task to which it is not suitable due to its limita-

tions. And on the other hand, it is much too com-

plicated for simple multiword expressions, such as

(12).

4 Previous Classifications

There are numerous classifications available in lin-

guistic literature, and we considered three of them

in turn. From the practical point of view, none of

them proved to be adequate for our needs. More

precisely, none of them partitioned the field of

multiword expressions into manageable classes that

could be handled individually by uniform mecha-

nisms.

The classification presented by Brundage et al.

(1992) approaches the whole problem from an an-

gle similar to what is required in Phrase Manager.

It is based on a study of ca. 300 English and Ger-

man multiword expressions, which were divided

into classes based on their syntactic constituency

and the transformations they are able to undergo.

Such an approach seems to be a dead end for

exactly the same reasons that Phrase Manager has

been criticized above. The study was limited to 300

units, which made the whole undertaking manage-

able. We believe that a really extensive study would

lead to an unpredictable proliferation of very similar

classes, which would make the whole classification

too fine-grained and unpractical for any processing

purposes.

The categorization that has been examined next

is the one presented by Sag et al. (2002). It con-

sists of three categories: fixed expressions (abso-

lutely immutable), semi-fixed expressions (strictly

fixed word order, but some lexical variation is al-

lowed), syntactically-flexible expressions (mainly

decomposable idioms — cf. (8)), and institution-

alized phrases (statistical idiosyncrasies). Unfortu-

nately, such a categorization is hard to use in the

case of some Polish multiword expressions. Con-

sider this example:

(13) Niech

let

to

it-Acc

szlag

*

trafi!

hit-Future

‘Damn it!’

It is hard to establish which of the above categories

does it belong to. The only lexically variable el-

ement is it, which can be substituted with another

noun. This would qualify the expression to be in-

cluded in the second category. However, it has a

very free word order (Niech to trafi szlag!, Szlag

niech to trafi!, and Niech trafi to szlag! are all

acceptable). This in turn qualifies it to the third

category, but it is not a decomposable idiom, and

the word order variations are not semantically jus-

tified transformations, but rather permutations, as

in (12). To make matters worse, the main element

— szlag — is a word with a very limited distribu-

tion. This intuitively makes the unit fit more into

the first category of unproductive expressions. This

is even more obvious considering the fact that the

word order variations do not change the meaning.

Another classification was presented by Guenth-

ner and Blanco (2004). Their categories are very

numerous, and the whole undertaking suffers from

the fact that they are not formally defined. It also

lacks a coherent purpose – it is neither a linguistic,

nor a natural language processing classification, as

it tries to put very different phenomena into one

bag.

23

The categories are sometimes more lexicograph-

ically, and sometimes more syntactically oriented.

For example, on the one hand the authors distin-

guish compound expressions (nouns, adverbs, etc.),

and on the other hand collocations. In our opinion

the categories should not be considered as parts of

the same classification, as members of the former

category belong to the lexicon, and the latter are

a purely distributional phenomenon. Therefore, in

the present form, the classification has no practical

use.

5 Conclusions and Further Work

We have shown that trying to provide a formal de-

scription of all phenomena labeled as multiword ex-

pressions as a whole is not possible, which becomes

obvious if one goes beyond English and tries to de-

scribe multiword expressions in heavily inflectional

and relatively free word order languages, such as

Polish. We have also shown the inadequacy of the

available classifications of multiword expressions

for computational processing of such languages.

In our opinion, a successful computational de-

scription of multiword expressions requires distin-

guishing two groups of units: idiosyncratic from

the point of view of morphosyntax and idiosyn-

cratic from the point of view of semantics. Such

a division allows for efficient use of existing tools

without the need of creating a cumbersome formal-

ism.

We believe that the practically oriented classifi-

cation presented above will allow us to build robust

tools for handling both types of multiword expres-

sions, which is the aim of our further research. The

immediate task is to build the syntactic preproces-

sor. We also plan to extend the classification to

make it slightly more fine-grained, which hopefully

will make even more efficient processing possible.

References

Elisabeth Breidt and Helmut Feldweg. 1997. Accessing
foreign languages with COMPASS. Machine Trans-
lation, 12(1/2):153–174.

Jennifer Brundage, Maren Kresse, Ulrike Schwall, and
Angelika Storrer. 1992. Multiword lexemes: A
monolingual and contrastive typology for NLP and
MT. Technical Report IWBS 232, IBM Deutschland

GmbH, Institut für Wissenbasierte Systeme, Heidel-
berg.

Ralph Debusmann. 2004. Multiword expressions as
dependency subgraphs. In Proceedings of the ACL
2004 Workshop on Multiword Expressions: Integrat-
ing Processing, Barcelona, Spain.

Frantz Guenthner and Xavier Blanco. 2004. Multi-
lexemic expressions: an overview. In Christian

Lèclere; Éric Laporte; Mireille Piot; Max Silberztein,
editor, Syntax, Lexis, and Lexicon-Grammar, vol-
ume 24 of Linguisticæ Investigationes Supplementa,
pages 239–252. John Benjamins.

Sandro Pedrazzini. 1994. Phrase Manager: A System
for Phrasal and Idiomatic Dictionaries. Georg Olms
Verlag, Hildeseim, Zürich, New York.

Gábor Prószéky and András Földes. 2005. An intel-
ligent context-sensitive dictionary: A Polish-English
comprehension tool. In Human Language Tech-
nologies as a Challenge for Computer Science and
Linguistics. 2nd Language & Technology Conference
April 21–23, 2005,, pages 386–389, Poznań, Poland.

Ivan Sag, Timothy Baldwin, Francis Bond, Ann Copes-
take, and Dan Flickinger. 2002. Multiword expres-
sions: A pain in the neck for NLP. In Proc. of the 3rd
International Conference on Intelligent Text Process-
ing and Computational Linguistics (CICLing-2002),
pages 1–15, Mexico City, Mexico.

Benoı̂t Sagot and Pierre Boullier. 2005. From raw cor-
pus to word lattices: robust pre-parsing processing.
Archives of Control Sciences, special issue of selected
papers from LTC’05, 15(4):653–662.

Frédérique Segond and Elisabeth Breidt. 1995.
IDAREX: Formal description of German and French
multi-word expressions with finite state technology.
Technical Report MLTT-022, Rank Xerox Research
Centre, Grenoble.

Cornelia Tschichold. 2000. Multi-word units in natural
language processing. Georg Olms Verlag, Hildeseim,
Zürich, New York.

Yi Zhang, Valia Kordoni, Aline Villavicencio, and
Marco Idiart. 2006. Automated multiword expression
prediction for grammar engineering. In Proceedings
of the Workshop on Multiword Expressions: Identify-
ing and Exploiting Underlying Properties, pages 36–
44, Sydney, Australia. Association for Computational
Linguistics.

24

Proceedings of the ACL 2007 Student Research Workshop, pages 25–30,
Prague, June 2007. c©2007 Association for Computational Linguistics

Automatic Prediction of Cognate Orthography Using
Support Vector Machines

Andrea Mulloni
Research Group in Computational Linguistics

HLSS, University of Wolverhampton
MB114 Stafford Street, Wolverhampton, WV1 1SB, United Kingdom

andrea2@wlv.ac.uk

Abstract

This paper describes an algorithm to
automatically generate a list of cognates in
a target language by means of Support
Vector Machines. While Levenshtein
distance was used to align the training file,
no knowledge repository other than an
initial list of cognates used for training
purposes was input into the algorithm.
Evaluation was set up in a cognate
production scenario which mimed a real-
life situation where no word lists were
available in the target language, delivering
the ideal environment to test the feasibility
of a more ambitious project that will
involve language portability. An overall
improvement of 50.58% over the baseline
showed promising horizons.

1 Introduction

Cognates are words that have similar spelling and
meaning across different languages. They account
for a considerable portion of technical lexicons,
and they found application in several NLP
domains. Some major applications fields include
relevant areas such as bilingual terminology
compilation and statistical machine translation.

So far algorithms for cognate recognition have
been focussing predominantly on the detection of
cognate words in a text, e.g. (Kondrak and Dorr
2004). Sometimes, though, the detection of
cognates in free-flowing text is rather impractical:
being able to predict the possible translation in the
target language would optimize algorithms that
make extensive use of the Web or very large
corpora, since there would be no need to scan the

whole data each time in order to find the
correspondent item. The proposed approach aims to
look at the same problem from a totally different
perspective, that is to produce an information
repository about the target language that could then
be exploited in order to predict how the
orthography of a “possible” cognate in the target
language should look like. This is necessary when
no plain word list is available in the target language
or the list is incomplete. The proposed algorithm
merges for the first time two otherwise well-known
methods, adopting a specific tagger implementation
which suggests new areas of application for this
tool. Furthermore, once language portability will be
in place, the cognate generation exercise will allow
to reformulate the recognition exercise as well,
which is indeed a more straightforward one. The
algorithm described in this paper is based on the
assumption that linguistic mappings show some
kind of regularity and that they can be exploited in
order to draw a net of implicit rules by means of a
machine learning approach.

Section 2 deals with previous work done on the
field of cognate recognition, while Section 3
describes in detail the algorithm used for this study.
An evaluation scenario will be drawn in Section 4,
while Section 5 will outline the directions we
intend to take in the next months.

2 Previous Work

The identification of cognates is a quite challenging
NLP task. The most renowned approach to cognate
recognition is to use spelling similarities between
the two words involved. The most important
contribution to this methodology has been given by
Levenshtein (1965), who calculated the changes
needed in order to transform one word into another
by applying four different edit operations – match,

25

substitution, insertion and deletion – which became
known under the name of edit distance (ED). A
good case in point of a practical application of ED
is represented by the studies in the field of lexicon
acquisition from comparable corpora carried out by
Koehn and Knight (2002) – who expand a list of
English-German cognate words by applying well-
established transformation rules (e.g. substitution
of k or z by c and of –tät by –ty, as in German
Elektizität – English electricity) – as well as those
that focused on word alignment in parallel corpora
(e.g. Melamed (2001) and Simard et al. (1999)).
Furthermore, Laviosa (2001) showed that cognates
can be extremely helpful in translation studies, too.

Among others, ED was extensively used also by
Mann and Yarowsky (2001), who try to induce
translation lexicons between cross-family
languages via third languages. Lexicons are then
expanded to intra-family languages by means of
cognate pairs and cognate distance. Related
techniques include a method developed by
Danielsson and Mühlenbock (2000), who associate
two words by calculating the number of matching
consonants, allowing for one mismatched character.
A quite interesting spin-off was analysed by
Kondrak (2004), who first highlighted the
importance of genetic cognates by comparing the
phonetic similarity of lexemes with the semantic
similarity of the glosses.

A general overview of the most important
statistical techniques currently used for cognate
detection purposes was delivered by Inkpen et al.
(2005), who addressed the problem of automatic
classification of word pairs as cognates or false
friends and analysed the impact of applying
different features through machine learning
techniques. In her paper, she also proposed a
method to automatically distinguish between
cognates and false friends, while examining the
performance of seven different machine learning
classifiers.

Further applications of ED include Mulloni and
Pekar (2006), who designed an algorithm based on
normalized edit distance aiming to automatically
extract translation rules, for then applying them to
the original cognate list in order to expand it, and
Brew and McKelvie (1996), who used approximate
string matching in order to align sentences and
extract lexicographically interesting word-word
pairs from multilingual corpora.

Finally, it is worth mentioning that the work
done on automatic named entity transliteration
often crosses paths with the research on cognate

recognition. One good pointer leads to Kashani et
al. (2006), who used a three-phase algorithm based
on HMM to solve the transliteration problem
between Arabic and English.

All the methodologies described above showed
good potential, each one in its own way. This paper
aims to merge some successful ideas together, as
well as providing an independent and flexible
framework that could be applied to different
scenarios.

3 Proposed Approach

When approaching the algorithm design phase, we
were faced with two major decisions: firstly, we
had to decide which kind of machine learning (ML)
approach should be used to gather the necessary
information, secondly we needed to determine how
to exploit the knowledge base gathered in the most
appropriate and productive way. As it turned out,
the whole work ended up to revolve around the
intuition that a simple tagger could lead to quite
interesting results, if only we could scale down
from sentence level to word level, that is to
produce a tag for single letters instead of whole
words. In other words, we wanted to exploit the
analogy between PoS tagging and cognate
prediction: given a sequence of symbols – i.e.
source language unigrams – and tags aligned with
them – i.e. target language n-grams –, we aim to
predict tags for more symbols. Thereby the context
provided by the neighbors of a symbol and the
previous tags are used as evidence to decide its tag.
After an extensive evaluation of the major ML-
based taggers available, we decided to opt for
SVMTool, a generator of sequential taggers based
on Support Vector Machines developed by
Gimenez and Marquez (2004). In fact, various
experiments carried out on similar software showed
that SVMTool was the most suitable one for the
type of data being examined, mainly because of its
flexible approach to our input file. Also, SVMTool
allows to define context by providing an adjustable
sliding window for the extraction of features. Once
the model was trained, we went on to create the
most orthographically probable cognate in the
target language. The following sections exemplify
the cognate creation algorithm, the learning step
and the exploitation of the information gathered.

3.1 Cognate Creation Algorithm

Figure 1 shows the cognate creation algorithm in
detail.

26

Input: C1, a list of English-German cognate pairs
{L1,L2}; C2, a test file of cognates in L1

Output: AL, a list of artificially constructed
cognates in the target language

1 for c in C1 do:
2 determine the edit operations to arrive

from L1 to L2
3 use the edit operations to produce a

formatted training file for the SVM tagger
4 end
5 Learn orthographic mappings between L1

and L2 (L1 unigram = instance, L2 n-gram =
category)

6 Align all words of the test file vertically in a
letter-by-letter fashion (unigram = instance)

7 Tag the test file with the SVM tagger
8 Group the tagger output into words and

produce a list of cognate pairs

Figure 1. The cognate creation algorithm.

Determination of the Edit Operations

The algorithm takes as input two distinct cognate
lists, one for training and one for testing purposes.
It is important to note that the input languages need
to share the same alphabet, since the algorithm is
currently still depending on edit distance. Future
developments will allow for language portability,
which is already matter of study. The first sub-step
(Figure 1, Line 2) deals with the determination of
the edit operations and its association with the
cognate pair, as shown in Figure 2. The four
options provided by edit distance, as described by
Levenshtein (1965), are Match, Substitution,
Insertion and Deletion.

toilet/toilette

t |o |i |l |e |t | |

t |o |i |l |e |t |t |e

MATCH|MATCH|MATCH|MATCH|MATCH|MATCH|INS|INS

tractor/traktor

t |r |a |c |t |o |r

t |r |a |k |t |o |r

MATCH|MATCH|MATCH|SUBST|MATCH|MATCH|MATCH

absolute/absolut

a |b |s |o |l |u |t |e

a |b |s |o |l |u |t |

MATCH|MATCH|MATCH|MATCH|MATCH|MATCH|MATCH|DEL

Figure 2. Edit operation association

Preparation of the Training File

This sub-step (Figure 1, Line 3) turned out to be
the most challenging task, since we needed to

produce the input file that offered the best layout
possible for the machine learning module. We first
tried to insert several empty slots between letters in
the source language file, so that we could cope with
maximally two subsequent insertions. While all
words are in lower case, we identified the spaces
with a capital X, which would have allowed us to
subsequently discard it without running the risk to
delete useful letters in the last step of the algorithm.
The choice of manipulating the source language
file was supported by the fact that we were aiming
to limit the features of the ML module to 27 at
most, that is the letters of the alphabet from “a” to
“z” plus the upper case “X” meaning blank.
Nonetheless, we soon realized that the space
feature outweighed all other features and biased the
output towards shorter words. Also, the input word
was so interspersed that it did not allow the
learning machine to recognize recurrent patterns.
Further empirical activity showed that far better
results could be achieved by sticking to the original
letter sequence in the source word and allow for an
indefinite number of feature to be learned. This was
implemented by grouping letters on the basis of
their edit operation relation to the source language.
Figure 3 exemplifies a typical situation where
insertions and deletions are catered for.

START START START START

a a m m

b b a a

i i c k

o o r ro

g g o e

e e e e

n n c k

e e o o

t t n n

i i o o

c X m m

a X i is

l s c ch

l c . END

y h

. END

Figure 3. Layout of the training entries
macroeconomic/makrooekonomisch and
abiogenetically/abiogenetisch, showing insertions
and deletions

As shown in Figure 3, German diacritics have
been substituted by their extended version – i.e. “ö”
as been rendered as “oe”: this was due to the
inability of SVMTool to cope with diacritics.
Figure 3 also shows how insertions and deletions

27

were treated. This design choice caused a non-
foreseeable number of features to be learned by the
ML module. While apparently a negative issue that
could cause data to be too sparse to be relevant, we
trusted our intuition that the feature growing graph
would just flat out after an initial spike, that is the
number of insertion edits would not produce an
explosion of source/target n-gram equivalents, but
only a short expansion to the original list of
mapping pairings. This proved to be correct by the
evaluation phase described below.

Learning Mappings Across Languages

Once the preliminary steps had been taken care of,
the training file was passed on to SVMTlearn, the
learning module of SVMTool. At this point the
focus switches over to the tool itself, which learns
regular patterns using Support Vector Machines
and then uses the information gathered to tag any
possible list of words (Figure 1, Line 5). The tool
chooses automatically the best scoring tag, but – as
a matter of fact – it calculates up to 10 possible
alternatives for each letter and ranks them by
probability scores: in the current paper the reported
results were based on the best scoring “tag”, but the
algorithm can be easily modified in order to
accommodate the outcome of the combination of
all 10 scores. As it will be shown later in Section 4,
this is potentially of great interest if we intend to
work in a cognate creation scenario.

As far the last three steps of the algorithm are
concerned, they are closely related to the practical
implementation of our methodology, hence they
will be described extensively in Section 4.

4 Evaluation

In order to evaluate the cognate creation algorithm,
we decided to set up a specific evaluation scenario
where possible cognates needed to be identified but
no word list to choose from existed in the target
language. Specifically, we were interested in
producing the correct word in the target language,
starting from a list of possible cognates in the
source language. An alternative evaluation setting
could have been based on a scenario which
included a scrambling and matching routine, but
after the good results showed by Mulloni and Pekar
(2006), we thought that yet a different environment
would have offered more insight into the field.
Also, we wanted to evaluate the actual strength of
our approach, in order to decide if future work
should be heading this way.

4.1 Data

The method was evaluated on an English-German
cognate list including 2105 entries. Since we
wanted to keep as much data available for testing
as possible, we decided to split the list in 80%
training (1683 entries) and 20% (422 entries)
testing.

4.2 Task Description

The list used for training/testing purposes included
cognates only. Therefore, the optimal outcome
would have been a word in the target language that
perfectly matched the cognate of the corresponding
source language word in the original file. The task
was therefore a quite straightforward one: train the
SVM tagger using the training data file and –
starting from a list of words in the source language
(English) – produce a word in the target language
(German) that looked as close as possible to the
original cognate word. Also, we counted all
occurrences where no changes across languages
took place – i.e. the target word was spelled in the
very same way as the source word – and we set this
number as a baseline for the assessment of our
results.

Preparation of the Training and Test Files

The training file was formatted as described in
Section 3.1. In addition to that, the training and test
files featured a START/START delimiter at the
beginning of the word and ./END delimiter at the
end of it (Figure 1, Line 6).

Learning Parameters

Once formatting was done, the training file was
passed on to SVMTlearn. Notably, SVMTool
comes with a standard configuration: for the
purpose of this exercise we decided to keep most of
the standard default parameters, while tuning only
the settings related to the definition of the feature
set. Also, because of the choices made during the
design of the training file – i.e. to stick to a strict
linear layout in the L1 word – we felt that a rather
small context window of 5 with the core position
set to 2 – that is, considering a context of 2 features
before and 2 features after the feature currently
examined – could offer a good trade-off between
accuracy and acceptable working times. Altogether
185 features were learnt, which confirmed the
intuition mentioned in Section 3.1. Furthermore,
when considering the feature definition, we decided
to stick to unigrams, bigrams and trigrams, even if

28

up to five-grams were obviously possible. Notably,
the configuration file pictured below shows how a
Model 0 and a global left-right-left tagging option
were applied. Both choices were made after an
extensive empirical observation of several
model/direction combinations. This file is highly
configurable and offers a vast range of possible
combinations. Future activities will concentrate to a
greater extent on the experimentations of other
possible configuration scenarios in order to find the
tuning that performs best. Gimenez and Marquez
(2004) offer a detailed description of the models
and all available options, as well as a general
introduction to the use of SVMtool, while Figure 4
shows the feature set used to learn mappings from a
list of English/German cognate pairs.

#ambiguous-right [default]

A0k = w(-2) w(-1) w(0) w(1) w(2) w(-2,-1)

w(-1,0) w(0,1) w(1,2) w(-1,1) w(-2,2)

w(-2,1) w(-1,2) w(-2,0) w(0,2) w(-2,-1,0)

w(-2,-1,1) w(-2,-1,2) w(-2,0,1) w(-2,0,2)

w(-1,0,1) w(-1,0,2) w(-1,1,2) w(0,1,2) p(-2)

p(-1) p(0) p(1) p(2) p(-2,-1) p(-1,0) p(0,1)

p(1,2) p(-1,1) p(-2,2) p(-2,1) p(-1,2)

p(-2,0) p(0,2) p(-2,-1,0) p(-2,-1,1)

p(-2,-1,2) p(-2,0,1) p(-2,0,2) p(-1,0,1)

p(-1,0,2) p(-1,1,2) p(0,1,2) k(0) k(1) k(2)

m(0) m(1) m(2)

Figure 4. Feature set for known words (A0k). The
same feature set is used for unknown words (A0u),
as well.

Tagging of the Test File and Cognate Generation

Following the learning step, a tagging routine was
invoked, which produced the best scoring output
for every single line – i.e. letter or word boundary –
of the test file, which now looked very similar to
the file we used for training (Figure 1, Line 7). At
this stage, we grouped test instances together to
form words and associated each L1 word with its
newly generated counterpart in L2 (Figure 1, Line
8).

4.3 Results

The generated words were then compared with the
words included in the original cognate file.

When evaluating the results we decided to split
the data into three classes, rather than two: “Yes”
(correct), “No” (incorrect) and “Very Close”. The
reason why we chose to add an extra class was that
when analysing the data we noticed that many
important mappings were correctly detected, but
the word was still not perfect because of minor

orthographic discrepancies that the tagging module
did get right in a different entry. In such cases we
felt that more training data would have produced a
stronger association score that could have
eventually led to a correct output. Decisions were
made by an annotator with a well-grounded
knowledge of Support Vector Machines and their
behaviour, which turned out to be quite useful
when deciding which output should be classified as
“Very Close”. For fairness reasons, this extra class
was added to the “No” class when delivering the
final results. Examples of the “Very Close” class
are reported in Table 1.

Original EN Original DE Output DE

majestically majestatetisch majestisch

setting setzend settend

machineries maschinerien machinerien

naked nakkt nackt

southwest suedwestlich suedwest

Table 1. Examples of the class “Very Close”.

In Figure 5 we show the accuracy of the SVM-
based cognate generation algorithm versus the
baseline, adding the “Very Close” class to both the
“Yes” class (correct) and the “No” class (incorrect).

Figure 5. Accuracy of the SVM-based algorithm
vs. the baseline (blue line).

The test file included a total of 422 entries, with
85 orthographically identical entries in L1 and L2
(baseline). The SVM-based algorithm managed to
produce 128 correct cognates, making errors in 264

29

cases. The “Very Close” class was assigned to 30
entries. Figure 5 shows that 30.33% of the total
entries were correctly identified, while an increase
of 50.58% over the baseline was achieved.

5 Conclusions and Future Work

In this paper we proposed an algorithm for the
automatic generation of cognates from two
different languages sharing the same alphabet. An
increase of 50.58% over the baseline and a 30.33%
of overall accuracy were reported. Even if accuracy
is rather poor, if we consider that no knowledge
repository other than an initial list of cognates was
available, we feel that the results are still quite
encouraging.

As far as the learning module is concerned,
future ameliorations will focus on the fine tuning of
the features used by the classifier as well as on the
choice of the model, while main research activities
are still concerned with the development of a
methodology allowing for language portability: as
a matter of fact, n-gram co-occurrencies are
currently being investigated as a possible
alternative to Edit Distance.

References

Chris Brew and David McKelvie. 1996. Word-Pair
Extraction for Lexicography. Proceedings of the
Second International Conference on New Methods in
Language Processing, 45-55.

Pernilla Danielsson and Katarina Muehlenbock. 2000.
Small but Efficient: The Misconception of High-
Frequency Words in Scandinavian Translation.
Proceedings of the 4th Conference of the Association
for Machine Translation in the Americas on
Envisioning Machine Translation in the Information
Future, 158-168.

Jesus Gimenez and Lluis Marquez. 2004. SVMTool: A
General POS Tagger Generator Based on Support
Vector Machines. Proceedings of LREC '04, 43-46.

Diana Inkpen, Oana Frunza and Grzegorz Kondrak.
2005. Automatic Identification of Cognates and False
Friends in French and English. Proceedings of the
International Conference Recent Advances in Natural
Language Processing, 251-257.

Mehdi M. Kashani, Fred Popowich, and Fatiha Sadat.
2006. Automatic Translitteration of Proper Nouns
from Arabic to English. The Challenge of Arabic For
NLP/MT, 76-84.

Philipp Koehn and Kevin Knight. 2002. Estimating
Word Translation Probabilities From Unrelated
Monolingual Corpora Using the EM Algorithm.
Proceedings of the 17th AAAI conference, 711-715.

Grzegorz Kondrak. 2004. Combining Evidence in
Cognate Identification. Proceedings of Canadian AI
2004: 17th Conference of the Canadian Society for
Computational Studies of Intelligence, 44-59.

Grzegorz Kondrak and Bonnie J. Dorr. 2004.
Identification of confusable drug names. Proceedings
of COLING 2004: 20th International Conference on
Computational LInguistics, 952-958.

Sara Laviosa. 2001. Corpus-based Translation Studies:
Theory, Findings, Applications. Rodopi, Amsterdam.

Vladimir I. Levenshtein. 1965. Binary codes capable of
correcting deletions, insertions and reversals. Doklady
Akademii Nauk SSSR, 163(4):845-848.

Gideon S. Mann and David Yarowsky. 2001. Multipath
Translation Lexicon Induction via Bridge Languages.
Proceedings of NAACL 2001: 2nd Meeting of the
North American Chapter of the Association for
Computational Linguistics, 151-158.

I. Dan Melamed. 1999. Bitext Maps and Alignment via
Pattern Recognition. Computational Linguistics,
25(1):107-130.

I. Dan Melamed. 2001. Empirical Methods for
Exploiting Parallel Texts. MIT Press, Cambridge,
MA.

Andrea Mulloni and Viktor Pekar. 2006. Automatic
Detection of Orthographic Cues for Cognate
Recognition. Proceedings of LREC '06, 2387-2390.

Michel Simard, George F. Foster and Pierre Isabelle.
1992. Using Cognates to Align Sentences in Bilingual
Corpora. Proceedings of the 4th International
Conference on Theoretical and Methodological
Issues in Machine Translation, Montreal, Canada, 67-
81.

30

Proceedings of the ACL 2007 Student Research Workshop, pages 31–36,
Prague, June 2007. c©2007 Association for Computational Linguistics

Exploiting Structure for Event Discovery Using the MDI Algorithm

Martina Naughton
School of Computer Science & Informatics

University College Dublin
Ireland

martina.naughton@ucd.ie

Abstract

Effectively identifying events in unstruc-
tured text is a very difficult task. This is
largely due to the fact that an individual
event can be expressed by several sentences.
In this paper, we investigate the use of clus-
tering methods for the task of grouping the
text spans in a news article that refer to the
same event. The key idea is to cluster the
sentences, using a novel distance metric that
exploits regularities in the sequential struc-
ture of events within a document. When
this approach is compared to a simple bag
of words baseline, a statistically significant
increase in performance is observed.

1 Introduction

Accurately identifying events in unstructured text is
an important goal for many applications that require
natural language understanding. There has been an
increased focus on this problem in recent years. The
Automatic Content Extraction (ACE) program1 is
dedicated to developing methods that automatically
infer meaning from language data. Tasks include
the detection and characterisation of Entities, Rela-
tions, and Events. Extensive research has been ded-
icated to entity recognition and binary relation de-
tection with significant results (Bikel et al., 1999).
However, event extraction is still considered as one
of the most challenging tasks because an individual
event can be expressed by several sentences (Xu et
al., 2006).

In this paper, we primarily focus on techniques
for identifying events within a given news article.
Specifically, we describe and evaluate clustering

1http://www.nist.gov/speech/tests/ace/

methods for the task of grouping sentences in a news
article that refer to the same event. We generate
sentence clusters using three variations of the well-
documented Hierarchical Agglomerative Clustering
(HAC) (Manning and Schütze, 1999) as a baseline
for this task. We provide convincing evidence sug-
gesting that inherent structures exist in the manner in
which events appear in documents. In Section 3.1,
we present an algorithm which uses such structures
during the clustering process and as a result a mod-
est increase in accuracy is observed.

Developing methods capable of identifying all
types of events from free text is challenging for sev-
eral reasons. Firstly, different applications consider
different types of events and with different levels of
granularity. A change in state, a horse winning a
race and the race meeting itself can be considered
as events. Secondly, interpretation of events can be
subjective. How people understand an event can de-
pend on their knowledge and perspectives. There-
fore in this current work, the type of event to extract
is known in advance. As a detailed case study, we
investigate event discovery using a corpus of news
articles relating to the recent Iraqi War where the tar-
get event is the “Death” event type. Figure 1 shows
a sample article depicting such events.

The remainder of this paper is organised as fol-
lows: We begin with a brief discussion of related
work in Section 2. We describe our approach to
Event Discovery in Section 3. Our techniques are
experimentally evaluated in Section 4. Finally, we
conclude with a discussion of experimental observa-
tions and opportunities for future work in Section 5.

2 Related Research

The aim of Event Extraction is to identify any in-
stance of a particular class of events in a natural

31

World News
Insurgents Kill 17 in Iraq
In Tikrit, gunmen killed 17 Iraqis as they were heading to work Sunday at a U.S. military facility.

Capt. Bill Coppernoll, said insurgents fired at several buses of Iraqis from two cars.

.

Elsewhere, an explosion at a market in Baqubah, about 30 miles north of Baghdad late Thursday.

The market was struck by mortar bombs according to U.S. military spokesman Sgt. Danny Martin.

.

Figure 1: Sample news article that describes multiple events.

language text, extract the relevant arguments of the
event, and represent the extracted information into
a structured form (Grishman, 1997). The types of
events to extract are known in advance. For exam-
ple, “Attack” and “Death” are possible event types
to be extracted. Previous work in this area focuses
mainly on linguistic and statistical methods to ex-
tract the relevant arguments of a event type. Lin-
guistic methods attempt to capture linguists knowl-
edge in determining constraints for syntax, mor-
phology and the disambiguation of both. Statistical
methods generate models based in the internal struc-
tures of sentences, usually identifying dependency
structures using an already annotated corpus of sen-
tences. However, since an event can be expressed
by several sentences, our approach to event extrac-
tion is as follows: First, identify all the sentences in
a document that refer to the event in question. Sec-
ond, extract event arguments from these sentences
and finally represent the extracted information of the
event in a structured form.

Particularly, in this paper we focus on clustering
methods for grouping sentences in an article that dis-
cuss the same event. The task of clustering simi-
lar sentences is a problem that has been investigated
particularly in the area of text summarisation. In
SimFinder (Hatzivassiloglou et al., 2001), a flexible
clustering tool for summarisation, the task is defined
as finding text units (sentences or paragraphs) that
contain information about a specific subject. How-
ever, the text features used in their similarity metric
are selected using a Machine Learning model.

3 Identifying Events within Articles

We treat the task of grouping together sentences that
refer to the same event(s) as a clustering problem.

As a baseline, we generate sentence clusters us-
ing average-link, single-link and complete-link Hi-
erarchical Agglomerative Clustering. HAC initially
assigns each data point to a singleton cluster, and
repeatedly merges clusters until a specified termi-
nation criteria is satisfied (Manning and Schütze,
1999). These methods require a similarity metric
between two sentences. We use the standard co-
sine metric over a bag-of-words encoding of each
sentence. We remove stopwords and stem each re-
maining term using the Porter stemming algorithm
(Porter, 1997). Our algorithms begin by placing
each sentence in its own cluster. At each itera-
tion we merge the two closest clusters. A fully-
automated approach must use some termination cri-
teria to decide when to stop clustering. In exper-
iments presented here, we adopt two manually su-
pervised methods to set the desired number of clus-
ters (k): “correct” k and “best” k. “Correct” sets k
to be the actual number of events. This value was
obtained during the annotation process (see Section
4.1). “Best” tunes k so as to maximise the quality of
the resulting clusters.

3.1 Exploiting Article Structure

Our baseline ignores an important constraint on the
event associated with each sentence: the position
of the sentence within the document. Documents
consist of sentences arranged in a linear order and
nearby sentences in terms of this ordering typically
refer to the same topic (Zha, 2002). Similarly we as-
sume that adjacent sentences are more likely to refer
to the same event, later sentences are likely to intro-
duce new events, etc. In this Section, we describe an
algorithm that exploits this document structure dur-
ing the sentence clustering process.

32

The basic idea is to learn a model capable of cap-
turing document structure, i.e. the way events are
reported. Each document is treated as a sequence of
labels (1 label per sentence) where each label repre-
sents the event(s) discussed in that sentence. We de-
fine four generalised event label types: N, represents
a new event sentence; C, represents a continuing
event sentence (i.e. it discusses the same event as the
preceding sentence); B, represents a back-reference
to an earlier event; X, represents a sentence that does
not reference an event. This model takes the form of
a Finite State Automaton (FSA) where:

• States correspond to event labels.

• Transitions correspond to adjacent sentences
that mention the pair of events.

More formally, E = (S, s0, F, L, T) is a model
where S is the set of states, s0 ∈ S is the initial state,
F ⊆ S is the set of final states, L is the set of edge
labels and T ⊆ (S×L)×S is the set of transitions.
We note that it is the responsibility of the learning
algorithm to discover the correct number of states.

We treat the task of discovering an event model as
that of learning a regular grammar from a set of pos-
itive examples. Following Golds research on learn-
ing regular languages (Gold, 1967), the problem has
received significant attention. In our current experi-
ments, we use Thollard et al’s MDI algorithm (Thol-
lard et al., 2000) for learning the automaton. MDI
has been shown to be effective on a wide range of
tasks, but it must be noted that any grammar infer-
ence algorithm could be substituted.

To estimate how much sequential structure exists
in the sentence labels, the document collection was
randomly split into training and test sets. The au-
tomaton produced by MDI was learned using the
training data, and the probability that each test se-
quence was generated by the automaton was calcu-
lated. These probabilities were compared with those
of a set of random sequences (generated to have the
same distribution of length as the test data). The
probabilities of event sequences from our dataset
and the randomly generated sequences are shown
in Figure 2. The test and random sequences are
sorted by probability. The vertical axis shows the
rank in each sequence and the horizontal axis shows
the negative log probability of the sequence at each

Figure 2: Distribution in the probability that actual
and random event sequences are generated by the
automaton produced by MDI.

rank. The data suggests that the documents are in-
deed structured, as real document sequences tend to
be much more likely under the trained FSA than ran-
domly generated sequences.

We modify our baseline clustering algorithm to
utilise the structural information omitted by the au-
tomaton as follows: Let L(c1, c2) be a sequence
of labels induced by merging two clusters c1 and
c2. If P (L(c1, c2)) is the probability that sequence
L(c1, c2) is accepted by the automaton, and let
cos(c1, c2) be the cosine distance between c1 and c2.
We can measure the similarity between c1 and c2 as:

SIM(c1, c2) = cos(c1, c2)× P (L(c1, c2)) (1)

Let r be the number of clusters remaining. Then
there are r(r−1)

2 pairs of clusters. For each pair of
clusters c1,c2 we generate the resulting sequence of
labels that would result if c1 and c2 were merged.
We then input each label sequence to our trained
FSA to obtain the probability that it is generated by
the automaton. At each iteration, the algorithm pro-
ceeds by merging the most similar pair according to
this metric. Figure 3 illustrates this process in more
detail. To terminate the clustering process, we adopt
either the “correct” k or “best” k halting criteria de-
scribed earlier.

4 Experiments

4.1 Experimental Setup
In our experiments, we used a corpus of news arti-
cles which is a subset of the Iraq Body Count (IBC)

33

Figure 3: The sequence-based clustering process.

dataset2. This is an independent public database of
media-reported civilian deaths in Iraq resulting di-
rectly from military attack by the U.S. forces. Casu-
alty figures for each event reported are derived solely
from a comprehensive manual survey of online me-
dia reports from various news sources. We obtained
a portion of their corpus which consists of 342 new
articles from 56 news sources. The articles are of
varying size (average sentence length per document
is 25.96). Most of the articles contain references to
multiple events. The average number of events per
document is 5.09. Excess HTML (image captions
etc.) was removed, and sentence boundaries were
identified using the Lingua::EN::Sentence perl mod-
ule available from CPAN3.

To evaluate our clustering methods, we use the
definition of precision and recall proposed by (Hess
and Kushmerick, 2003). We assign each pair of
sentences into one of four categories: (i) clustered
together (and annotated as referring to the same
event); (ii) not clustered together (but annotated as
referring to the same event); (iii) incorrectly clus-
tered together; (iv) correctly not clustered together.
Precision and recall are thus found to be computed
as P = a

a+c and R = a
a+b , and F1 = 2PR

P+R .
The corpus was annotated by a set of ten vol-

unteers. Within each article, events were uniquely
identified by integers. These values were then
mapped to one of the four label categories, namely
“N”, “C”, “X”, and “B”. For instance, sentences de-
scribing previously unseen events were assigned a
new integer. This value was mapped to the label cat-
egory “N” signifying a new event. Similarly, sen-

2http://iraqbodycount.org/
3http://cpan.org/

tences referring to events in a preceding sentence
were assigned the same integer identifier as that
assigned to the preceding sentence and mapped to
the label category “C”. Sentences that referenced an
event mentioned earlier in the document but not in
the preceding sentence were assigned the same inte-
ger identifier as that sentence but mapped to the label
category “B”. Furthermore, If a sentence did not re-
fer to any event, it was assigned the label 0 and was
mapped to the label category “X”. Finally, each doc-
ument was also annotated with the distinct number
of events reported in it.

In order to approximate the level of inter-
annotation agreement, two annotators were asked to
annotate a disjoint set of 250 documents. Inter-rater
agreements were calculated using the kappa statis-
tic that was first proposed by (Cohen, 1960). This
measure calculates and removes from the agreement
rate the amount of agreement expected by chance.
Therefore, the results are more informative than a
simple agreement average (Cohen, 1960; Carletta,
1996). Some extensions were developed including
(Cohen, 1968; Fleiss, 1971; Everitt, 1968; Barlow et
al., 1991). In this paper the methodology proposed
by (Fleiss, 1981) was implemented. Each sentence
in the document set was rated by the two annotators
and the assigned values were mapped into one of the
four label categories (“N”, “C”, “X”, and “B”). For
complete instructions on how kappa was calculated,
we refer the reader to (Fleiss, 1981). Using the an-
notated data, a kappa score of 0.67 was obtained.
This indicates that the annotations are somewhat in-
consistent, but nonetheless are useful for producing
tentative conclusions.

To determine why the annotators were having dif-
ficulty agreeing, we calculated the kappa score for
each category. For the “N”, “C” and “X” categories,
reasonable scores of 0.69, 0.71 and 0.72 were ob-
tained respectively. For the “B” category a relatively
poor score of 0.52 was achieved indicating that the
raters found it difficult to identify sentences that ref-
erenced events mentioned earlier in the document.
To illustrate the difficulty of the annotation task an
example where the raters disagreed is depicted in
Figure 4. The raters both agreed when assigning
labels to sentence 1 and 2 but disagreed when as-
signing a label to Sentence 23 . In order to correctly
annotate this sentence as referring to the event de-

34

Sentence 1: A suicide attacker set off a bomb that tore through a funeral tent jammed with Shiite mourners Thursday.

Rater 1: label=1. Rater 2: label=1

Sentence 2: The explosion, in a working class neighbourhood of Mosul, destroyed the tent killing nearly 50 people.

Rater 1: label=1. Rater 2: label=1.

.

Sentence 23: At the hospital of this northern city, doctor Saher Maher said that at least 47 people were killed.

Rater 1: label=1. Rater 2: label=2.

Figure 4: Sample sentences where the raters disagreed.

Algorithm a-link c-link s-link
BL(correct k) 40.5 % 39.2% 39.6%

SEQ(correct k) 47.6%* 45.5%* 44.9%*
BL(best k) 52.0% 48.2% 50.9%

SEQ(best k) 61.0%* 56.9%* 58.6%*

Table 1: % F1 achieved using average-link (a-link),
complete-link (c-link) and single-link (s-link) varia-
tions of the baseline and sequence-based algorithms
when the correct and best k halting criteria are used.
Scores marked with * are statistically significant to
a confidence level of 99%.

scribe in sentence 1 and 2, the rater have to resolve
that “the northern city” is referring to “Mosul” and
that “nearly 50” equates to “at least 47”. These and
similar ambiguities in written text make such an an-
notation task very difficult.

4.2 Results

We evaluated our clustering algorithms using the F1
metric. Results presented in Table 1 were obtained
using 50:50 randomly selected train/test splits aver-
aged over 5 runs. For each run, the automaton pro-
duced by MDI was generated using the training set
and the clustering algorithms were evaluated using
the test set. On average, the sequence-based clus-
tering approach achieves an 8% increase in F1 when
compared to the baseline. Specifically the average-
link variation exhibits the highest F1 score, achiev-
ing 62% when the “best” k termination method is
used.

It is important to note that the inference produced
by the automaton depends on two values: the thresh-
old α of the MDI algorithm and the amount of label
sequences used for learning. The closer α is to 0,
the more general the inferred automaton becomes.

In an attempt to produce a more general automaton,
we chose α = 0.1. Intuitively, as more training data
is used to train the automaton, more accurate infer-
ences are expected. To confirm this we calculated
the %F1 achieved by the average-link variation of
the method for varying levels of training data. Over-
all, an improvement of approx. 5% is observed as
the percentage training data used is increased from
10% to 90%.

5 Discussion

Accurately identifying events in unstructured text is
a very difficult task. This is partly because the de-
scription of an individual event can spread across
several sentences. In this paper, we investigated
the use of clustering for the task of grouping sen-
tences in a document that refer to the same event.
However, there are limitations to this approach that
need to be considered. Firstly, results presented
in Section 4.2 suggest that the performance of the
clusterer depends somewhat on the chosen value
of k (i.e. the number of events in the document).
This information is not readily available. However,
preliminary analysis presented in (Naughton et al.,
2006) indicate that is possible to estimate this value
with reasonable accuracy. Furthermore, promising
results are observed when this estimated value is
used halt the clustering process. Secondly, labelled
data is required to train the automation used by our
novel clustering method. Evidence presented in Sec-
tion 4.1 suggests that reasonable inter-annotation
agreement for such an annotation task is difficult to
achieve. Nevertheless, clustering allows us to take
into account that the manner in which events are de-
scribed is not always linear. To assess exactly how
beneficial this is, we are currently treating this prob-
lem as a text segmentation task. Although this is a

35

crude treatment of the complexity of written text, it
will help us to approximate the benefit (if any) of
applying clustering-based techniques to this task.

In the future, we hope to further evaluate our
methods using a larger dataset containing more
event types. We also hope to examine the inter-
esting possibility that inherent structures learned
from documents originating from one news source
(e.g. Aljazeera) differ from structures learned us-
ing documents originating from another source (e.g.
Reuters). Finally, a single sentence often contains
references to multiple events. For example, consider
the sentence “These two bombings have claimed the
lives of 23 Iraqi soldiers”. Our algorithms assume
that each sentence describes just one event. Future
work will focus on developing methods to automati-
cally recognise such sentences and techniques to in-
corporate them into the clustering process.

Acknowledgements. This research was supported
by the Irish Research Council for Science, Engineer-
ing & Technology (IRCSET) and IBM under grant
RS/2004/IBM/1. The author also wishes to thank
Dr. Joe Carthy and Dr. Nicholas Kushmerick for
their helpful discussions.

References
W. Barlow, N. Lai, and S. Azen. 1991. A comparison of

methods for calculating a stratified kappa. Statistics in
Medicine, 10:1465–1472.

Daniel Bikel, Richard Schwartz, and Ralph Weischedel.
1999. An algorithm that learns what’s in a name. Ma-
chine Learning, 34(1-3):211–231.

Jean Carletta. 1996. Assessing agreement on classifica-
tion tasks: the kappa statistic. Computational Linguis-
tics, 22:249–254.

Jacob Cohen. 1960. A coeficient of agreement for nom-
inal scales. Educational and Psychological Measure-
ment, 20(1):37–46.

Jacob Cohen. 1968. Weighted kappa: Nominal scale
agreement with provision for scaled disagreement or
partial credit. Psychological Bulletin, 70.

B.S. Everitt. 1968. Moments of the statistics kappa and
the weighted kappa. The British Journal of Mathemat-
ical and Statistical Psychology, 21:97–103.

J.L. Fleiss. 1971. Measuring nominal scale agreement
among many raters. Psychological Bulletin, 76.

J.L. Fleiss, 1981. Statistical methods for rates and pro-
portions, pages 212–36. John Wiley & Sons.

E. Mark Gold. 1967. Grammar identification in the limit.
Information and Control, 10(5):447–474.

Ralph Grishman. 1997. Information extraction: Tech-
niques and challenges. In Proceedings of the sev-
enth International Message Understanding Confer-
ence, pages 10–27.

Vasileios Hatzivassiloglou, Judith Klavans, Melissa Hol-
combe, Regina Barzilay, Min-Yen Kan, and Kathleen
McKeown. 2001. SIMFINDER: A flexible clustering
tool for summarisation. In Proceedings of the NAACL
Workshop on Automatic Summarisation, Association
for Computational Linguistics, pages 41–49.

Andreas Hess and Nicholas Kushmerick. 2003. Learn-
ing to attach semantic metadata to web services. In
Proceedings of the International Semantic Web Con-
ference (ISWC 2003), pages 258–273. Springer.

Christopher Manning and Hinrich Schütze. 1999. Foun-
dations of Statistical Natural Language Processing.
MIT Press.

Martina Naughton, Nicholas Kushmerick, and Joseph
Carthy. 2006. Event extraction from heterogeneous
news sources. In Proceedings of the AAAI Workshop
Event Extraction and Synthesis, pages 1–6, Boston.

Martin Porter. 1997. An algorithm for suffix stripping.
Readings in Information Retrieval, pages 313–316.

Franck Thollard, Pierre Dupont, and Colin de la Higuera.
2000. Probabilistic DFA inference using Kullback-
Leibler divergence and minimality. In Proceedings of
the 17th International Conference on Machine Learn-
ing, pages 975–982. Morgan Kaufmann, San Fran-
cisco.

Feiyu Xu, Hans Uszkoreit, and Hong Li. 2006. Auto-
matic event and relation detection with seeds of vary-
ing complexity. In Proceedings of the AAAI Workshop
Event Extraction and Synthesis, pages 12–17, Boston.

Hongyuan Zha. 2002. Generic summarization and
keyphrase extraction using mutual reinforcement prin-
ciple and sentence clustering. In Proceedings of the
25th annual international ACM SIGIR conference on
Research and development in Information Retrieval,
pages 113–120, New York, NY. ACM Press.

36

Proceedings of the ACL 2007 Student Research Workshop, pages 37–42,
Prague, June 2007. c©2007 Association for Computational Linguistics

Kinds of Features for Chinese Opinionated Information Retrieval

Taras Zagibalov
Department of Informatics

University of Sussex
United Kingdom

T.Zagibalov@sussex.ac.uk

Abstract

This paper presents the results of experi-
ments in which we tested different kinds of
features for retrieval of Chinese opinionated
texts. We assume that the task of retrieval of
opinionated texts (OIR) can be regarded as
a subtask of general IR, but with some dis-
tinct features. The experiments showed that
the best results were obtained from the com-
bination of character-based processing, dic-
tionary look up (maximum matching) and a
negation check.

1 Introduction

The extraction of opinionated information has re-
cently become an important research topic. Business
and governmental institutions often need to have in-
formation about how their products or actions are
perceived by people. Individuals may be interested
in other people’s opinions on various topics ranging
from political events to consumer products.

At the same time globalization has made the
whole world smaller, and a notion of the world as
a ‘global village’ does not surprise people nowa-
days. In this context we assume information in Chi-
nese to be of particular interest as the Chinese world
(the mainland China, Taiwan, Hong Kong, Singa-
pore and numerous Chinese communities all over
the world) is getting more and more influential over
the world economy and politics.

We therefore believe that a system capable of pro-
viding access to opinionated information in other
languages (especially in Chinese) might be of great
use for individuals as well as for institutions in-

volved in international trade or international rela-
tions.

The sentiment classification experiments pre-
sented in this paper were done in the context of
Opinionated Information Retrieval which is planned
to be a module in a Cross-Language Opinion Extrac-
tion system (CLOE). The main goal of this system is
to provide access to opinionated information on any
topic ad-hoc in a language different to the language
of a query.

To implement the idea the CLOE system which
is the context for the experiments described in the
paper will consist of four main modules:

1. Query translation

2. Opinionated Information Retrieval

3. Opinionated Information Extraction

4. Results presentation

The OIR module will process complex queries
consisting of a word sequence indicating a topic and
sentiment information. An example of such a query
is: ”Asus laptop + OPINIONS”, another, more de-
tailed query, might be ”Asus laptop + POSITIVE
OPINIONS”.

Another possible approach to the architecture of
the CLOE system would be to implement the pro-
cessing as a pipeline consisting, first, of using IR to
retrieve certain articles relevant to the topic followed
by second stage of classifying them according to
sentiment polarity. But such an approach probably
would be too inefficient, as the search will produce
a lot of irrelevant results (containing no opinionated
information).

37

2 Chinese NLP and Feature Selection
Problem

One of the central problems in Chinese NLP is what
the basic unit1 of processing should be. The problem
is caused by a distinctive feature of the Chinese lan-
guage - absence of explicit word boundaries, while it
is widely assumed that a word is of extreme impor-
tance for any NLP task. This problem is also crucial
for the present study as the basic unit definition af-
fects the kinds of features to be used.

In this study we use a mixed approached, based
both on words (tokens consisting of more than one
character) and characters as basic units. It is also
important to note, that we use notion of words in
the sense of Vocabulary Word as it was stated by Li
(2000). This means that we use only tokens that are
listed in a dictionary, and do not look for all words
(including grammar words).

3 Related Work

Processing of subjective texts and opinions has re-
ceived a lot of interest recently. Most of the authors
traditionally use a classification-based approach for
sentiment extraction and sentiment polarity detec-
tion (for example, Pang et al. (2002), Turney (2002),
Kim and Hovy (2004) and others), however, the re-
search described in this paper uses the information
retrieval (IR) paradigm which has also been used by
some researchers.

Several sentiment information retrieval models
were proposed in the framework of probabilistic lan-
guage models by Eguchi and Lavrenko (2006). The
setting for the study was a situation when a user’s
query specifies not only terms expressing a certain
topic and also specifies a sentiment polarity of in-
terest in some manner, which makes this research
very similar to the present one. However, we use
sentiment scores (not probabilistic language mod-
els) for sentiment retrieval (see Section 4.1). Dave
et al. (Dave et al., 2003) described a tool for sift-
ing through and synthesizing product reviews, au-
tomating the sort of work done by aggregation sites
or clipping services. The authors of this paper used
probability scores of arbitrary-length substrings that
provide optimal classification. Unlike this approach

1In the context of this study terms “feature” and “basic unit”
are used interchangeably.

we use a combination of sentiment weights of char-
acters and words (see Section 4).

Recently several works on sentiment extraction
from Chinese texts were published. In a paper by
Ku et al. (2006a) a dictionary-based approach was
used in the context of sentiment extraction and sum-
marization. The same authors describe a corpus of
opinionated texts in another paper (2006b). This pa-
per also defines the annotations for opinionated ma-
terials. Although we use the same dictionary in our
research, we do not use only word-based approach
to sentiment detection, but we also use scores for
characters obtained by processing the dictionary as
a training corpus (see Section 4).

4 Experiments

In this paper we present the results of sentiment clas-
sification experiments in which we tested different
kinds of features for retrieval of Chinese opinionated
information.

As stated earlier (see Section 1), we assume that
the task of retrieval of opinionated texts (OIR) can
be regarded as a subtask of general IR with a query
consisting of two parts: (1) words indicating topic
and (2) a semantic class indicating sentiment (OPIN-
IONS). The latter part of the query cannot be speci-
fied in terms that can be instantly used in the process
of retrieval.

The sentiment part of the query can be further de-
tailed into subcategories such as POSITIVE OPIN-
IONS, NEGATIVE OPINIONS, NEUTRAL OPIN-
IONS each of which can be split according to sen-
timent intensity (HIGHLY POSITIVE OPINIONS,
SLIGHTLY NEGATIVE OPINIONS etc.). But
whatever level of categorisation we use, the query
is still too abstract and cannot be used in practice. It
therefore needs to be put into words and most prob-
ably expanded. The texts should also be indexed
with appropriate sentiment tags which in the context
of sentiment processing implies classification of the
texts according to presence / absence of a sentiment
and, if the texts are opinionated, according to their
sentiment polarity.

To test the proposed approach we designed two
experiments.

The purpose of the first experiment was to find the
most effective kind of features for sentiment polar-

38

ity discrimination (detection) which can be used for
OIR 2. Nie et al. (2000) found that for Chinese IR
the most effective kinds of features were a combina-
tion of dictionary look up (longest-match algorithm)
together with unigrams (single characters). The ap-
proach was tested in the first experiment.

The second experiment was designed to test the
found set of features for text classification (index-
ing) for an OIR query of the first level (finds opin-
ionated information) and for an OIR query of the
second level (finds opinionated information with
sentiment direction detection), thus the classifier
should 1) detect opinionated texts and 2) classify the
found items either as positive or as negative.

As training corpus for the second experiment we
use the NTU sentiment dictionary (NTUSD) (by Ku
et al. (2006a))3 as well as a list of sentiment scores
of Chinese characters obtained from processing of
the same dictionary. Dictionary look up used the
longest-match algorithm. The dictionary has 2809
items in the “positive” part and 8273 items in the
“negative”. The same dictionary was also used as a
corpus for calculating the sentiment scores of Chi-
nese characters. The use of the dictionary as a
training corpus for obtaining the sentiment scores
of characters is justified by two reasons: 1) it is
domain-independent and 2) it contains only relevant
(sentiment-related) information. The above men-
tioned parts of the dictionary used as the corpus
comprised 24308 characters in the “negative” part
and 7898 characters in the “positive” part.

4.1 Experiment 1

A corpus of E-Bay4 customers’ reviews of products
and services was used as a test corpus. The total
number of reviews is 128, of which 37 are nega-
tive (average length 64 characters) and 91 are pos-
itive (average length 18 characters), all of the re-
views were tagged as ‘positive’ or ‘negative’ by the

2For simplicity we used only binary polarity in both exper-
iments: positive or negative. Thus terms “sentiment polarity”
and “sentiment direction” are used interchangeably in thispa-
per.

3Ku et al. (2006a) automatically generated the dictionary
by enlarging an initial manually created seed vocabulary by
consulting two thesauri, including tong2yi4ci2ci2lin2 and the
Academia Sinica Bilingual Ontological Wordnet 3.

4http://www.ebay.com.cn/

reviewers5.
We computed two scores for each item (a review):

one for positive sentiment, another for negative sen-
timent. The decision about an item’s sentiment po-
larity was made every time by finding the biggest
score of the two.

For every phrase (a chunk of characters between
punctuation marks) a score was calculated as:

Scphrase =
∑

(Scdictionary) +
∑

(Sccharacter)

whereScdictionary is a dictionary based score calcu-
lated using following formula:

Scdictionary =
Ld

Ls

∗ 100

whereLd - length of a dictionary item,Ls - length of
a phrase. The constant value 100 is used to weight
the score, obtained by a series of preliminary tests
as a value that most significantly improved the accu-
racy.

The sentiment scores for characters were obtained
by the formula:

Sci = Fi/F(i+j)

whereSci is the sentiment score for a character for a
given classi, Fi - the character’s relative frequency
in a classi, F(i+j) - the character’s relative frequency
in both classesi andj taken as one unit. The relative
frequency of characterc is calculated as

Fc =

∑
Nc∑

N(1...n)

where
∑

Nc is a number of the character’s occur-
rences in the corpus, and

∑
N(1...n) is the number of

all characters in the same corpus.
Preliminary tests showed that inverting all the

characters for whichSci ≤ 1 improves accuracy.
The inverting is calculated as follows:

Scinverted = Sci − 1

We compute scores rather than probabilities since
we are combining information from two distinct
sources (characters and words).

5The corpus is available at
http://www.informatics.sussex.ac.uk/users/tz21/corpSmall.zip.

39

In addition to the features specified (characters
and dictionary items) we also used a simple negation
check. The system checked two most widely used
negations in Chinese:bu andmei. Every phrase was
compared with the following pattern:negation+ 0-2
characters+ phrase. The scores of all the unigrams
in the phrase that matched the pattern were multi-
plied by -1.

Finally, the score was calculated for an item as the
sum of the phrases’ scores modified by the negation
check:

Scitem =
∑

(Scphrase ∗NegCheck)

For sentiment polarity detection the item scores
for each of the two polarities were compared to each
other: the polarity with bigger score was assigned to
the item.

SentimentPolarity = argmax(Sci|Scj)

whereSci is an item score for one polarity andScj

is an item score for the other.
The main evaluation measure was accuracy of

sentiment identification, expressed in percent.

4.1.1 Results of Experiment 1

To find out which kinds of features perform best
for sentiment polarity detection the system was run
several times with different settings.

Running without character scores (with dictionary
longest-match only) gave the following results: al-
most 64% of positive and near 65% for negative re-
views were detected correctly, which is 64% accu-
racy for the whole corpus (note that a baseline clas-
sifier tagging all items as positive achieves an accu-
racy of 71.1%). Characters with sentiment scores
alone performed much better on negative reviews
(84% accuracy) rather than on positive (65%), but
overall performance was still better: 70%. Both
methods combined gave a significant increase on
positive reviews (73%) and no improvement on neg-
ative (84%), giving 77% overall. The last run was
with the dictionary look up, the characters and the
negation check. The results were: 77% for positive
and 89% for negative, 80% corpus-wide (see Table
1).

Judging from the results it is possible to suggest
that both the word-based dictionary look up method

Method Positive Negative All
Dictionary 63.7 64.8 64.0
Characters 64.8 83.7 70.3

Characters+Dictionary 73.6 83.7 76.5
Char’s+Dictionary+negation 76.9 89.1 80.4

Table 1: Results of Experiment 1 (accuracy in per-
cent).

and character-based method contributed to the final
result. It also corresponds to the results obtained by
Nie et al. (2000) for Chinese information retrieval,
where the same combination of features (characters
and words) also performed best.

The negation check increased the performance by
3% overall, up to 80%. Although the performance
gain is not very high, the computational cost of this
feature is very low.

As we used a non-balanced corpus (71% of the
reviews are positive), it is quite difficult to compare
the results with the results obtained by other authors.
But the proposed classifier outperformed some stan-
dart classifiers on the same data set: a Naive Bayes
(multinomial) classifier gained only 49.6 % of ac-
curacy (63 items tagged correctly) while a Support
vector machine classifier got 64.5 % of accuracy (82
items).6

4.2 Experiment 2

The second experiment included two parts: deter-
mining whether texts are opinionated which is a pre-
condition for the processing of the OPINION part of
the query; and tagging found texts with relevant sen-
timent for processing a more detailed form of this
query POSITIVE/NEGATIVE OPINION.

For this experiment we used the features that
showed the best performance as described in section
4.1: the dictionary items and the characters with the
sentiment scores.

The test corpus for this experiment consisted of
282 items, where every item is a paragraph. We used
paragraphs as basic items in this experiment because
of two reasons: 1. opinionated texts (reviews) are
usually quite short (in our corpus all of them are one
paragraph), while texts of other genres are usually
much longer; and 2. for IR tasks it is more usual to
retrieve units longer then a sentence.

6We used WEKA 3.4.10
(http://www.cs.waikato.ac.nz/ ml/weka)

40

The test corpus has following structure: 128 items
are opinionated, of which 91 are positive and 37 are
negative (all the items are the reviews used in the
first experiment, see 4.1). 154 items are not opin-
ionated, of which 97 are paragraphs taken from a
scientific book on Chinese linguistics and 57 items
are from articles taken form a Chinese on-line ency-
clopedia Baidu Baike7.

For the first task we used the following tech-
nique: every item was assigned a score (a sum of the
characters’ scores and dictionary scores described in
4.1). The score was divided by the number of char-
acters in the item to obtain the average score:

averScitem =
Scitem

Litem

where Scitem is the item score, andLitem is the
length of an item (number of characters in it).

A positive and a negative average score is com-
puted for each item.

4.2.1 Results of Experiment 2

To determine whether an item is opinionated (for
OPINION query), the maximum of the two scores
was compared to a threshold value. The best perfor-
mance was achieved with the threshold value of 1.6
- more than 85% of accuracy8 (see Table 2).

Next task (NEGATIVE/POSITIVE OPINIONS)
was processed by comparing the negative and pos-
itive scores for each found item (see Table 2).

Query Recall Precision F-measure
OPINION 71.8 85.1 77.9

POS/NEG OPINION 64.0 75.9 69.4

Table 2: Results of Experiment 2 (in percent).

Although the unopinionated texts are very dif-
ferent from the opinionated ones in terms of genre
and topic, the standard classifiers (Naive Bayes
(multinomial) and SVM) failed to identify any non-
opinionated texts. The most probable explanation
for this is that there were no items tagged ‘unopin-
ionated’ in the training corpus (the sentiment dictio-
nary) and there were only words and phrases with
predominant sentiment meaning rather then topic-
related.

7http://baike.baidu.com/
8A random choice could have approximately 55% of accu-

racy if tagged all items as negative.

It is worth noting that we observed the same rela-
tion between subjectivity detection and polarity clas-
sification accuracy as described by Pang and Lee
(2004) and Eriksson (2006). The accuracy of the
sentiment detection of opinionated texts (excluding
erroneously detected unopinionated texts) in Exper-
iment 2 has increased by 13% for positive reviews
and by 6% for negative reviews (see Table 3).

Query Positive Negative
Experiment 1 76.9 89.1
Experiment 2 89.9 95.6

Table 3: Accuracy of sentiment polarity detection of
opinionated texts (in percent).

5 Conclusion and Future Work

These preliminary experiments showed that using
single characters and dictionary items modified by
the negation check can produce reasonable results:
about 78% F-measure for sentiment detection (see
4.1.1) and almost 70% F-measure for sentiment
polarity identification (see 4.2.1) in the context
of domain-independent opinionated information re-
trieval. However, since the test corpus is very small
the results obtained need further validation on bigger
corpora.

The use of the dictionary as a training corpus
helped to avoid domain-dependency, however, using
a dictionary as a training corpus makes it impossible
to obtain grammar information by means of analysis
of punctuation marks and grammar word frequen-
cies.

More intensive use of context information could
improve the accuracy. The dictionary-based pro-
cessing may benefit from the use of word relations
information: some words have sentiment informa-
tion only when used with others. For example,
a noundongxi (‘a thing’) does not seem to have
any sentiment information on its own, although it
is tagged as ‘negative’ in the dictionary.

Some manual filtering of the dictionary may im-
prove the output. It might also be promising to test
the influence on performance of the different classes
of words in the dictionary, for example, to use only
adjectives or adjectives and nouns together (exclud-
ing adverbials).

Another technique to be tested is computing the

41

positive and negative scores for the characters used
only in one class, but absent in another. In the cur-
rent system, characters are assigned only one score
(for the class they are present in). It might improve
accuracy if such characters have an appropriate neg-
ative score for the other class.

Finally, the average sentiment score may be used
for sentiment scaling. For example, if in our exper-
iments items with a score less than 1.6 were con-
sidered not to be opinionated, then ones with score
more than 1.6 can be put on a scale where higher
scores are interpreted as evidence for higher senti-
ment intensity (the highest score was 52). The “scal-
ing” approach could help to avoid the problem of as-
signing documents to more than one sentiment cate-
gory as the approach uses a continuous scale rather
than a predefined number of rigid classes. The scale
(or the scores directly) may be used as a means of
indexing for a search engine comprising OIR func-
tionality.

References

Kushal Dave, Steve Lawrence, and David M. Pennock.
2003. Mining the peanut gallery: Opinion extraction
and semantic classification of product reviews. InPro-
ceedings of the International World Wide Web Con-
ference, pages 519 – 528, Budapest, Hungary. ACM
Press.

Koji Eguchi and Victor Lavrenko. 2006. Sentiment re-
trieval using generative models. InProceedings of
the 2006 Conference on Empirical Methods in Natural
Language Processing (EMNLP 2006), pages 345–354,
Sydney, July.

Brian Eriksson. 2006. Sentiment classifica-
tion of movie reviews using linguistic parsing.
http://www.cs.wisc.edu/∼apirak/cs/cs838/
erikssonfinal.pdf.

Soo-Min Kim and Eduard H. Hovy. 2004. Determin-
ing the sentiment of opinions. InProceedings of
COLING-04, pages 1367–1373, Geneva, Switzerland,
August 23-27.

Lun-Wei Ku, Yu-Ting Liang, and Hsin-Hsi Chen. 2006a.
Opinion extraction, summarization and tracking in
news and blog corpora. InProceedings of AAAI-2006
Spring Symposium on Computational Approaches to
Analyzing Weblogs, volume AAAI Technical Report,
pages 100–107, March.

Lun-Wei Ku, Yu-Ting Liang, and Hsin-Hsi Chen. 2006b.
Tagging heterogeneous evaluation corpora for opin-

ionated tasks. InProceedings of the Fifth International
Conference on Language Resources and Evaluation,
pages 667–670, Genoa, Italy, May.

Wei Li. 2000. On Chinese parsing without using a sep-
arate word segmenter.Communication of COLIPS,
10:17–67.

Jian-Yun Nie, Jiangfeng Gao, Jian Zhang, and Ming
Zhou. 2000. On the use of words and n-grams
for Chinese information retrieval. InProceedings of
the 5th International Workshop Information Retrieval
with Asian Languages, pages 141–148. ACM Press,
November.

Bo Pang and Lillian Lee. 2004. A sentimental education:
Sentiment analysis using subjectivity summarization
based on minimum cuts. InProceedings of the 42nd
Annual Meeting of the Association for Computational
Linguistics, pages 271–278, Barcelona, Spain.

Bo Pang, Lillian Lee, and Shivakumar Vaithyanathan.
2002. Thumbs up? Sentiment classification using ma-
chine learning techniques. InProceedings of the 2002
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 79–86, University of Penn-
sylvania.

Peter D. Turney. 2002. Thumbs up or thumbs down?
Semantic orientation applied to unsupervised classifi-
cation of reviews. InProceedings of the 40th Annual
Meeting of the Association for Computational Linguis-
tics (ACL’02), pages 417–424, Philadelphia, Pennsyl-
vania.

42

Proceedings of the ACL 2007 Student Research Workshop, pages 43–48,
Prague, June 2007. c©2007 Association for Computational Linguistics

Limitations of Current Grammar Induction Algorithms

Bart Cramer
School of Behavioral and Cognitive Neurosciences

University of Groningen
Groningen, the Netherlands

bart.cramer@gmail.com

Abstract

I review a number of grammar induction
algorithms (ABL, Emile, Adios), and test
them on the Eindhoven corpus, resulting in
disappointing results, compared to the usu-
ally tested corpora (ATIS, OVIS). Also, I
show that using neither POS-tags induced
from Biemann’s unsupervised POS-tagging
algorithm nor hand-corrected POS-tags as
input improves this situation. Last, I argue
for the development of entirely incremental
grammar induction algorithms instead of the
approaches of the systems discussed before.

1 Introduction

Grammar induction is a task within the field of nat-
ural language processing that attempts to construct a
grammar of a given language solely on the basis of
positive examples of this language. If a successful
method is found, this will have both practical appli-
cations and considerable theoretical implications.

Concerning the practical side, this will make the
engineering of NLP systems easier, especially for
less widely studied languages. One can conceive
successful GI algorithms as an inspiration for sta-
tistical machine translation systems.

Theoretically, grammar induction is important as
well. One of the main assertions in the nativist’s
position is the Poverty of the Stimulus argument,
which means that the child does not perceive enough
positive examples of language throughout his early
youth to have learned the grammar from his parents,
without the help of innate knowledge (or: Universal

Grammar), that severely constrains the number of
hypotheses (i.e. grammars) that he can learn. Proved
more strictly for formal grammars, Gold’s (1967)
work showed that one cannot learn any type of su-
perfinite grammar (e.g. regular languages, context-
free languages), if one only perceives (an unlim-
ited amount of) positive examples. After, say,n ex-
amples, there is always more than 1 grammar that
would be able to explain the seen examples, thus
these grammar might give different judgments on an
n + 1th example, of which it is impossible to say in
advance which judgment is the correct one.

But, given this is true, isn’t the grammar induction
pursuit deemed to fail? Not really. First, there are
hints that children do receive negative information,
and that they use it for grammar acquisition. Also,
the strictness required by Gold is not needed, and an
approximation in the framework of PAC (Probably
Approximately Correct) or VC (Vapnis and Cher-
vonenkis) could then suffice. This, and other argu-
ments favouring the use of machine learning tech-
niques in linguistic theory testing, are very well re-
viewed in Lappin and Shieber (2007).

Several attempts have been made to create such
systems. The authors of these systems reported
promising results on the ATIS and OVIS treebanks. I
tried to replicate these findings on the more compli-
cated Eindhoven treebank, which turned out to yield
disappointing results, even inferior to very simple
baselines. As an attempt to ameliorate this, and as
an attempt to confirm Klein and Manning’s (2002)
and Bod’s (2006) thesis that good enough unsuper-
vised POS-taggers exist to justify using POS-tags
instead of words in evaluating GI systems, I pre-

43

sented the algorithms with both POS-tags that were
induced from Biemann’s unsupervised POS-tagging
algorithm and hand-corrected POS-tags. This did
not lead to improvement.

2 Current Grammar Induction Models

2.1 Algorithms

Grammar induction models can be split up into two
types: tag-based and word-based grammar induc-
tion. The key feature that distinguishes between
these two is the type of input. Tag-based systems
receive part-of-speech tags as their input (i.e. the
words are already labelled), and only induce rules
using the given tags. This kind of work is done
by, for instance, Klein and Manning (2005). On the
other hand, word-based models accept plain text as
its input, and have to extract both the categories and
the syntactic rules from given input.

Recently, several word-based grammar induction
algorithms have been developed: Alignment-Based
Learning (van Zaanen, 2002), Adios (Solan et al.,
2005), Emile (Adriaans, 1992; Adriaans and Ver-
voort, 2002) and GraSp1 (Henrichsen, 2002). Al-
though the means of computation and underlying
aims differ, they all rely to a certain extent on Har-
ris’ principle (1951): if two word groups constitute
the same category, then they can be interchanged in
any sentence, without damaging the grammaticality
of that sentence. Hence, these GI system depend on
the inverse: if two word groups appear to occur in
the same contexts, they probably possess the same
syntactic characteristics.

The most prominent example of this principle is
Alignment-Based Learning, or ABL, (van Zaanen,
2002). This algorithm consists of two stages. First,
all sentences are aligned such that it finds a shared
and a distinct part of all pairs of sentences, sug-
gesting that the distinct parts have the same type.
For example, consider the pair ‘I saw the man’ and
‘I saw John’. Here, ’John’ and ’the man’ are cor-
rectly identified as examples of the same type (NP’s
in this case). The second step, that takes the same
corpus as input, tries to identify the constituents in
that sentence. Because the generated constituents
found in the previous step might overlap, the correct

1As there was no current working version of this system, I
did not include it in this project.

John
(.)

Pat
(.)

Jim
(.)

walks x x
talks x x
smiles x x

Table 1: An example of some context/expression
pairs to show the workings of EMILE. Note that, un-
der standard settings, a rule covering this entire table
will be inferred, causing a phrase like ‘John talks’ to
be accepted, although there was no such input sen-
tence.

ones have to be selected. Simple heuristics are used
to achieve this, for example to take the constituent
that was generated first (ABL-first) or to take the
constituent with the highest score on some proba-
bilistic function (ABL-leaf). For details, I refer to
van Zaanen (2000). Because ABL compares all sen-
tences in the corpus with all other sentences, the al-
gorithm is quadratic in the number of sentences, but
has low memory demands. Interestingly, ABL does
not come up with an explicit grammar, but generates
just a bracketed version of the corpus instead.

Adios (Solan et al., 2005) uses Harris’ principle
as well, although it attempts to create a grammar
(either context-free or context-sensitive) more ex-
plicitly. The algorithm represents language as a di-
rected pseudograph2, with equivalence classes(ini-
tially single words) as nodes. Input sentences can
be regarded as ‘snakes’ over the nodes in the graph.
If enough support is found, words are merged into
equivalence classes, or frequently occurring edges
are put in apath(a rule in usual grammatical terms).
This generalisation process is done iteratively, until
convergence is reached.

Emile (Adriaans, 1992; Adriaans and Vervoort,
2002) is the system that to a greater extent tries to
pinpoint its reasons to accept a linguistic hypothe-
sis. Each rule is divided intoexpressionsandtypes,
where types should be the interchangeable part of
two sentences. Instead of explicitly comparing each
sentence with all other sentences, it incrementally
builds up a table of type/expression pairs, and on the
basis of this table rules are extracted. An example is
given in table 1. This incrementality has two major

2This is a graph that allows for loops and multiple edges.

44

consequences: it makes the system vastly more effi-
cient in terms of time, at the cost of rising memory
demands, and it models time linearly, in contrast to
ABL and Adios.

2.2 Evaluation

Different methods of evaluation are used in GI. One
of them is visual inspection (Henrichsen, 2002).
This is not a reproducible and independent evalua-
tion measure, and it does certainly not suffice as an
assessment of the quality of the results. However,
Roberts and Atwell (2003) argue that this evaluation
should still be included in GI discussions.

A second evaluation method is shown by Solan
et al. (2005), in which Adios had to carry out a test
that is available on the Internet: English as a Second
Language (ESL). This test shows three sentences, of
which the examinee has to say which sentence is the
grammatical one. Adios answers around 60% cor-
rect on these questions, which is considered as inter-
mediate for a person who has had 6 years of English
lessons. Although this sounds impressive, no exam-
ples of test sentences are given, and the website is
not available anymore, so we are not able to assess
this result.

A third option is to have sentences generated by
the induced grammar judged on their naturalness,
and compare this average with the average of the
sentences of the original corpus. Solan et al. (2005)
showed that the judgments of Adios generated sen-
tences were comparable to the sentences in their cor-
pus. However, the algorithm might just generates
overly simple utterances, and will receive relatively
high scores that it doesn’t deserve.

The last option for evaluation is to compare the
parses with hand-annotated treebanks. This gives
the most quantifiable and detailed view on the per-
formance of a GI system. An interesting compara-
tive study between Emile and ABL using this eval-
uation method is available in van Zaanen and Adri-
aans (2001) where F-scores of 41.4% (Emile) and
61.7% (ABL) are reported on the OVIS (Openbaar
Vervoer Informatie Systeem3; Dutch) corpus, and
25.4% and 39.2% on the ATIS (Air Traffic Informa-
tion System; English) corpus.

3This acronym means Public Transport Information System.

3 Experiment 1

3.1 Motivation

A major choice in evaluating GI systems is to decide
which corpus to train the algorithm on. The cre-
ators of ABL and Emile chose to test on the ATIS
and OVIS corpus, which is, I believe, an unfortu-
nate choice. These corpora contain sentences that
are spoken to a computer, and represent a very lim-
ited subset of language. Deep recursion, one of the
aspects that is hard to catch in grammar induction,
does not occur often. The average sentence lengths
are 7.5 (ATIS) and 4.4 (OVIS). If we want to know
whether a system is truly capable of bootstrapping
knowledge about language, there is only one way to
test it: by using natural language that is unlimited
in its expressive power. Therefore, I will test ABL,
Adios and Emile on the Eindhoven corpus, that con-
tains 7K sentences, with an average length of ap-
proximately 20 tokens. This is, as far as I know, the
first attempt to train and test word-based GI algo-
rithms on such a complicated corpus.

3.2 Method

The Eindhoven corpus has been automatically anno-
tated by Alpino (Bouma et al., 2000; van der Beek
et al., 2002), a wide-coverage hand-written parser
for Dutch, with around 90% dependency triple ac-
curacy. Afterwards, this treebank has been manu-
ally corrected. The treebank does not literally con-
tain trees, but graphs: some nodes can be copied, so
that linguistic structure can be analyzed in more de-
tail. However, by removing all double nodes it is still
possible to retrieve a list of bracket-tuples from these
graphs. The graphs are also non-concatenative,
meaning that a constituent can span word groups that
are not contiguous. Therefore, if a sentence contains
a constituentwi...wjwk...wl, with k − j > 1, three
bracket-tuples are generated:(i, j), (k, l) and(i, l).

Evaluation of the algorithm is done according to
PARSEVAL, except for a few changes that are also
proposed by Klein and Manning (2002). The set of
bracket-pairs that is found in the Alpino treebank
are calledfacts, and those from a grammar induc-
tion algorithmpredictions. The intersection of the
facts and predictions are calledhits. From these we
can compute the unlabeled precision, recall and F-
score. The subtleties adopted from Klein and Man-

45

ning are the following: constituents of length 0 or 1,
constituents that span the whole sentence and con-
stituents just excluding punctuation are not taken
into account, as these are obvious predictions.

Three baselines were created: an algorithm that
always branches left4, idem for right-branching and
an algorithm that performs binary branching on ran-
dom points in the sentence. Note that left-branching
and right-branching yield the maximum number of
predictions.

3.3 Results

From the results in table 2, it can be seen that ABL
scores best: it is the only one that is able to slightly
outperform the random baseline. This is surpris-
ing, because it is the least complicated system of the
three. Adios and Emile performed poorly. It ap-
pears that, with larger sentences, the search space
become too sparse to actually induce any meaning-
ful structure. This is expressed in the low number of
predictions per sentence that Adios (1.5) and Emile
(0.7) make. Adjusting support parameters, to make
the algorithm accept more hypotheses, did not have
the intended effect. Still, notice that Emile has a rel-
atively high precision.

In sum, none of the systems is convincingly able
to outperform the very simple baselines. Neither
did visual inspection give the impression that mean-
ingful information was derived. Therefore, it can
be concluded that current word-based GI algorithms
are not equipped to derive syntactic structure from
corpora as complicated as the Eindhoven corpus.

4 Experiment 2

4.1 Motivation

The second experiment deals with the difference
between tag-based and word-based systems. Intu-
itively, the latter task seems to be more challenging.
Still, Klein and Manning (2002) and Bod (2006)
stick to tag-based models. Their argumentation is
twofold.

First, Bod assumes that unsupervised POS-
tagging can be done successfully, without explic-
itly showing results that can confirm this. Klein
and Manning did tag their text using a simple un-
supervised POS-tagging algorithm, and this mod-

4For example: [[[I saw] the] large] house.

erately harmed their performance: their Context-
Constituent Model’s F-score on Wall Street Journal
text fell from 71.1% to 63.2%.

Second, Klein and Manning created context vec-
tors for a number of non-terminals (NP, VP, PP), and
extracted the two principal components from these
vectors. They did the same with contexts of con-
stituents and distituents. The distribution of these
vectors suggest that the non-terminals were easier
to distinguish from each other than the constituents
from the distituents, suggesting that POS-tagging is
easier than finding syntactic rules. However, this
result would be more convincing if this is true for
POS-tags as well.

4.2 Method

In order to test the argument above, and as an at-
tempt to improve the results from the previous ex-
periment, POS-tags were induced using Biemann’s
unsupervised POS-tagger (Biemann, 2006). Be-
cause that algorithm needs at least 50M words to
work reliably, it was trained on the concatenation of
the Eindhoven corpus and the CLEF corpus (70M
words, also newspaper text). The tags of the Eind-
hoven corpus are then used as input for the GI al-
gorithms, both under same settings as experiment 1.
The evaluation was done the same way as in experi-
ment 1.

The same method was carried out using hand-
corrected tags. Large and equal improvements will
imply the justification for tag-based grammar in-
duction. If the models only improve on the hand-
corrected tags, this will suggest the opposite.

4.3 Results

The results can be found in table 3. Generally, more
predictions were made with respect to experiment 1,
due to the denser search space. Only a convergence
to the baseline was achieved, especially by Adios
and Emile, that were very low in predictions in the
first experiment. Again, none of the tested systems
was able to clearly outperform the baselines.

Because using neither induced nor hand-corrected
made the systems work more reliably, there seems to
be no strong evidence in favor or against Bod’s and
Klein and Manning’s conjecture. Therefore, there is
no sound justification for tag-based grammar induc-
tion yet.

46

Method Hits/Predictions Precision Recall F-score
Left 5.8K / 119K 4.9% 9.2% 6.4%
Right 4.4K / 119K 3.6% 6.9% 4.8%
Random 11K / 93K 11.7% 17.3% 14.0%
ABL-leaf 4.0K / 24K 16.9% 6.4% 9.3%
ABL-first 13K / 113K 11.6% 20.8% 14.9%
Adios 319 / 11K 2.8% 0.5% 0.9%
Emile 912 / 5.2K 17.3% 1.5% 2.7%

Table 2: This table shows the results of experiment 1. Left, Right and Random are baseline scores. The two
variants of ABL differ in the selection phase. 62.9K facts were found in the Alpino treebank.

Induced tags Hand-corrected tags
Method Hits/Pred.’s Precision Recall F-score Hits/Pred.’s Precision Recall F-score
ABL-leaf 5K / 30K 16.8% 8.1% 10.9% 7.0K / 34K 21.0% 11.2% 14.6%
ABL-first 11K / 125K 9.2% 18.2% 12.2% 12.6K / 123K 10.3% 20.0% 13.6%
Adios 2.7K / 24K 11.2% 4.3% 6.3% 2.2K / 20K 11.0% 3.5% 5.3%
Emile 1.8K / 16K 11.2% 2.9% 4.6% 1.7K / 19K 8.9% 2.7% 4.1%

Table 3: This table shows the results of experiment 2. The baseline scores are identical to the ones in
experiment 1.

5 Discussion

The results from experiment 1 and 2 clearly show
that ABL, Adios and Emile have severe shortcom-
ings, and that they cannot derive meaningful struc-
ture from language as complicated as the Eindhoven
corpus. An important reason for this is that a cor-
pus with only 7K sentences is not able to sufficiently
cover the search space. This can be seen from the
very low number of predictions made by Adios and
Emile: there was not enough support to accept hy-
potheses.

But how should we proceed? Any algorithm
based solely on Harris’ principle can be either incre-
mental (Emile) or non-incremental (ABL, Adios).
The previous experiments show that very large cor-
pora are needed to mitigate the very sparse search
space, leading me to conclude that non-incremental
systems are not suitable for the problem of gram-
mar induction. Also, incremental systems have the
advantage of an intuitive notion of time: it is al-
ways clear which working hypothesis of a grammar
is maintained.

Emile retains a Boolean table with all combina-
tions of types and expressions it has encountered up
until a given moment. This means that very infre-

quent words demand a disproportionally large part
of the memory. Therefore, all found words and rules
should be divided into three groups: pivotal, nor-
mal and infrequent. Initially, all encountered words
are infrequent. Transitions to the normal and piv-
otal stage occur when an estimator of the relative
frequency is high enough, for example by taking the
lower bound of the confidence interval (Mikheev,
1997). Ultimately, the number of words in the nor-
mal and pivotal stage will converge to a constant.
For example, if the relative frequency of a word
should be larger than 0.01 to become pivotal, there
can only be 100 of these words. Because one can
define upper limits for pivotal and normal words,
the size of the bookkeeping table is limited as well.
Also, when the system starts inducing syntactic cate-
gories of words, very infrequent words should not be
parsed as a separate category initially, but as a mem-
ber of another open-class category. This connects to
the cross-linguistic tendency that infrequent words
generally have simple complementation patterns.

One very important question remains: what in-
tuitions should this imaginary system use to induce
rules? First, all sentences should be sorted by length.
Then, for each sentence, the following steps are
taken:

47

• Update the bookkeeping tables.

• Parse the sentence as deeply as possible.

• If the sentence cannot be parsed completely,
induce all possible rules that would make the
parse complete. Add all these rules to the book-
keeping tables.

The last step deserves some extra attention. If
the algorithm encounters the sentence ‘he is such a
(.)’, we can safely infer that the unknown word at
(.) is a noun. Inducing complementation patterns
should be possible as well. Imagine that the algo-
rithm understands NP’s and transitive verbs. Then
consider the following: ‘John gave Tim a book’.
It will parse ‘John gave Tim’ as a sentence, and ‘a
book’ as a noun phrase. Because these two should
be connected, a number of hypotheses are generated,
for example: ‘a book’ is a complement of ‘Tim’; ‘a
book’ is a complement of ‘John gave Tim’; ‘a book’
is a second complement of ‘gave’. Naturally, only
the last hypothesis is correct. All three inductions
are included, but only the last is likely to be repro-
duced in later sentences in the corpus, because sen-
tences of the form ‘(.) gave (.) (.)’ are more likely
than ‘John gave Tim (.)’ and ‘Tim (.)’.

6 Acknowledgments

I would like to thank Jennifer Spenader, Gertjan van
Noord and the anonymous reviewers for providing
me their invaluable comments.

References

Pieter W. Adriaans and Mark R. Vervoort. 2002. The
EMILE 4.1 grammar induction toolbox. InProceed-
ings of the 6th International Colloquium on Gram-
mar Induction (ICGI), pages 293–295, Amsterdam,
the Netherlands.

Pieter W. Adriaans. 1992.Language learning from a cat-
egorial perspective. Ph.D. thesis, University of Ams-
terdam, NL.

Chris Biemann. 2006. Unsupervised part-of-speech tag-
ging employing efficient graph clustering. InProceed-
ings of ACL/COLING-2006 Students Research Work-
shop, pages 7–12, Sydney, Australia.

Rens Bod. 2006. An all-subtrees approach to unsuper-
vised parsing. InProceedings of ACL/COLING-2006,
pages 865–872, Sydney, Australia.

Gosse Bouma, Gertjan van Noord, and Robert Malouf.
2000. Alpino: wide-coverage computational analysis
of Dutch. InProceedings of Computational Linguis-
tics in the Netherlands (CLIN), pages 45–59, Tilburg,
the Netherlands.

E. Mark Gold. 1967. Language identification in the
limit. Information and Control, 16:447–474.

Zellig S. Harris. 1951.Methods in Structural Linguis-
tics. University of Chicago Press, Chicago.

Peter J. Henrichsen. 2002. GraSp: Grammar learning
from unlabelled speech corpora. InProceedings of
CoNLL-2002, pages 22–28, Pennsylvania, PA, USA.

Dan Klein and Christopher D. Manning. 2002. A gener-
ative Constituent-Context Model for improved gram-
mar induction. InProceedings of ACL-2001, pages
128–135, Toulouse, France.

Dan Klein and Christopher D. Manning. 2005. Nat-
ural language grammar induction with a genera-
tive constituent-context model.Pattern Recognition,
9(38):1407–1419.

Shalom Lappin and Stuart M. Shieber. 2007. Machine
learning theory and practice as a source of insight into
universal grammar.Computational Linguistics, 43:1–
34.

Andrei Mikheev. 1997. Automatic rule induction for
unknown-word guessing.Computational Linguistics,
23(3):405–423.

Andrew Roberts and Eric Atwell. 2003. The use of cor-
pora for automatic evaluation of grammar inference
systems. InProceedings of the Corpus Linguistics
2003 conference, pages 657–661, Lancaster, United
Kingdom.

Zach Solan, David Horn, Eytan Ruppin, and Shimon
Edelman. 2005. Unsupervised learning of natural lan-
guages.Proceedings of the National Academy of Sci-
ences, 102(33):11629–11634.

Leonoor van der Beek, Gosse Bouma, Robert Malouf,
and Gertjan van Noord. 2002. The Alpino depen-
dency treebank. InProceedings of Computational Lin-
guistics in the Netherlands (CLIN) 2001, pages 8–22,
Enschede, the Netherlands.

Menno van Zaanen and Pieter W. Adriaans. 2001.
Alignment-Based Learning versus EMILE: A compar-
ison. InProceedings of the 13th Dutch-Belgian Artifi-
cial Intelligence Conference (BNAIC), pages 315–322,
Amsterdam, the Netherlands.

Menno van Zaanen. 2002. Implementing Alignment-
Based Learning. InProceedings of the 6th Interna-
tional Colloquium on Grammatical Inference (ICGI),
pages 312–314, Amsterdam, the Netherlands.

48

Proceedings of the ACL 2007 Student Research Workshop, pages 49–54,
Prague, June 2007. c©2007 Association for Computational Linguistics

Logistic Online Learning Methods and Their Application to
Incremental Dependency Parsing

Richard Johansson

Department of Computer Science

Lund University

Lund, Sweden

richard@cs.lth.se

Abstract

We investigate a family of update methods

for online machine learning algorithms for

cost-sensitive multiclass and structured clas-

sification problems. The update rules are

based on multinomial logistic models. The

most interesting question for such an ap-

proach is how to integrate the cost function

into the learning paradigm. We propose a

number of solutions to this problem.

To demonstrate the applicability of the al-

gorithms, we evaluated them on a number

of classification tasks related to incremental

dependency parsing. These tasks were con-

ventional multiclass classification, hiearchi-

cal classification, and a structured classifica-

tion task: complete labeled dependency tree

prediction. The performance figures of the

logistic algorithms range from slightly lower

to slightly higher than margin-based online

algorithms.

1 Introduction

Natural language consists of complex structures,

such as sequences of phonemes, parse trees, and dis-

course or temporal graphs. Researchers in NLP have

started to realize that this complexity should be re-

flected in their statistical models. This intuition has

spurred a growing interest of related research in the

machine learning community, which in turn has led

to improved results in a wide range of applications

in NLP, including sequence labeling (Lafferty et al.,

2001; Taskar et al., 2006), constituent and depen-

dency parsing (Collins and Duffy, 2002; McDon-

ald et al., 2005), and logical form extraction (Zettle-

moyer and Collins, 2005).

Machine learning research for structured prob-

lems have generally used margin-based formula-

tions. These include global batch methods such as

Max-margin Markov Networks (M3N) (Taskar et al.,

2006) and SVMstruct (Tsochantaridis et al., 2005)

as well as online methods such as Margin Infused

Relaxed Algorithm (MIRA) (Crammer and Singer,

2003) and the Online Passive-Aggressive Algorithm

(OPA) (Crammer et al., 2006). Although the batch

methods are formulated very elegantly, they do not

seem to scale well to the large training sets prevalent

in NLP contexts. The online methods on the other

hand, although less theoretically appealing, can han-

dle realistically sized data sets.

In this work, we investigate whether logistic

online learning performs as well as margin-based

methods. Logistic models are easily extended to us-

ing kernels; that this is theoretically well-justified

was shown by Zhu and Hastie (2005), who also

made an elegant argument that margin-based meth-

ods are in fact related to regularized logistic models.

For batch learning, there exist several learning algo-

rithms in a logistic framework for conventional mul-

ticlass classification but few for structured problems.

Prediction of complex structures is conventionally

treated as a cost-sensitive multiclass classification

problem, although special care has to be taken to

handle the large space of possible outputs. The in-

tegration of the cost function into the logistic frame-

work leads to two distinct (although related) update

methods: the Scaled Prior Variance (SPV) and the

Minimum Expected Cost (MEC) updates.

Apart from its use in structured prediction, cost-

sensitive classification is useful for hierachical clas-

sification, which we briefly consider here in an ex-

periment. This type of classification has useful ap-

49

plications in NLP. Apart from the obvious use in

classification of concepts in an ontology, it is also

useful for prediction of complex morphological or

named-entity tags. Cost-sensitive learning is also

required in the SEARN algorithm (Daumé III et al.,

2006), which is a method to decompose the predic-

tion problem of a complex structure into a sequence

of actions, and train the search in the space of action

sequences to maximize global performance.

2 Algorithm

Wemodel the learning problem as finding a discrim-

inant function F that assigns a score to each possible

output y given an input x. Classification in this set-

ting is done by finding the ŷ that maximizes F (x, y).
In this work, we consider linear discriminants of the

following form:

F (x, y) = 〈w,Ψ(x, y)〉

Here,Ψ(x, y) is a numeric feature representation of
the pair (x, y) and w a vector of feature weights.

Learning in this case is equivalent to assigning ap-

propriate weights in the vector w.

In the online learning framework, the weight vec-

tor is constructed incrementally. Algorithm 1 shows

the general form of the algorithm. It proceeds a

number of times through the training set. In each

step, it computes an update to the weight vector

based on the current example. The resulting weight

vector tends to be overfit to the last few examples;

one way to reduce overfitting is to use the average

of all successive weight vectors as the result of the

training (Freund and Schapire, 1999).

Algorithm 1 General form of online algorithms

input Training set T = {(xt, yt)}Tt=1

Number of iterations N

for n in 1..N
for (xt, yt) in T
Compute update vector δw for (xt, yt)
w ← w + δw

return waverage

Following earlier online learning methods such as

the Perceptron, we assume that in each update step,

we adjust the weight vector by incrementally adding

feature vectors. For stability, we impose the con-

straint that the sum of the updates in each step should

be zero. We assume that the possible output values

are {yi}
m
i=0 and, for convenience, that y0 is the cor-

rect value. This leads to the following ansatz:

δw =

m∑

j=1

αj(Ψ(x, y0)−Ψ(x, yj))

Here, αj defines how much F is shifted to favor y0

instead of yj . This is also the approach (implicitly)

used by other algorithms such as MIRA and OPA.

The following two subsections present two ways

of creating the weight update δw, differing in how

the cost function is integrated into the model. Both

are based on a multinomial logistic framework,

where we model the probability of the class y being

assigned to an input x using a “soft-max” function

as follows:

P (y|x) =
eF (x,y)

∑m
j=0 e

F (x,yj)

2.1 Scaled Prior Variance Approach

The first update method, Scaled Prior Variance

(SPV), directly uses the probability of the correct

output. It uses a maximum a posteriori approach,

where the cost function is used by the prior.

Naïvely, the update could be done by maximizing

the likelihood with respect to α in each step. How-

ever, this would lead to overfitting – in the case of

separability, a maximum does not even exist. We

thus introduce a regularizing prior that penalizes

large values ofα. We introduce variance-controlling

hyperparameters sj for each αj , and with a Gaussian

prior we obtain (disregarding constants) the follow-

ing log posterior:

L(α) =

m∑

j=1

αj(K00 −Kj0)−
m∑

j=1

sjα
2
j

− log
m∑

k=0

efk+
Pm

j=1
αj(K0k−Kjk)

where Kij = 〈Ψ(x, yi),Ψ(x, yj)〉 and fk =
F (x, yk) (i.e. the output before w is updated).

As usual, the feature vectors occur only in inner

products, allowing us to use kernels if appropriate.

50

We could have used any prior; however, in prac-

tice we will require it to be log-concave to avoid

suboptimal local maxima. A Laplacian prior (i.e.

−
∑m

j=1 sj|αj |) will also be considered in this work
– the discontinuity of its gradient at the origin seems

to pose no problem in practice.

Costs are incorporated into the model by as-

sociating them to the prior variances. We tried

two variants of variance scaling. In the first case,

we let the variance be directly proportional to the

cost (C-SPV):

sj =
γ

c(yj)

where γ is a tradeoff parameter controlling the rel-

ative weight of the prior with respect to the likeli-

hood. Intuitively, this model allows the algorithm

more freedom to adjust an αj associated with a yj

with a high cost.

In the second case, inspired by margin-based

learning we instead scaled the variance by the loss,

i.e. the scoring error plus the cost (L-SPV):

sj =
γ

max(0, fj − f0) + c(yj)

Here, the intuition is instead that the algorithm is

allowed more freedom for “dangerous” outputs that

are ranked high but have high costs.

2.2 Minimum Expected Cost Approach

In the second approach to integrating the cost func-

tion, the Minimum Expected Cost (MEC) update,

the method seeks to minimize the expected cost in

each step. Once again using the soft-max probabil-

ity, we get the following expectation of the cost:

E(c(y)|x) =
m∑

k=0

c(yk)P (yk|x)

=

∑m
k=0 c(yk)e

fk+
Pm

j=1
αj(K0k−Kjk)

∑m
k=0 e

fk+
Pm

j=1
αj(K0k−Kjk)

This quantity is easily minimized in the same way

as the SPV posterior was maximized, although

we had to add a constant 1 to the expectation to
avoid numerical instability. To avoid overfitting, we

added a quadratic regularizer γ
∑m

j=1 α
2
j to log(1 +

E(c(y)|x)) just like the prior in the SPV method,

although this regularizer does not have an interpre-

tation as a prior.

The MEC update is closely related to SPV: for

cost-insensitive classification (i.e. the cost of every

misclassified instance is 1), the expectation is equal
to one minus the likelihood in the SPV model.

2.3 Handling Complex Prediction Problems

The algorithm can thus be used for any cost-

sensitive classification problem. This class of prob-

lems includes prediction of complex structures such

as trees or graphs. However, for those problems the

set of possible outputs is typically very large. Two

broad categories of solutions to this problem have

been common in literature, both of which rely on

the structure of the domain:

• Subset selection: instead of working with the
complete range of outputs, only an “interest-

ing” subset is used, for instance by repeatedly

finding the most violated constraints (Tsochan-

taridis et al., 2005) or by using N -best search

(McDonald et al., 2005).

• Decomposition: the inherent structure of the
problem is used to factorize the optimiza-

tion problem. Examples include Markov de-

compositions in M3N (Taskar et al., 2006)

and dependency-based factorization for MIRA

(McDonald et al., 2005).

In principle, both methods could be used in our

framework. In this work, we use subset selec-

tion since it is easy to implement for many do-

mains (in the form of an N -best search) and al-

lows a looser coupling between the domain and the

learning algorithm.

2.4 Implementation Issues

Since we typically work with only a few variables in

each iteration, maximizing the log posterior or mini-

mizing the expectation is easy (assuming, of course,

that we chose a log-concave prior). We used gra-

dient ascent and did not try to use more sophisti-

cated optimization procedures like BFGS or New-

ton’s method. Typically, only a few iterations were

needed to reach the optimum. The running time of

the update step is almost identical to that of MIRA,

which solves a small quadratic program in each step,

but longer than for the Perceptron algorithm or OPA.

51

Actions Parser actions Conditions

Initialize (nil,W, ∅)
Terminate (S, nil, A)
Left-arc (n|S, n′|I,A)→ (S, n′|I,A ∪ {(n′, n)}) ¬∃n′′(n′′, n) ∈ A
Right-arc (n|S, n′|I,A)→ (n′|n|S, I,A ∪ {(n, n′)}) ¬∃n′′(n′′, n′) ∈ A
Reduce (n|S, I,A)→ (S, I,A) ∃n′(n′, n) ∈ A
Shift (S, n|I,A)→ (n|S, I,A)

Table 1: Nivre’s parser transitions where W is the initial word list; I , the current input word list; A, the

graph of dependencies; and S, the stack. (n′, n) denotes a dependency relations between n′ and n, where n′

is the head and n the dependent.

3 Experiments

To compare the logistic online algorithms against

other learning algorithms, we performed a set of ex-

periments in incremental dependency parsing using

the Nivre algorithm (Nivre, 2003).

The algorithm is a variant of the shift–reduce al-

gorithm and creates a projective and acyclic graph.

As with the regular shift–reduce, it uses a stack S

and a list of input words W , and builds the parse

tree incrementally using a set of parsing actions (see

Table 1). However, instead of finding constituents,

it builds a set of arcs representing the graph of de-

pendencies. It can be shown that every projective

dependency graph can be produced by a sequence

of parser actions, and that the worst-case number of

actions is linear with respect to the number of words

in the sentence.

3.1 Multiclass Classification

In the first experiment, we trained multiclass clas-

sifiers to choose an action in a given parser state

(see (Nivre, 2003) for a description of the feature

set). We stress that this is true multiclass classifica-

tion rather than a decomposed method (such as one-

versus-all or pairwise binarization).

As a training set, we randomly selected 50,000

instances of state–action pairs generated for a

dependency-converted version of Penn Treebank.

This training set contained 22 types of actions (such

as SHIFT, REDUCE, LEFT-ARC(SUBJECT), and

RIGHT-ARC(OBJECT). The test set was also ran-

domly selected and contained 10,000 instances.

We trained classifiers using the logistic updates

(C-SPV, L-SPV, and MEC) with Gaussian and

Laplacian priors. Additionally, we trained OPA

and MIRA classifiers, as well as an Additive Ultra-

conservative (AU) classifier (Crammer and Singer,

2003), a variant of the Perceptron.

For all algorithms, we tried to find the best val-

ues of the respective regularization parameter using

cross-validation. All training algorithms iterated five

times through the training set and used an expanded

quadratic kernel.

Table 2 shows the classification error for all algo-

rithms. As can be seen, the performance was lower

for the logistic algorithms, although the difference

was slight. Both the logistic (MEC and SPV) and

the margin-based classifiers (OPA and MIRA) out-

performed the AU classifier.

Method Test error

MIRA 6.05%
OPA 6.17%
C-SPV, Laplace 6.20%
MEC, Laplace 6.21%
C-SPV, Gauss 6.22%
MEC, Gauss 6.23%
L-SPV, Laplace 6.25%
L-SPV, Gauss 6.26%
AU 6.39%

Table 2: Multiclass classification results.

3.2 Hierarchical Classification

In the second experiment, we used the same train-

ing and test set, but considered the selection of the

parsing action as a hierarchical classficiation task,

i.e. the predicted value has a main type (SHIFT,

REDUCE, LEFT-ARC, and RIGHT-ARC) and possi-

bly also a subtype (such as LEFT-ARC(SUBJECT) or

52

RIGHT-ARC(OBJECT)).

To predict the class in this experiment, we used

the same feature function but a new cost function:

the cost of misclassification was 1 for an incorrect
parsing action, and 0.5 if the action was correct but
the arc label incorrect.

We used the same experimental setup as in the

multiclass experiment. Table 3 shows the average

cost on the test set for all algorithms. Here, the

MEC update outperformed the margin-based ones

by a negligible difference. We did not use AU in

this experiment since it does not optimize for cost.

Method Average cost

MEC, Gauss 0.0573
MEC, Laplace 0.0576
OPA 0.0577
C-SPV, Gauss 0.0582
C-SPV, Laplace 0.0587
MIRA 0.0590
L-SPV, Gauss 0.0590
L-SPV, Laplace 0.0632

Table 3: Hierarchical classification results.

3.3 Prediction of Complex Structures

Finally, we made an experiment in prediction of de-

pendency trees. We created a global model where

the discriminant function was trained to assign high

scores to the correct parse tree. A similar model was

previously used by McDonald et al. (2005), with the

difference that we here represent the parse tree as

a sequence of actions in the incremental algorithm

rather than using the dependency links directly.

For a sentence x and a parse tree y, we defined

the feature representation by finding the sequence

((S1, I1) , a1) , ((S2, I2) , a2) . . . of states and their
corresponding actions, and creating a feature vector

for each state/action pair. The discriminant function

was thus written

〈Ψ(x, y),w〉 =
∑

i

〈ψ((Si, Ii) , ai),w〉

where ψ is the feature function from the previous

two experiments, which assigns a feature vector to a

state (Si, Ii) and the action ai taken in that state.

The cost function was defined as the sum of link

costs, where the link cost was 0 for a correct depen-
dency link with a correct label, 0.5 for a correct link
with an incorrect label, and 1 for an incorrect link.
Since the history-based feature set used in the

parsing algorithm makes it impossible to use inde-

pendence to factorize the scoring function, an exact

search to find the best-scoring action sequence is not

possible. We used a beam search of width 2 in this
experiment.

We trained models on a 5000-word subset of the

Basque Treebank (Aduriz et al., 2003) and evalu-

ated them on a 8000-word subset of the same cor-

pus. As before, we used an expanded quadratic ker-

nel, and all algorithms iterated five times through the

training set.

Table 4 shows the results of this experiment. We

show labeled accuracy instead of cost for ease of in-

terpretation. Here, the loss-based SPV outperformed

Method Labeled Accuracy

L-SPV, Gauss 66.24
MIRA 66.19
MEC, Gauss 65.99
C-SPV, Gauss 65.84
OPA 65.45
MEC, Laplace 64.81
C-SPV, Laplace 64.73
L-SPV, Laplace 64.50

Table 4: Results for dependency tree prediction.

MIRA, and two other logistic updates also outper-

formed OPA. The differences between the first four

scores are however not statistically significant. In-

terestingly, all updates with Laplacian prior resulted

in low performance. The reason for this may be that

Laplacian priors tend to promote sparse solutions

(see Krishnapuram et al. (2005), inter alia), and that

this sparsity is detrimental for this highly lexicalized

feature set.

4 Conclusion and Future Work

This paper presented new update methods for online

machine learning algorithms. The update methods

are based on a multinomial logistic model. Their

performance is on par with other state-of-the-art on-

line learning algorithms for cost-sensitive problems.

53

We investigated two main approaches to integrat-

ing the cost function into the logistic model. In the

first method, the cost was linked to the prior vari-

ances, while in the second method, the update rule

sets the weights to minimize the expected cost. We

tried a few different priors. Which update method

and which prior was the best varied between exper-

iments. For instance, the update where the prior

variances were scaled by the costs was the best-

performing in the multiclass experiment but the

worst-performing in the dependency tree prediction

experiment.

In the SPV update, the cost was incorporated into

the MAP model in a rather ad-hoc fashion. Al-

though this seems to work well, we would like to

investigate this further and possibly devise a cost-

based prior that is both theoretically well-grounded

and performs well in practice.

To achieve a good classification performance us-

ing the updates presented in this article, there is a

considerable need for cross-validation to find the

best value for the regularization parameter. This is

true for most other classification methods as well,

including SVM, MIRA, and OPA. There has been

some work on machine learning methods where this

parameter is tuned automatically (Tipping, 2001),

and a possible extension to our work could be to

adapt those models to the multinomial and cost-

sensitive setting.

We applied the learning models to three problems

in incremental dependency parsing, the last of which

being prediction of full labeled dependency trees.

Our system can be seen as a unification of the two

best-performing parsers presented at the CoNLL-X

Shared Task (Buchholz and Marsi, 2006).

References

Itzair Aduriz, Maria Jesus Aranzabe, Jose Mari Arriola,
Aitziber Atutxa, Arantza Diaz de Ilarraza, Aitzpea
Garmendia, and Maite Oronoz. 2003. Construction
of a Basque dependency treebank. In Proceedings of
the TLT, pages 201–204.

Sabine Buchholz and Erwin Marsi. 2006. CoNLL-X
shared task on multilingual dependency parsing. In
Proceedings of the CoNLL-X.

Michael Collins and Nigel Duffy. 2002. New ranking
algorithms for parsing and tagging: Kernels over dis-

crete structures, and the voted perceptron. In Proceed-
ings of the ACL.

Koby Crammer and Yoram Singer. 2003. Ultraconserva-
tive online algorithms for multiclass problems. Jour-
nal of Machine Learning Research, 2003(3):951–991.

Koby Crammer, Ofer Dekel, Joseph Keshet, Shai Shalev-
Schwartz, and Yoram Singer. 2006. Online passive-
aggressive algorithms. Journal of Machine Learning
Research, 2006(7):551–585.

Hal Daumé III, John Langford, and Daniel Marcu. 2006.
Search-based structured prediction. Submitted.

Yoav Freund and Robert E. Schapire. 1999. Large mar-
gin classification using the perceptron algorithm. Ma-
chine Learning, 37(3):277–296.

Balaji Krishnapuram, Lawrence Carin, Mário A. T.
Figueiredo, and Alexander J. Hartemink. 2005.
Sparse multinomial logistic regression: Fast algo-
rithms and generalization bounds. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 27(6).

John Lafferty, AndrewMcCallum, and Fernando Pereira.
2001. Conditional random fields: Probabilistic mod-
els for segmenting and labeling sequence data. In Pro-
ceedings of the 18th International Conference on Ma-
chine Learning.

Ryan McDonald, Fernando Pereira, Kiril Ribarov, and
Jan Hajič. 2005. Non-projective dependency pars-
ing using spanning tree algorithms. In Proceedings
of HLT-EMNLP-2005.

Joakim Nivre. 2003. An efficient algorithm for projec-
tive dependency parsing. In Proceedings of the 8th In-
ternational Workshop on Parsing Technologies (IWPT
03), pages 149–160, Nancy, France, 23-25 April.

Ben Taskar, Carlos Guestrin, Vassil Chatalbashev, and
Daphne Koller. 2006. Max-margin Markov networks.
Journal of Machine Learning Research, to appear.

Michael E. Tipping. 2001. Sparse Bayesian learning
and the relevance vector machine. Journal of Machine
Learning Research, 1:211 – 244.

Iannis Tsochantaridis, Thorsten Joachims, Thomas Hof-
mann, and Yasemin Altun. 2005. Large margin meth-
ods for structured and interdependent output variables.
Journal of Machine Learning Research, 6(Sep):1453–
1484.

Luke S. Zettlemoyer and Michael Collins. 2005. Learn-
ing to map sentences to logical form: Structured clas-
sification with probabilistic categorial grammars. In
Proceedings of UAI 2005.

Ji Zhu and Trevor Hastie. 2005. Kernel logistic regres-
sion and the import vector machine. Journal of Com-
putational and Graphical Statistics, 14(1):185–205.

54

Proceedings of the ACL 2007 Student Research Workshop, pages 55–60,
Prague, June 2007. c©2007 Association for Computational Linguistics

Adaptive String Distance Measures
for Bilingual Dialect Lexicon Induction

Yves Scherrer
Language Technology Laboratory (LATL)

University of Geneva
1211 Geneva 4, Switzerland

yves.scherrer@lettres.unige.ch

Abstract

This paper compares different measures of
graphemic similarity applied to the task
of bilingual lexicon induction between a
Swiss German dialect and Standard Ger-
man. The measures have been adapted
to this particular language pair by training
stochastic transducers with the Expectation-
Maximisation algorithm or by using hand-
made transduction rules. These adaptive
metrics show up to 11% F-measure improve-
ment over a static metric like Levenshtein
distance.

1 Introduction

Building lexical resources is a very important step in
the development of any natural language processing
system. However, it is a time-consuming and repeti-
tive task, which makes research on automatic induc-
tion of lexicons particularly appealing. In this pa-
per, we will discuss different ways of finding lexical
mappings for a translation lexicon between a Swiss
German dialect and Standard German. The choice
of this language pair has important consequences on
the methodology. On the one hand, given the so-
ciolinguistic conditions of dialect use (diglossia), it
is difficult to find written data of high quality; par-
allel corpora are virtually non-existent. These data
constraints place our work in the context of scarce-
resource language processing. On the other hand,
as the two languages are closely related, the lexical
relations to be induced are less complex. We argue
that this point alleviates the restrictions imposed by
the scarcity of the resources. In particular, we claim
that if two languages are close, even if one of them is

scarcely documented, we can successfully use tech-
niques that require training.

Finding lexical mappings amounts to finding
word pairs that are maximally similar, with respect
to a particular definition of similarity. Similarity
measures can be based on any level of linguistic
analysis: semantic similarity relies on context vec-
tors (Rapp, 1999), while syntactic similarity is based
on the alignment of parallel corpora (Brown et al.,
1993). Our work is based on the assumption that
phonetic (or rather graphemic, as we use written
data) similarity measures are the most appropriate
in the given language context because they require
less sophisticated training data than semantic or syn-
tactic similarity models. However, phonetic simi-
larity measures can only be used for cognate lan-
guage pairs, i.e. language pairs that can be traced
back to a common historical origin and that possess
highly similar linguistic (in particular, phonologi-
cal and morphological) characteristics. Moreover,
we can only expect phonetic similarity measures to
induce cognate word pairs, i.e. word pairs whose
forms and significations are similar, as a result of a
historical relationship.

We will present different models of phonetic sim-
ilarity that are adapted to the given language pair. In
particular, attention has been paid to develop tech-
niques requiring little manually annotated data.

2 Related Work

Our work is inspired by Mann and Yarowsky
(2001). They induce translation lexicons between
a resource-rich language (typically English) and a
scarce resource language of another language fam-
ily (for example, Portuguese) by using a resource-

55

rich bridge language of the same family (for ex-
ample, Spanish). While they rely on existing
translation lexicons for the source-to-bridge step
(English-Spanish), they use string distance models
(called cognate models) for the bridge-to-target step
(Spanish-Portuguese). Mann and Yarowsky (2001)
distinguish between static metrics, which are suffi-
ciently general to be applied to any language pair,
and adaptive metrics, which are adapted to a spe-
cific language pair. The latter allow for much finer-
grained results, but require more work for the adap-
tation. Mann and Yarowsky (2001) use variants of
Levenshtein distance as a static metric, and a Hidden
Markov Model (HMM) and a stochastic transducer
trained with the Expectation-Maximisation (EM) al-
gorithm as adaptive metrics. We will also use Leven-
shtein distance as well as the stochastic transducer,
but not the HMM, which performed worst in Mann
and Yarowsky’s study.

The originality of their approach is that they ap-
ply models used for speech processing to cognate
word pair induction. In particular, they refer to a
previous study by Ristad and Yianilos (1998). Ris-
tad and Yianilos showed how a stochastic transducer
can be trained in a non-supervised manner using the
EM algorithm and successfully applied their model
to the problem of pronunciation recognition (sound-
to-letter conversion). Jansche (2003) reviews their
work in some detail, correcting thereby some errors
in the presentation of the algorithms.

Heeringa et al. (2006) present several modifica-
tions of the Levenshtein distance that approximate
linguistic intuitions better. These models are pre-
sented in the framework of dialectometry, i.e. they
provide numerical measures for the classification of
dialects. However, some of their models can be
adapted to be used in a lexicon induction task. Kon-
drak and Sherif (2006) use phonetic similarity mod-
els for cognate word identification.

Other studies deal with lexicon induction for cog-
nate language pairs and for scarce resource lan-
guages. Rapp (1999) extends an existing bilin-
gual lexicon with the help of non-parallel cor-
pora, assuming that corresponding words share co-
occurrence patterns. His method has been used by
Hwa et al. (2006) to induce a dictionary between
Modern Standard Arabic and the Levantine Arabic
dialect. Although this work involves two closely re-

lated language varieties, graphemic similarity mea-
sures are not used at all. Nevertheless, Schafer and
Yarowsky (2002) have shown that these two tech-
niques can be combined efficiently. They use Rapp’s
co-occurrence vectors in combination with Mann
and Yarowsky’s EM-trained transducer.

3 Two-Stage Models of Lexical Induction

Following the standard statistical machine transla-
tion architecture, we represent the lexicon induction
task as a two-stage model. In the first stage, we use
the source word to generate a fixed number of can-
didate translation strings, according to a transducer
which represents a particular similarity measure. In
the second stage, these candidate strings are filtered
through a lexicon of the target language. Candidates
that are not words of the target language are thus
eliminated.

This article is, like previous work, mostly con-
cerned with the comparison of different similarity
measures. However, we extend previous work by
introducing two original measures (3.3 and 3.4) and
by embedding the measures into the proposed two-
stage framework of lexicon induction.

3.1 Levenshtein Distance
One of the simplest string distance measures is the
Levenshtein distance. According to it, the distance
between two words is defined as the least-cost se-
quence of edit and identity operations. All edit oper-
ations (insertion of one character, substitution of one
character by another, and deletion of one character)
have a fixed cost of 1. The identity operation (keep-
ing one character from the source word in the target
word) has a fixed cost of 0. Levenshtein distance op-
erates on single letters without taking into account
contextual features. It can thus be implemented in
a memoryless (one-state) transducer. This distance
measure is static – it remains the same for all lan-
guage pairs. We will use Levenshtein distance as a
baseline for our experiments.

3.2 Stochastic Transducers Trained with EM
The algorithm presented by Ristad and Yianilos
(1998) enables one to train a memoryless stochastic
transducer with the Expectation-Maximisation (EM)
algorithm. In a stochastic transducer, all transitions
represent probabilities (rather than costs or weights).

56

The transduction probability of a given word pair is
the sum of the probabilities of all paths that gen-
erate it. The goal of using the EM algorithm is to
find the transition probabilities of a stochastic trans-
ducer which maximise the likelihood of generating
the word pairs given in the training stage. This
goal is achieved iteratively by using a training lex-
icon consisting of correct word pairs. The initial
transducer contains uniform probabilities. It is used
to transduce the word pairs of the training lexicon,
thereby counting all transitions used in this process.
Then, the transition probabilities of the transducer
are reestimated according to the frequency of usage
of the transitions counted before. This new trans-
ducer is then used in the next iteration.

This adaptive model is likely to perform better
than the static Levenshtein model. For example, to
transduce Swiss German dialects to Standard Ger-
man, inserting n or e is much more likely than in-
serting m or i. Language-independent models can-
not predict such specific facts, but stochastic trans-
ducers learn them easily. However, these improve-
ments come at a cost: a training bilingual lexicon of
sufficient size must be available. For scarce resource
languages, such lexicons often need to be built man-
ually.

3.3 Training without a Bilingual Corpus

In order to further reduce the data requirements,
we developed another strategy that avoided using a
training bilingual lexicon altogether and used other
resources for the training step instead. The main
idea is to use a simple list of dialect words, and the
Standard German lexicon. In doing this, we assume
that the structure of the lexicon informs us about
which transitions are most frequent. For example,
the dialect word chue ‘cow’ does not appear in the
Standard German lexicon, but similar words like
Kuh ‘cow’, Schuh ‘shoe’, Schule ‘school’, Sache
‘thing’, Kühe ‘cows’ do. Just by inspecting these
most similar existing words, we can conclude that c
may transform to k (Kuh, Kühe), that s is likely to
be inserted (Schuh, Schule, Sache), and that e may
transform to h (Kuh, Schuh). But we also conclude
that none of the letters c, h, u, e is likely to transform
to ö or f, just because such words do not exist in
the target lexicon. While such statements are coinci-
dental for one single word, they may be sufficiently

reliable when induced over a large corpus.
In this model, we use an iterative training algo-

rithm alternating two tasks. The first task is to build
a list of hypothesized word pairs by using the di-
alect word list, the Standard German lexicon, and a
transducer1: for each dialect word, candidate strings
are generated, filtered by the lexicon, and the best
candidate is selected. The second task is to train a
stochastic transducer with EM, as explained above,
on the previously constructed list of word pairs. In
the next iteration, this new transducer is used in the
first task to obtain a more accurate list of word pairs,
which in turn allows us to build a new transducer
in the second task. This process is iterated several
times to gradually eliminate erroneous word pairs.

The most crucial step is the selection of the best
candidate from the list returned by the lexicon filter.
We could simply use the word which obtained the
highest transduction probability. However, prelimi-
nary experiments have shown that the iterative algo-
rithm tends to prefer deletion operations, so that it
will converge to generating single-letter words only
(which turn out to be present in our lexicon). To
avoid this scenario, the length of the suggested can-
didate words must be taken into account. We there-
fore simply selected the longest candidate word.2

3.4 A Rule-based Model
This last model does not use learning algorithms.
It consists of a simple set of transformation rules
that are known to be important for the chosen lan-
guage pair. Marti (1985, 45-64) presents a precise
overview of the phonetic correspondences between
the Bern dialect and Standard German. Contrary
to the learning models, this model is implemented
in a weighted transducer with more than one state.
Therefore, it allows contextual rules too. For ex-
ample, we can state that the Swiss German sequence
üech should be translated to euch. Each rule is given
a weight of 1, no matter how many characters it con-
cerns. The rule set contains about 50 rules. These
rules are then superposed with a Levenshtein trans-
ducer, i.e. with context-free edit and identity opera-

1In the initialization step, we use a Levenshtein transducer.
2In fact, we should select the word with the lowest abso-

lute value of the length difference. The suggested simplification
prevents us from being trapped in the single-letter problem and
reflects the linguistic reality that Standard German words tend
to be longer than dialect words.

57

tions for each letter. These additional transitions as-
sure that every word can be transduced to its target,
even if it does not use any of the language-specific
rules. The identity transformations of the Leven-
shtein part weigh 2, and its edit operations weigh
3. With these values, the rules are always preferred
to the Levenshtein edit operations. These weights
are set somewhat arbitrarily, and further adjustments
could slightly improve the results.

4 Experiments and Results

4.1 Data and Training

Written data is difficult to obtain for Swiss German
dialects. Most available data is in colloquial style
and does not reliably follow orthographic rules. In
order to avoid tackling these additional difficulties,
we chose a dialect literature book written in the Bern
dialect. From this text, a word list was extracted;
each word was manually translated to Standard Ger-
man. Ambiguities were resolved by looking at the
word context, and by preferring the alternatives per-
ceived as most frequent.3 No morphological analy-
sis was performed, so that different inflected forms
of the same lemma may occur in the word list. The
only preprocessing step concerned the elimination
of morpho-phonological variants (sandhi phenom-
ena). The whole list contains 5124 entries. For
the experiments, 393 entries were excluded because
they were foreign language words, proper nouns or
Standard German words.4 From the remaining word
pairs, about 92% were annotated as cognate pairs.5

One half of the corpus was reserved for training the
EM-based models, and the other half was used for
testing.

The Standard German lexicon is a word list con-
sisting of 202’000 word forms. While the lexicon
provides more morphological, syntactic and seman-
tic information, we do not use it in this work.

3Further quality improvements could be obtained by includ-
ing the results of a second annotator, and by allowing multiple
translations.

4This last category was introduced because the dialect text
contained some quotations in Standard German.

5This annotation was done by the author, a native speaker
of both German varieties. Mann and Yarowsky (2001) consider
a word pair as cognate if the Levenshtein distance between the
two words is less than 3. Their heuristics is very conservative:
it detects 84% of the manually annotated cognate pairs of our
corpus.

The test corpus contains 2366 word pairs. 407
pairs (17.2 %) consist of identical words (lower
bound). 1801 pairs (76.1%) contain a Standard Ger-
man word present in the lexicon, and 1687 pairs
(71.3%) are cognate pairs, with the Standard Ger-
man word present in the lexicon (upper bound). It
may surprise that many Standard German words of
the test corpus do not exist in the lexicon. This con-
cerns mostly ad-hoc compound nouns, which cannot
be expected to be found in a Standard German lex-
icon of a reasonable size. Additionally, some Bern
dialect words are expressed by two words in Stan-
dard German, such as the sequence ir ‘in the (fem.)’
that corresponds to Standard German in der. For rea-
sons of computational complexity, our model only
looks for single words and will not find such corre-
spondences.

The basic EM model (3.2) was trained in 50 iter-
ations, using a training corpus of 200 word pairs.
Interestingly, training on 2000 word pairs did not
improve the results. The larger training corpus did
not even lead the algorithm to converge faster.6 The
monolingual EM model (3.3) was trained in 10 iter-
ations, each of which involved a basic EM training
with 50 iterations on a training corpus of 2000 di-
alect words.

4.2 Results

As explained above, the first stage of the model takes
the dialect words given in the test corpus and gen-
erates, for each dialect word, the 500 most similar
strings according to the transducer used. This list
is then filtered by the lexicon. Between 0 and 20
candidate words remain, depending on how effective
the lexicon filter has been. Thus, each source word
is associated to a candidate list, which is ordered
with respect to the costs or probabilities attributed to
the candidates by the transducer. Experiments with
1000 candidate strings yielded comparable results.

Table 1 shows some results for the four models.
The table reports the number of times the expected
Standard German words appeared anywhere in the
corresponding candidate lists (List), and the number

6This is probably due to the fact that the percentage of iden-
tical words is quite high, which facilitates the training. Another
reason could be that the orthographical conventions used in the
dialect text are quite close to the Standard German ones, so that
they conceal some phonetic differences.

58

N L P R F
Levenshtein List 840 3.1 18.5 35.5 24.3

Top 671 1.1 32.7 28.4 30.4
EM bilingual List 1210 4.5 21.4 51.1 30.2

Top 794 0.7 52.5 33.6 41.0
EM mono- List 1070 5.0 16.6 45.2 24.3
lingual Top 700 0.7 47.9 29.6 36.6
Rules List 987 3.2 22.8 41.7 29.5

Top 909 1.0 45.6 38.4 41.7

Table 1: Results. The table shows the absolute num-
bers of correct target words induced (N) and the av-
erage lengths of the candidate lists (L). The three
rightmost columns represent percentage values of
precision (P), recall (R), and F-measure (F).

of times they appeared at the best-ranked position of
the candidate lists (Top). Precision and recall mea-
sures are computed as follows:7

precision =
|correct target words|

|unique candidate words|

recall =
|correct target words|

|tested words|
As Table 1 shows, the three adaptive models

perform better than the static Levenshtein distance
model. This finding is consistent with the results
of Mann and Yarowsky (2001), although our experi-
ments show more clear-cut differences. The stochas-
tic transducer trained on the bilingual corpus ob-
tained similar results to the rule-based system, while
the transducer trained on a monolingual corpus per-
formed only slightly better than the baseline. Never-
theless, its performance can be considered to be sat-
isfactory if we take into account that virtually no in-
formation on the exact graphemic correspondences
has been given. The structure of the lexicon and of
the source word list suffice to make some generali-
sations about graphemic correspondences between
two languages. However, it remains to be shown
if this method can be extended to more distant lan-
guage pairs.

In contrast to Levenshtein distance, the bilingual
EM model improves the List statistics a lot, at the
expense of longer candidate lists. However, when
comparing the Top statistics, the difference between
the models is less marked. The rule-based model

7The words that occur in several candidate lists (i.e., for
different source words) are counted only once, hence the term
unique candidate words.

generates rather short candidate lists, but it still out-
performs all other models with respect to the words
proposed in first position. The rule-based model ob-
tains high F-measure values, which means that its
precision and recall values are better balanced than
in the other models.

4.3 Discussion

All models require only a small amount of training
or development data. Such data should be available
for most language pairs that relate a scarce resource
language to a resource-rich language. However, the
performances of the rule-based model and the bilin-
gual EM model show that building a training corpus
with manually translated word pairs, or alternatively
implementing a small rule set, may be worthwhile.

The overall performances of the presented sys-
tems may seem poor. Looking at the recall values
of the Top statistics, our models only induce about
one third of the test corpus, or only about half of the
test words that can be induced by phonetic similar-
ity models – we cannot expect our models to induce
non-cognate words or words that are not in the lex-
icon (see the upper bound values in 4.1). Using the
same models, Mann and Yarowsky (2001) induced
over 90% of the Spanish-Portuguese cognate vocab-
ulary. One reason for their excellent results lies in
their testing procedure. They use a small test corpus
of 100 word pairs. For each given word, they com-
pute the transduction costs to each of the 100 pos-
sible target words, and select the best-ranked candi-
date as hypothesized solution. The list of possible
target words can thus be explored exhaustively. We
tested our models with Mann and Yarowsky’s testing
procedure and obtained very competitive results (see
Table 2). Interestingly, the monolingual EM model
performed much worse in this evaluation, a result
which could not be expected in light of the results in
Table 1.

While Mann and Yarowsky’s procedure is very
useful to evaluate the performance of different simi-
larity measures and the impact of different language
pairs, we believe that it is not representative for the
task of lexicon induction. Typically, the list of possi-
ble target words (the target lexicon) does not contain
100 words only, but is much larger (202’000 words
in our case). This difference has several implica-
tions. First, the lexicon is more likely to present very

59

Mann and Yarowsky Our work
cognate full cognate full

Levenshtein 92.3 67.9 90.5 85.2
EM bilingual 92.3 67.1 92.2 86.5
EM monolingual 81.9 76.7
Rules 94.1 88.7

Table 2: Comparison between Mann and
Yarowsky’s results on Spanish-Portuguese (68%
of the full vocabulary are cognate pairs), and our
results on Swiss German-Standard German (83%
cognate pairs). The tests were performed on 10
corpora of 100 word pairs each. The numbers
represent the percentage of correctly induced word
pairs.

similar words (for example, different inflected forms
of the same lexeme), increasing the probability of
“near misses”. Second, our lexicon is too large to be
searched exhaustively. Therefore, we introduced our
two-stage approach, whose first stage is completely
independent of the lexicon. The drawback of this
approach is that for many dialect words, it yields
no result at all, because the 500 generated candi-
dates were all non-words. The recall rates could
be increased by generating more candidates, but this
would lead to longer execution times and lower pre-
cision rates.

5 Conclusion and Perspectives

The experiments conducted with various adaptive
metrics of graphemic similarity show that in the
case of closely related language pairs, lexical in-
duction performances can be increased compared to
a static measure like Levenshtein distance. They
also show that requirements for training data can
be kept rather small. However, these models also
show their limits. They only use single word in-
formation for training and testing, which means that
the rich contextual information encoded in texts, as
well as the morphologic and syntactic information
available in the target lexicon, cannot be exploited.
Future research will focus on integrating contextual
information about the syntactic and semantic prop-
erties of the words into our models, still keeping
in mind the data restrictions for dialects and other
scarce resource languages. Such additional informa-
tion could be implemented by adding a third step to

our two-stage model.

Acknowledgements

We thank Paola Merlo for her precious and useful
comments on this work. We also thank Eric Wehrli
for allowing us to use the LATL Standard German
lexicon.

References
Peter F. Brown, Vincent J. Della Pietra, Stephen A. Della

Pietra, and Robert L. Mercer. 1993. The mathemat-
ics of statistical machine translation: parameter esti-
mation. Computational Linguistics, 19(2):263–311.

Wilbert Heeringa, Peter Kleiweg, Charlotte Gooskens,
and John Nerbonne. 2006. Evaluation of string dis-
tance algorithms for dialectology. In Proceedings of
the ACL Workshop on Linguistic Distances, pages 51–
62, Sydney, Australia.

Rebecca Hwa, Carol Nichols, and Khalil Sima’an. 2006.
Corpus variations for translation lexicon induction. In
Proceedings of AMTA’06, pages 74–81, Cambridge,
MA, USA.

Martin Jansche. 2003. Inference of String Mappings for
Language Technology. Ph.D. thesis, Ohio State Uni-
versity.

Grzegorz Kondrak and Tarek Sherif. 2006. Evaluation
of several phonetic similarity algorithms on the task
of cognate identification. In Proceedings of the ACL
Workshop on Linguistic Distances, pages 43–50, Syd-
ney, Australia.

Gideon S. Mann and David Yarowsky. 2001. Multipath
translation lexicon induction via bridge languages. In
Proceedings of NAACL’01, Pittsburgh, PA, USA.

Werner Marti. 1985. Berndeutsch-Grammatik. Francke
Verlag, Bern, Switzerland.

Reinhard Rapp. 1999. Automatic identification of word
translations from unrelated English and German cor-
pora. In Proceedings of ACL’99, pages 519–526,
Maryland, USA.

Eric Sven Ristad and Peter N. Yianilos. 1998. Learn-
ing string-edit distance. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 20(5):522–532.

Charles Schafer and David Yarowsky. 2002. Induc-
ing translation lexicons via diverse similarity measures
and bridge languages. In Proceedings of CoNLL’02,
pages 146–152, Taipei, Taiwan.

60

Proceedings of the ACL 2007 Student Research Workshop, pages 61–66,
Prague, June 2007. c©2007 Association for Computational Linguistics

Identifying Linguistic Structure in a Quantitative
Analysis of Dialect Pronunciation

Jelena Prokíc
Alfa-Informatica

University of Groningen
The Netherlands

j.prokic@rug.nl

Abstract

The aim of this paper is to present a new
method for identifying linguistic structure in
the aggregate analysis of the language vari-
ation. The method consists of extracting the
most frequent sound correspondences from
the aligned transcriptions of words. Based
on the extracted correspondences every site
is compared to all other sites, and a corre-
spondence index is calculated for each site.
This method enables us to identify sound al-
ternations responsible for dialect divisions
and to measure the extent to which each al-
ternation is responsible for the divisions ob-
tained by the aggregate analysis.

1 Introduction

Computational dialectometry is a multidisciplinary
field that uses quantitative methods in order to mea-
sure linguistic differences between the dialects. The
distances between the dialects are measured at dif-
ferent levels (phonetic, lexical, syntactic) by aggre-
gating over entire data sets. The aggregate analyses
do not expose the underlying linguistic structure, i.e.
the specific linguistic elements that contributed to
the differences between the dialects. This is very of-
ten seen as one of the main drawbacks of the dialec-
tometry techniques and dialectometry itself. Two at-
tempts to overcome this drawback are presented in
Nerbonne (2005) and Nerbonne (2006). In both of
these papers the identification of linguistic structure
in the aggregate analysis is based on the analysis of
the pronunciation of the vowels found in the data set.

In work presented in this paper the identification
of linguistic structure in the aggregate analysis is
based on the automatic extraction of regular sound
correspondences which are further quantified in or-
der to characterize each site based on the frequency
of a certain sound extracted from the pool of the
site’s pronunciation. The results show that identifi-
cation of regular sound correspondences can be suc-
cessfully applied to the task of identifying linguistic
structure in the aggregate analysis of dialects based
on word pronunciations.

The rest of the paper is structured as follows. Sec-
tion 2 gives an overview of the work previously done
in the areas covered in this paper. In Section 3 more
information on the aggregate analysis of Bulgarian
dialects is given. Work done on the identification of
regular sound correspondences and their quantifica-
tion is presented in Section 4. Conclusion and sug-
gestions for future work are given in Section 5.

2 Previous Work

The work presented in this paper can be divided in
two parts: the aggregate analysis of Bulgarian di-
alects on one hand, and the identification of linguis-
tic structure in the aggregate analysis on the other. In
this section the work closely related to the one pre-
sented in this paper will be described in more detail.

2.1 Aggregate Analysis of Bulgarian

Dialectometry produces aggregate analyses of the
dialect variations and has been done for different
languages. For several languages aggregate analyses
have been successfully developed which distinguish
various dialect areas within the language area. The

61

most closely related to the work presented in this pa-
per is quantitative analysis of Bulgarian dialect pro-
nunciation reported in Osenova et al. (2007).

In work done by Osenova et al. (2007) aggregate
analysis of pronunciation differences for Bulgarian
was done on the data set that comprised 36 word
pronunciations from 490 sites. The data was digital-
ized from the four-volume set of Atlases of Bulgar-
ian Dialects (Stojkov and Bernstein, 1964; Stojkov,
1966; Stojkov et al., 1974; Stojkov et al., 1981).
Pronunciations of the same words were aligned and
compared using L04.1 Results were analyzed using
cluster analysis, composite clustering, and multidi-
mensional scaling. The analyses showed that results
obtained using aggregate analysis of word pronunci-
ations mostly conform with the traditional phonetic
classification of Bulgarian dialects as presented in
Stojkov (2002).

2.2 Extraction of Linguistic Structure

Although techniques in dialectometry have shown
to be successful in the analysis of the dialect vari-
ation, all of them aggregate over the entire available
data, failing to extract linguistic structure from the
aggregate analysis. Two attempts to overcome this
withdraw are presented in Nerbonne (2005) and Ner-
bonne (2006).

Nerbonne (2005) suggests aggregating over a lin-
guistically interesting subset of the data. Nerbonne
compares aggregate analysis restricted to vowel dif-
ferences to those using the complete data set. Re-
sults have shown that vowels are probably respon-
sible for a great deal of aggregate differences, since
there was high correlation between differences ob-
tained only by using vowels and by using complete
transcriptions (r = 0.936). Two ways of aggregate
analysis also resulted in comparable maps. How-
ever, no other subset has been analyzed in this pa-
per, making it impossible to conclude how success-
ful other subsets would be if similar analysis was
done.

The second paper (Nerbonne, 2006) applies fac-
tor analysis to the result of the dialectometric analy-
sis in order to extract linguistic structure. The study
focuses on the pronunciation of vowels found in the

1L04 is a freely available software used for di-
alectometry and cartography. It can be found at
http://www.let.rug.nl/kleiweg/L04/

data. Out of 1132 different vowels found in the data
204 vowel positions are investigated, where a vowel
position is, e.g., the first vowel in the word ’Wash-
ington’ or the second vowel in the word ’thirty’.
Factor analysis has shown that 3 factors are most im-
portant, explaining 35% of the total amount of vari-
ance. The main drawback of applying this technique
in dialectometry is that it is not directly related to the
aggregate analysis, but is rather an independent step.
Just as in Nerbonne (2005), only vowels were exam-
ined.

2.3 Sound Correspondences

In his PhD thesis Kondrak (Kondrak, 2002) presents
techniques and algorithms for the reconstruction of
the proto-languages from cognates. In Chapter 6
the focus is on the automatic determination of sound
correspondences in bilingual word lists and the iden-
tification of cognates on the basis of extracted cor-
respondences. Kondrak (2002) adopted Melamed’s
parameter estimation models (Melamed, 2000) used
in statistical machine translation and successfully
applied them to determination of sound correspon-
dences, i.e. diachronic phonology. Kondrak in-
duced a model of sound correspondence in bilin-
gual word lists, where phoneme pairs with the high-
est scores represent the most likely correspondences.
The more regular sound correspondences the two
words share, the more likely it is that they are cog-
nates and not borrowings.

In this paper the identification of sound corre-
spondences will be used to extract linguistic ele-
ments (i.e. phones) responsible for the dialect di-
visions. The method presented in this study differs
greatly from Kondrak’s in that he uses regular sound
correspondences to directly compare two words and
determine if they are cognates. In this study ex-
tracted sound correspondences are further quantified
in order to characterize each site in the data set by
assigning it a unique index. This is the first time that
this method has been applied in dialectometry.

3 Aggregate Analysis

In the first phase of this project L04 toolkit was used
in order to make an aggregate analysis of Bulgarian
dialects. In this section more information on the data
set used in the project, as well as on the process of
the aggregate analysis will be given.

62

3.1 Data Set

The data used in this research, as well as the research
itself, are part of the project Buldialect—Measuring
linguistic unity and diversity in Europe.2 The data
set consisted of pronunciations of 117 words col-
lected from 84 sites equally distributed all over Bul-
garia. It comprises nouns, pronouns, adjectives,
verbs, adverbs and prepositions which can be found
in different word forms (singular and plural, 1st,
2nd, and 3rd person verb forms, etc.).

3.2 Measuring of Dialect Distances

Aggregate analysis of Bulgarian dialects done in this
project was based on the phonetic distances between
the various pronunciations of a set of words. No
morphological, lexical, or syntactic variation was
taken into account.

First, all word pronunciations were aligned based
on the following principles: a) a vowel can match
only with the vowel b) a consonant can match only
with the consonant c) [j] can match both vowels and
consonants.

An example of the alignment of two pronuncia-
tions is given in Figure 1.3

g l "A v A
g l @ v "È
———————————-

1 1

Figure 1: Alignment of word pronunciation pair

The alignments were carried out using the Leven-
sthein algorithm,4 which also results in the calcu-
lation of a distance between each pair of words.
The distance is the smallest number of insertions,
deletions, and substitutions needed to transform one
string to the other. In this work all three operations
were assigned the same value—1. All words are rep-
resented as series of phones which are not further
defined. The result of comparing two phones can be
1 or 0; they either match or they don’t. In Figure 1

2The project is sponsored by Volkswagen Stiftung.
More information can be found at http://www.sfs.uni-
tuebingen.de/dialectometry

3For technical reasons primary stress is indicated by a high
vertical line before the syllable’s vowel.

4Detailed explanation of Levensthein algorithm can be
found in Heeringa (2004).

the cheapest way to transform one pronunciation to
the other would be by making two substitutions: ["A]
should be replaced by [@], and [A] by ["È], meaning
that the distance between these two pronunciations
is 2. The distance between each pair of pronunci-
ations was further normalized by the length of the
longest alignment that gives the minimal cost.5 Af-
ter normalization, we get the final distance between
two strings, which is 0.4 (2/5) in the example shown
in Figure 1. If there are more plausible alignments
with the minimal cost, the longest is preferred. Word
pronunciations collected from all sites are aligned
and compared in this fashion, allowing us to cal-
culate the distance between each pair of sites. The
difference between two locations is the mean of all
differences between words collected from these two
sites.

Figure 2: Classification map

The results were analyzed using clustering (Fig-
ure 2) and multidimensional scaling (Figure 3).
Clustering is a common technique in a statistical
data analysis based on a partition of a set of ob-
jects into groups or clusters (Manning and Schütze,
1999). Multidimensional scaling is data analysis
technique that provides a spatial display of the data
revealing relationships between the instances in the
data set (Davison, 1992). On both the maps the
biggest division is between East and West. The bor-
der between these two areas goes around Pleven and
Teteven, and it is the border of “yat” realization as
presented in the traditional dialectological atlases
(Stojkov, 2002). The most incoherent area is the

5An interesting discussion on the normalization by length
can be found in Heeringa et al. (2006). In this paper the authors
report that contrary to results from previous work (Heeringa,
2004) non-normalized string distance measures are superior to
normalized ones.

63

area of Rodopi mountain, and the dialects present
in this area show the greatest similarity with the di-
alects found in the Southeastern part around Malko
Tyrnovo. On the map in Figure 3 it is also possible
to distinguish the area around Golica and Kozichino
on the East, which conforms to the maps found in
Stojkov (2002). Results of the aggregate analysis
conform both to the traditional maps presented in
Stojkov (2002), and to the work reported in Osen-
ova et al. (2007).

Figure 3: MDS map

4 Regular Sound Correspondences

The same data used for the aggregate analysis was
reused to extract sound correspondences and to iden-
tify underlying linguistic structure in the aggregate
analysis. The method and the obtained results will
be presented in more detail.

4.1 Method

From the aligned pairs of word pronunciations all
non-matching segments were extracted and sorted
according to their frequency. In the entire data set
there were 683 different pairs of sound correspon-
dences that appeared 955199 times.

e i 36565 j - 21361
@ È 26398 A @ 20515
o u 26108 e "e 19934
"6 "e 23689 r rj 19787
v - 22100 "È - 18867

Table 1: Most frequent sound correspondences

The most frequent correspondences were taken to
be the most important sound alternations responsi-
ble for dialect variation. The method was tested on

the 10 most frequent correspondences which were
responsible for the 25% of sound alternations in the
whole data set.

In order to determine which of the extracted sound
correspondences is responsible for which of the di-
visions present in the aggregate analysis, each site
was compared to all other sites with respect to the
10 most frequent sound correspondences. For each
pair of sites all sound correspondences were ex-
tracted, including both matching and non-matching
segments. For further analysis it was important to
distinguish which sound comes from which place.

For each pair of the sound correspondences from
Table 1 a correspondence index is calculated for
each site using the following formula:

1
n− 1

n∑

i=1,j 6=i

si−→s′j (1)

where n represents the number of sites, andsi−→s′j
the comparison of each two sites (i, j) with respect
to the sound correspondences/s′. si−→s′j is calcu-
lated applying the following formula:

|si, s
′
j |

|si, s′j |+ |si, sj | (2)

In the above formulasi ands′j stand for the pair of
sounds involved in one of the most frequent sound
correspondences from Table 1.|si, s

′
j | represents the

number of timess is seen in the word pronunciations
collected at site i, aligned with thes′ in word pro-
nunciations collected at site j.|si, sj | is the number
of timess stayed unchanged. For each pair of sound
correspondences a correspondence index was calcu-
lated for thes, s′ correspondence, as well as for the
s′, s correspondence. For example, for the pair of
correspondences [e] and [i], the relation of [e] cor-
responding to [i] is separated from the relation of [i]
corresponding to [e].6

For example, the indices for the sites Aldomirovci
and Borisovo with respect to the sound correspon-
dence [e]-[i] were calculated in the following way.
In the file with the sound correspondences extracted
from all aligned word pronunciations collected at

6It would also be possible to modify this formula and calcu-
late the ratio ofs to s corresponding to any other sound. In this
case the result would be a very small number of sites with the
very high correspondence index.

64

these two sites, the algorithm searches for pairs rep-
resented in Table 2:

Aldomirovci e i e
Borisovo i e e

no. of correspondences 24 0 3

Table 2: How often [e] corresponds to [i] and [e]

For each of the sites the indices were calculated us-
ing the above formula. The index for site i (Al-
domirovci) was:

|e, i|
|e, i|+ |e, e| =

24
24 + 3

= 0.89 (3)

The index for site j (Borisovo) was calculated in the
similar fashion from the Table 2:

|e, i|
|e, i|+ |e, e| =

0
0 + 3

= 0.00 (4)

Each of these two sites was compared to all other
sites with respect to the [e]-[i] correspondence re-
sulting in 83 indices for each site. The general cor-
respondence index for each site represents the mean
of all 83 indices. For the site i (Aldomirovci) gen-
eral index was 0.40, and for the site j (Borisovo)
0.21. Sites with the higher values of the general cor-
respondence index represent the sites where sound
[e] tends to be present, with respect to the [e]-[i]
correspondence (see Figure 4). In the same fash-
ion general correspondence indices were calculated
for every site with respect to each pair of the most
frequent correspondences (Table 1).

4.2 Results

The methods described in the previous section were
applied to all phone pairs from the Table 1, resulting
in 17 different divisions of the sites.7

Data obtained by the analysis of sound correspon-
dences, i.e. indices of correspondences for sites was
used to draw maps in which every site is set off by
Voronoi tessellation from all other sites, and shaded
based on the value of the general correspondence in-
dex. Light polygons on the map represent areas with

7For three pairs where one sound doesn’t have a correspond-
ing one (when there was an insertion or deletion) it is not pos-
sible to calculate an index. Formulas for comparing two sites
from the previous section would always give value 1 for the in-
dex.

the higher values of the correspondence index, i.e.
areas where the first sound in the examined alterna-
tion tends to be present. This technique enables us
to visualize the geographical distribution of the ex-
amined sounds. For example, map in Figure 4 rep-

Figure 4: Distribution of [e] sound

resents geographical distribution of sound [e] with
respect to the [e]-[i] correspondence, while map in
Figure 5 reveals the presence of the sound [i] with
respect to the [i]-[e] correspondence.

Figure 5: Distribution of [i] sound

In order to compare the dialect divisions obtained
by the aggregate analysis, and those based on the
general correspondence index for a certain phone
pair, correlation coefficient was calculated for these
2 sets of distances. The results are shown in Ta-
ble 3. Dialect divisions based on the [r]-[rj] and [i]-
[e] alternations have the highest correlation with the
distances obtained by the aggregate analysis. The
square of the Pearson correlation coefficient pre-
sented in column 3 enables us to see that 39.0% and
30.7% of the variance in the aggregate analysis can
be explained by these two sound alternations.

65

Correspondence Correlation r2x100(%)
[e]-[i] 0.19 3.7
[i]-[e] 0.55 30.7
[@]-[È] 0.26 6.7
[È]-[@] 0.23 5.3
[o]-[u] 0.49 24.4
[u]-[o] 0.43 18.9
["A]-["e] 0.49 24.3
["e]-["A] 0.38 14.2
[v]- - 0.14 2.0
[j]- - 0.20 4.0

[A]-[@] 0.51 26.5
[@]-[A] 0.26 7.0
[e]-["e] 0.18 3.2
["e]-[e] 0.23 5.2
[r]-[r j] 0.62 39.0
[r j]-[r] 0.53 28.1
["È]- - 0.17 2.9

Table 3: Correlation coefficient

5 Conclusion and Future Work

The dialect division of Bulgaria based on the aggre-
gate analysis presented in this paper conforms both
to traditional maps (Stojkov, 2002) and to the work
reported in Osenova et al. (2007), suggesting that
the novel data used in this project is representative.
The method of quantification of regular sound corre-
spondences described in the second part of the paper
was successful in the identification of the underlying
linguistic structure of the dialect divisions. It is an
important step towards more general investigation of
the role of the regular sound changes in the language
dialect variation. The main drawback of the method
is that it analyzes one sound alternation at the time,
while in the real data it is often the case that one
sound corresponds to several other sounds and that
sound correspondences involve series of segments.

In future work some kind of a feature represen-
tation of segments should be included in the anal-
ysis in order to deal with the drawbacks noted. It
would also be very important to analyze the context
in which examined sounds appear, since we can talk
about regular sound changes only with respect to the
certain phonological environments.

References

Mark L. Davison. 1992.Multidimensional scaling. Mel-
bourne, Fl. CA: Krieger Publishing Company.

Wilbert Heeringa, Peter Kleiweg, Charlotte Gooskens,

and John Nerbonne. 2006. Evaluation of String
Distance Algorithms for Dialectology. In John Ner-
bonne and Erhard Hinrichs, editors,Linguistic Dis-
tances. Workshop at the joint conference of Interna-
tional Committee on Computational Linguistics and
the Association for Computational Linguistics, Syd-
ney.

Wilbert Heeringa. 2004.Measuring Dialect Pronunci-
ation Differences using Levensthein Distance. PhD
Thesis, University of Groningen.

Grzegorz Kondrak. 2002.Algorithms for Language Re-
construction. PhD Thesis, University of Toronto.

Chris Manning and Hinrich Schütze. 1999.Founda-
tions of Statistical Natural Language Processing. MIT
Press. Cambridge, MA.

I. Dan Melamed. 2000. Models of translational equiv-
alence among words. Computational Linguistics,
26(2):221–249.

John Nerbonne. 2005. Various Variation Aggregates in
the LAMSAS South. In Catherine Davis and Michael
Picone, editors,Language Variety in the South III. Uni-
versity of Alabama Press, Tuscaloosa.

John Nerbonne. 2006. Identifying Linguistic Structure
in Aggregate Comparison.Literary and Linguistic
Computing, 21(4).

Petya Osenova, Wilbert Heeringa, and John Nerbonne.
2007. A Quantitive Analysis of Bulgarian Dialect
Pronunciation. Accepted to appear inZeitschrift für
slavische Philologie.

Stojko Stojkov and Samuil B. Bernstein. 1964.Atlas of
Bulgarian Dialects: Southeastern Bulgaria. Publish-
ing House of Bulgarian Academy of Science, volume
I, Sofia, Bulgaria.

Stojko Stojkov, Kiril Mirchev, Ivan Kochev, and Mak-
sim Mladenov. 1974. Atlas of Bulgarian Dialects:
Southwestern Bulgaria. Publishing House of Bulgar-
ian Academy of Science, volume III, Sofia, Bulgaria.

Stojko Stojkov, Ivan Kochev, and Maksim Mladenov.
1981.Atlas of Bulgarian Dialects: Northwestern Bul-
garia. Publishing House of Bulgarian Academy of
Science, volume IV, Sofia, Bulgaria.

Stojko Stojkov. 1966. Atlas of Bulgarian Dialects:
Northeastern Bulgaria. Publishing House of Bulgar-
ian Academy of Science, volume II, Sofia, Bulgaria.

Stojko Stojkov. 2002.Bulgarska dialektologiya. Sofia,
4th ed.

66

Proceedings of the ACL 2007 Student Research Workshop, pages 67–72,
Prague, June 2007. c©2007 Association for Computational Linguistics

Towards a Computational Treatment of Superlatives

Silke Scheible
Institute for Communicating and Collaborative Systems (ICCS)

School of Informatics
University of Edinburgh

S.Scheible@sms.ed.ac.uk

Abstract

I propose a computational treatment of su-
perlatives, starting with superlative con-
structions and the main challenges in
automatically recognising and extracting
their components. Initial experimental evi-
dence is provided for the value of the pro-
posed work for Question Answering. I also
briefly discuss its potential value for Sen-
timent Detection and Opinion Extraction.

1 Introduction

Although superlatives are frequently found in
natural language, with the exception of recent work
by Bos and Nissim (2006) and Jindal and Liu
(2006), they have not yet been investigated within
a computational framework. And within the
framework of theoretical linguistics, studies of su-
perlatives have mainly focused on particular se-
mantic properties that may only rarely occur in
natural language (Szabolcsi, 1986; Heim, 1999).

My goal is a comprehensive computational
treatment of superlatives. The initial question I ad-
dress is how useful information can be automati-
cally extracted from superlative constructions. Due
to the great semantic complexity and the variety of
syntactic structures in which superlatives occur,
this is a major challenge. However, meeting it will
benefit NLP applications such as Question An-
swering, Sentiment Detection and Opinion Extrac-
tion, and Ontology Learning.

2 What are Superlatives?

In linguistics, the term “superlative” describes a
well-defined class of word forms which (in Eng-

lish) are derived from adjectives or adverbs in two
different ways: Inflectionally, where the suffix -est
is appended to the base form of the adjective or
adverb (e.g. lowest, nicest, smartest), or analyti-
cally, where the base adjective/adverb is preceded
by the markers most/least (e.g. most interesting,
least beautiful). Certain adjectives and adverbs
have irregular superlative forms: good (best), bad
(worst), far (furthest/farthest), well (best), badly
(worst), much (most), and little (least).

In order to be able to form superlatives, adjec-
tives and adverbs must be gradable, which means
that it must be possible to place them on a scale of
comparison, at a position higher or lower than the
one indicated by the adjective/adverb alone. In
English, this can be done by using the comparative
and superlative forms of the adjective or adverb:

[1] (a) Maths is more difficult than Physics.
 (b) Chemistry is less difficult than Physics.
[2] (a) Maths is the most difficult subject at school.
 (b) History is the least difficult subject at school.

The comparative form of an adjective or adverb is
commonly used to compare two entities to one an-
other with respect to a certain quality. For exam-
ple, in [1], Maths is located at a higher point on the
difficulty scale than Physics, and Chemistry at a
lower point. The superlative form of an adjective
is usually used to compare one entity to a set of
other entities, and expresses the end spectrum of
the scale: In [2], Maths and History are located at
the highest and lowest points of the difficulty
scale, respectively, while all the other subjects at
school range somewhere in between.

3 Why are Superlatives Interesting?

From a computational perspective, superlatives
are of interest because they express a comparison

67

between a target entity (indicated in bold) and its
comparison set (underlined), as in:

[3] The blue whale is the largest mammal.

Here, the target blue whale is compared to the
comparison set of mammals. Milosavljevic (1999)
has investigated the discourse purpose of different
types of comparisons. She classifies superlatives as
a type of set complement comparison, whose pur-
pose is to highlight the uniqueness of the target
entity compared to its contrast set.

My initial investigation of superlative forms
showed that there are two types of relation that
hold between a target and its comparison set:

Relation 1: Superlative relation
Relation 2: IS-A relation

The superlative relation specifies a property which
all members of the set share, but which the target
has the highest (or lowest) degree or value of. The
IS-A (or hypernymy) relation expresses the mem-
bership of the target in the comparison class (e.g.
its parent class in a generalisation hierarchy). Both
of these relations are of great interest from a rela-
tion extraction point of view, and in Section 6, I
discuss their use in applications such as Question
Answering (QA) and Sentiment Detection and
Opinion Extraction. That a computational treat-
ment of superlatives is a worthwhile undertaking is
also supported by the frequency of superlative
forms in ordinary text: In a 250,000 word subcor-
pus of the WSJ corpus1 I found 602 instances
(which amounts to roughly one superlative form in
every 17 sentences), while in the corpus of animal
encyclopaedia entries used by Milosavljevic
(1999), there were 1059 superlative forms in
250,000 words (about one superlative form in
every 11 sentences).2 These results show signifi-
cant variation in the distribution of superlatives
across different text genres.

4 Elements of a Computational Treat-
ment of Superlatives

For an interpretation of comparisons, two things
are generally of interest: What is being compared,
and with respect to what this comparison is made.
Given that superlatives express set comparisons, a

1 www.ldc.upenn.edu/Catalog/LDC2000T43.html
2 In the following, these 250,000 word subcorpora will
be referred to as SubWSJ and SubAC.

computational treatment should therefore help to
identify:

a) The target and comparison set
b) The type of superlative relation that holds be-

tween them (cf. Relation 1 in Section 3)

However, this task is far from straightforward,
firstly because superlatives occur in a variety of
different constructions. Consider for example:

[4] The pipe organ is the largest instrument.
[5] Of all the musicians in the brass band, Peter plays

the largest instrument.
[6] The human foot is narrowest at the heel.
[7] First Class mail usually arrives the fastest.
[8] This year, Jodie Foster was voted best actress.
[9] I will get there at 8 at the earliest.
[10] I am most tired of your constant moaning.
[11] Most successful bands are from the U.S.

All these examples contain a superlative form
(bold italics). However, they differ not only in their
syntactic structure, but also in the way in which
they express a comparison. Example [4] contains a
clear-cut comparison between a target item and its
comparison set: The pipe organ is compared to all
other instruments with respect to its size. However,
although the superlative form in [4] occurs in the
same noun phrase as in [5], the comparisons differ:
What is being compared in [5] is not just the in-
struments, but the musicians in the brass band with
respect to the size of the instrument that they play.
In example [6], the target and comparison set are
even less easy to identify. What is being compared
here is not the human foot and a set of other enti-
ties, but rather different parts of the human foot. In
contrast to the first two examples, this superlative
form is not incorporated in a noun phrase, but oc-
curs freely in the sentence. The same applies to
fastest in example [7], which is an adverbial super-
lative. The comparison here is between First Class
mail and other mail delivery services. Finally, ex-
amples [8] to [11] are not proper comparisons: best
actress in [8] is an idiomatic expression, earliest in
[9] is part of a so-called PP superlative construc-
tion (Corver and Matushansky, 2006), and [10] and
[11] describe two non-comparative uses of most, as
an intensifier and a proportional quantifier, respec-
tively (Huddleston and Pullum, 2002).

Initially, I will focus on cases like [4], which I
call IS-A superlatives because they make explicit
the IS-A relation that holds between target and
comparison set (cf. Relation 2 in Section 3). They

68

are a good initial focus for a computational ap-
proach because both their target and comparison
set are explicitly realised in the text (usually,
though not necessarily, in the same sentence).
Common surface forms of IS-A superlatives in-
volve the verb “to be” ([12]-[14]), appositive posi-
tion [15], and other copula verbs or expressions
([16] and [17]):

[12] The blue whale is the largest mammal.
[13] The blue whale is the largest of all mammals.
[14] Of all mammals, the blue whale is the largest.
[15] The largest mammal, the blue whale, weighs...
[16] The ostrich is considered the largest bird.
[17] Mexico claimed to be the most peaceful country

in the Americas.

IS-A superlatives are also the most frequent type of
superlative comparison, with 176 instances in
SubWSJ (ca. 30% of all superlative forms), and
350 instances in SubAC (ca. 33% of all superlative
forms).

The second major problem in a computational
treatment of superlatives is to correctly identify
and interpret the comparison set. The challenge lies
in the fact that it can be restricted in a variety of
ways, for example by preceding possessives and
premodifiers, or by postmodifiers such as PPs and
various kinds of clauses. Consider for example:

[18] VW is [Europe’s largest maker of cars].
[19] VW is [the largest European car maker with this

product range].
[20] VW is [the largest car maker in Europe] with an

impressive product range.
[21] In China, VW is by far [the largest car maker].

The phrases of cars and car in [18] and [19]
both have the role of specifying the type of maker
that constitutes the comparison set. The phrases
Europe’s, European and in Europe occur in deter-
minative, premodifying, and postmodifying posi-
tion, respectively, but all have the role of restrict-
ing the set of car makers to the ones in Europe.
And finally, the “with” PP phrases in [19] and [20]
both occur in postmodifying position, but differ in
that the one in [19] is involved in the comparison,
while the one in [20] is non-restrictive. In addition,
restrictors of the comparison can also occur else-
where in the sentence, as shown by the PP phrase
and adverbial in [21]. It is evident that in order to
extract useful and reliable information, a thorough
syntactic and semantic analysis of superlative con-
structions is required.

5 Previous Approaches

5.1 Jindal and Liu (2006)

Jindal and Liu (2006) propose the study of com-
parative sentence mining, by which they mean the
study of sentences that express “an ordering
relation between two sets of entities with respect to
some common features” (2006). They consider
three kinds of relations: non-equal gradable (e.g.
better), equative (e.g. as good as) and superlative
(e.g. best). Having identified comparative sen-
tences in a given text, the task is to extract com-
parative relations from them, in form of a vector
like (relationWord, features, entityS1, entityS2),
where relationWord represents the keyword used
to express a comparative relation, features are a set
of features being compared, and entityS1 and enti-
tyS2 are the sets of entities being compared, where
entityS1 appears to the left of the relation word and
entityS2 to the right. Thus, for a sentence like
“Canon’s optics is better than those of Sony and
Nikon”, the system is expected to extract the vector
(better, {optics}, { Canon}, { Sony, Nikon}).

For extracting the comparative relations, Jindal
and Liu use what they call label sequential rules
(LSR), mainly based on POS tags. Their overall F-
score for this extraction task is 72%, a big im-
provement to the 58% achieved by their baseline
system. Although this result suggests that their sys-
tem represents a powerful way of dealing with su-
perlatives computationally, a closer inspection of
their approach, and in particular of the gold stan-
dard data set, reveals some serious problems.

Jindal and Liu claim that for superlatives, the
entityS2 slot is “normally empty” (2006). Assum-
ing that the members of entityS2 usually represent
the comparison set, this is somewhat counter-
intuitive. A look at the data shows that even in
cases where the comparison set is explicitly men-
tioned in the sentence, the entityS2 slot remains
empty. For example, although the comparison set
in [22] is represented by the string these 2nd gen-
eration jukeboxes (ipod , archos , dell , samsung),
it is not annotated as entityS2 in the gold standard:

[22] all reviews i 've seen seem to in-
dicate that the creative mp3 jukeboxes
have the best sound quality of these
2nd generation jukeboxes (ipod , ar-
chos , dell , samsung) .

(best, {sound quality}, {creative mp3 jukeboxes}, {--})

Jindal and Liu (2006)

69

Furthermore, Jindal and Liu do not distinguish
between different types of superlatives. In con-
structions where the superlative form is incorpo-
rated into an NP, Jindal and Liu consistently inter-
pret the string following the superlative form as a
“feature”, which is appropriate for cases like [22],
but does not apply to superlative sentences involv-
ing the copula verb “to be” (as e.g. in [4]), where
the NP head denotes the comparison set rather than
a feature. A further major problem is that restric-
tions on the comparison set as the ones discussed
in Section 4 and negation are not considered at all.
Therefore, the reliability of the output produced by
the system is questionable.

5.2 Bos and Nissim (2006)

In contrast to Jindal and Liu (2006), Bos and
Nissim’s (2006) approach to superlatives is explic-
itly semantic. They describe an implementation of
a system that can automatically detect superlatives,
and determine the correct comparison set for at-
tributive cases, where the superlative form is in-
corporated into an NP. For example in [23], the
comparison set of the superlative oldest spans from
word 3 to word 7:

[23] wsj00 1690 [...] Scope: 3-7
The oldest bell-ringing group in the
country , the Ancient Society of Col-
lege Youths , founded in 1637 , re-
mains male-only , [...] .

(Bos and Nissim 2006)

Bos and Nissim’s system, called DLA (Deep Lin-
guistic Analysis), uses a wide-coverage parser to
produce semantic representations of superlative
sentences, which are then exploited to select the
comparison set among attributive cases. Compared
with a baseline result, the results for this are very
good, with an accuracy of 69%-83%.

The results are clearly very promising and show
that comparison sets can be identified with high
accuracy. However, this only represents a first step
towards the goal of the present work. Apart from
the superlative keyword oldest, the only informa-
tion example [23] provides is that the comparison
set spans from word 3 to word 7. However, what
would be interesting to know is that the target of
the comparison appears in the same sentence and
spans from word 9 to word 14 (the Ancient Society
of College Youths). Furthermore, no analysis of the
semantic roles of the constituents of the resulting
string is carried out: We lose the information that

the Ancient Society of College Youths IS-A kind of
bell-ringing group, and that the set of bell-ringing
groups is restricted in location (in the country).

6 Applications

The proposed work will be beneficial for a vari-
ety of areas in NLP, for example Question An-
swering (QA), Sentiment Detection/Opinion Ex-
traction, Ontology Learning, or Natural Language
Generation. In this section I will discuss applica-
tions in the first two areas.

6.1 Question Answering

In open-domain QA, the proposed work will be
useful for answering two question types. A super-
lative sentence like [24], found in a corpus, can be
used to answer both a factoid question [25] and a
definition question [26]:

[24] A: The Nile is the longest river in the world.
[25] Q: What is the world’s longest river?
[26] Q: What is the Nile?

Here I will focus on the latter. The common as-
sumption that superlatives are useful with respect
to answering definition questions is based on the
observation that superlatives like the one in [24]
both place an entity in a generalisation hierarchy,
and distinguish it from its contrast set.

To investigate this assumption, I carried out a
study involving the TREC QA “other” question
nuggets3, which are snippets of text that contain
relevant information for the definition of a specific
topic. In a recent study of judgement consistency
(Lin and Demner-Fushman, 2006), relevant nug-
gets were judged as either 'vital' or 'okay' by 10
different judges rather than the single assessor
standardly used in TREC. For example, the first
three nuggets for the topic “Merck & Co.” are:

[27] Qid 75.8: 'other' question for target Merck & Co.
75.8 1 vital World's largest drug company.
75.8 2 okay Spent $1.68 billion on RandD in

1997.
75.8 3 okay Has experience finding new uses

for established drugs.

(taken from TREC 2005; 'vital' and 'okay' reflect
the opinion of the TREC evaluator.)

My investigation of the nugget judgements in
Lin and Demner-Fushman's study yielded two in-

3 http://trec.nist.gov/data/qa.html

70

teresting results: First of all, a relatively high pro-
portion of relevant nuggets contains superlatives:
On average, there is one superlative nugget for at
least half of the TREC topics. Secondly, of 69
superlative nuggets altogether, 32 (i.e. almost half)
are judged “vital” by more than 9 assessors.

Furthermore, I found that the nuggets can be dis-
tinguished by how the question target (i.e. the
TREC topic, referred to as T1) relates to the super-
lative target (T2): In the first case, T1 and T2 coin-
cide (referred to as class S1). In the second one, T2
is part of or closely related to T1, or T2 is part of
the comparison set (class S2). In the third case, T1
is unrelated or only distantly related to T2 (S3).
Table 1 shows examples of each class:

 T1 nugget (T2 in bold)
S1 Merck & Co. World's largest drug company
S2 Florence

Nightingale
Nightingale Medal highest
international nurses award

S3 Kurds Irbil largest city controlled by
Kurds

Table 1. Examples of superlative nuggets.

Of the 69 nuggets containing superlatives, 46
fall into subclass S1, 15 into subclass S2 and 8 into
subclass S3. While I noted earlier that 32/69 (46%)
of superlative-containing nuggets were judged vital
by more than 9 assessors, these judgements are not
equally distributed over the subclasses: Table 2
shows that 87% of S1 judgements are 'vital', while
only 38% of S3 judgements are.

 number of
instances

% of “vital”
judgements

% of “okay”
judgements

S1 46 87% 13%
S2 15 59% 40%
S3 8 38% 60%

Table 2. Ratings of the classes S1, S2, and S3.

These results strongly suggest that the presence
of superlatives, and in particular S1 membership, is
a good indicator of the importance of nuggets, and
thus for answering definition questions. Some ex-
periments carried out in the framework of TREC
2006 (Kaisser et al., 2006), however, showed that
superlatives alone are not a winning indicator of
nugget importance, but S1 membership may be. A
similar simple technique was used by Ahn et al.
(2005) and by Razmara and Kosseim (2007). All
just looked for the presence of a superlative and
raised the score without further analysing the type
of superlative or its role in the sentence. This calls

for a more sophisticated approach, where class S1
superlatives can be distinguished.

6.2 Sentiment Detection/Opinion Extraction

Like adjectives and adverbs, superlatives can be
objective or subjective. Compare for example:

[28] The Black Forest is the largest forest in
Germany. [objective]
[29] The Black Forest is the most beautiful area
in Germany. [subjective]

So far, none of the studies in sentiment detection
(e.g. Wilson et al., 2005; Pang et al., 2002) or opin-
ion extraction (e.g. Hu and Liu, 2004; Popescu and
Etzioni, 2005) have specifically looked at the role
of superlatives in these areas.

Like subjective adjectives, subjective superla-
tives can either express positive or negative opin-
ions. This polarity depends strongly on the adjec-
tive or adverb that the superlative is derived from.4
As superlatives place the adjective or adverb at the
highest or lowest point of the comparison scale (cf.
Section 2), the question of interest is how this af-
fects the polarity of the adjective/adverb. If the
intensity of the polarity increases in a likewise
manner, then subjective superlatives are bound to
express the strongest or weakest opinions possible.
If this hypothesis holds true, an “extreme opinion”
extraction system could be created by combining
the proposed superlative extraction system with a
subjectivity recognition system that can identify
subjective superlatives. This would clearly be of
interest to many companies and market researchers.

Initial searches in Hu and Liu’s annotated cor-
pus of customer reviews (2004) look promising.
Sentences in this corpus are annotated with infor-
mation about positive and negative opinions,
which are located on a six-point scale, where [+/-3]
stand for the strongest positive/negative opinions,
and [+/-1] stand for the weakest positive/negative
opinions. A search for annotated sentences con-
taining superlatives shows that an overwhelming
majority are marked with strongest opinion labels.

7 Summary and Future Work

This paper proposed the task of automatically ex-
tracting useful information from superlatives oc-

4 It may, however, also depend on whether the superla-
tive expresses the highest ('most') or the lowest ('least')
point in the scale.

71

curring in free text. It provided an overview of su-
perlative constructions and the main challenges
that have to be faced, described previous computa-
tional approaches and their limitations, and dis-
cussed applications in two areas in NLP: QA and
Sentiment Detection/Opinion Extraction.

The proposed task can be seen as consisting of
three subtasks:

TASK 1: Decide whether a given sentence contains
a superlative form
TASK 2: Given a sentence containing a superlative
form, identify what type of superlative it is (ini-
tially: IS-A superlative or not?)
TASK 3: For set comparisons, identify the target
and the comparison set, as well as the superlative
relation

Task 1 can be tackled by a simple approach rely-
ing on POS tags (e.g. JJS and RBS in the Penn
Treebank tagset). For Task 2, I have carried out a
thorough analysis of the different types of superla-
tive forms and postulated a new classification for
them. My present efforts are on the creation of a
gold standard data set for the extraction task. As
superlatives are particularly frequent in encyclo-
paedic language (cf. Section 3), I am considering
using the Wikipedia5 as a knowledge base. The
main challenge is to devise a suitable annotation
scheme which can account for all syntactic struc-
tures in which IS-A superlatives occur and which
incorporates their semantic properties in an ade-
quate way (semantic role labelling). Finally, for
Task 3, I plan to use both manually created rules
and machine learning techniques.

Acknowledgements

I would like to thank Bonnie Webber and Maria
Milosavljevic for their helpful comments and sug-
gestions on this paper. Many thanks also go to
Nitin Jindal and Bing Liu, Johan Bos and Malvina
Nissim, and Jimmy Lin and Dina Demner-
Fushman for making their data available.

References

Kisuh Ahn, Johan Bos, James R. Curran, Dave Kor,
Malvina Nissim and Bonnie Webber. 2005.
Question Answering with QED. In Voorhees and
Buckland (eds.): The 14th Text REtrieval
Conference, TREC 2005.

5 www.wikipedia.org

Johan Bos and Malvina Nissim. 2006. An Empirical
Approach to the Interpretation of Superlatives. In
Proceedings of EMNLP 2006, pages 9-17, Sydney,
Australia.

Norbert Corver and Ora Matushansky. 2006. At our best
when at our boldest. Handout. TIN-dag, Feb. 4, 2006.

Irene Heim. 1999. Notes on superlatives. Ms., MIT.

Minqing Hu and Bing Liu. 2004. Mining Opinion Fea-
tures in Customer Reviews. In Proceedings of AAAI,
pages 755-760, San Jose, California, USA.

Rodney Huddleston and Geoffrey K. Pullum (eds.).
2002. The Cambridge grammar of the English lan-
guage. Cambridge: Cambridge University Press.

Michael Kaisser, Silke Scheible and Bonnie Webber.
2006. Experiments at the University of Edinburgh for
the TREC 2006 QA track. In Proceedings of TREC
2006, Gaithersburg, MD, USA.

Nitin Jindal and Bing Liu. 2006. Mining Comparative
Sentences and Relations. In Proceedings of AAAI,
Boston, MA, USA.

Jimmy Lin and Dina Demner-Fushman. 2006. Will
pyramids built of nuggets topple over? In Proceed-
ings of the HLT/NAACL, pages 383-390, New York,
NY, USA.

Maria Milosavljevic. 1999. The Automatic Generation
of Comparisons in Descriptions of Entities. PhD
Thesis. Microsoft Research Institute, Macquarie Uni-
versity, Sydney, Australia.

Bo Pang, Lillian Lee, and Shivakumar Vaithyanathan.
2002. Thumbs up? Sentiment classification using
machine learning techniques. In Proceedings of
EMNLP, pages 79-86, Philadelphia, PA, USA.

Ana-Maria Popescu and Oren Etzioni. 2005. Extracting
product features and opinions from reviews. In Pro-
ceedings of HLT/EMNLP-2005, pages 339-346, Van-
couver, British Columbia, Canada.

Majid Razmara and Leila Kosseim. 2007. A little
known fact is... Answering Other questions using in-
terest-markers. In Proceedings of CICLing-2007,
Mexico City, Mexico.

Anna Szabolcsi. 1986. Comparative superlatives. In
MIT Working Papers in Linguistics (8). ed. by Naoki
Fukui, Tova R. Rapoport and Elisabeth Sagey. 245-
265.

Theresa Wilson, Janyce Wiebe and Paul Hoffmann.
2005. Recognizing Contextual Polarity in Phrase-
Level Sentiment Analysis. In Proceedings of
HLT/EMNLP 2005, pages 347-354, Vancouver, Brit-
ish Columbia, Canada.

72

Proceedings of the ACL 2007 Student Research Workshop, pages 73–78,
Prague, June 2007. c©2007 Association for Computational Linguistics

Annotating and Learning Compound Noun Semantics

Diarmuid Ó Séaghdha
University of Cambridge Computer Laboratory

15 JJ Thomson Avenue
Cambridge CB3 0FD

United Kingdom
do242@cl.cam.ac.uk

Abstract

There is little consensus on a standard ex-
perimental design for the compound inter-
pretation task. This paper introduces well-
motivated general desiderata for semantic
annotation schemes, and describes such a
scheme for in-context compound annotation
accompanied by detailed publicly available
guidelines. Classification experiments on an
open-text dataset compare favourably with
previously reported results and provide a
solid baseline for future research.

1 Introduction

There are a number of reasons why the interpreta-
tion of noun-noun compounds has long been a topic
of interest for NLP researchers. Compounds oc-
cur very frequently in English and many other lan-
guages, so they cannot be avoided by a robust se-
mantic processing system. Compounding is a very
productive process with a highly skewed type fre-
quency spectrum, and corpus information may be
very sparse. Compounds are often highly ambigu-
ous and a large degree of “world knowledge” seems
necessary to understand them. For example, know-
ing that a cheese knife is (probably) a knife for
cutting cheese and (probably) not a knife made of
cheese (cf. plastic knife) does not just require an
ability to identify the senses of cheese and knife but
also knowledge about what one usually does with
cheese and knives. These factors combine to yield
a difficult problem that exhibits many of the chal-
lenges characteristic of lexical semantic process-
ing in general. Recent research has made signifi-

cant progress on solving the problem with statisti-
cal methods and often without the need for manu-
ally created lexical resources (Lauer, 1995; Lapata
and Keller, 2004; Girju, 2006; Turney, 2006). The
work presented here is part of an ongoing project
that treats compound interpretation as a classifica-
tion problem to be solved using machine learning.

2 Selecting an Annotation Scheme

For many classification tasks, such as part-of-speech
tagging or word sense disambiguation, there is gen-
eral agreement on a standard set of categories that
is used by most researchers. For the compound
interpretation task, on the other hand, there is lit-
tle agreement and numerous classification schemes
have been proposed. This hinders meaningful com-
parison of different methods and results. One must
therefore consider how an appropriate annotation
scheme should be chosen.

One of the problems is that it is not immedi-
ately clear what level of granularity is desirable, or
even what kind of units the categories should be.
Lauer (1995) proposes a set of 8 prepositions that
can be used to paraphrase compounds: a cheese
knife is a knife FOR cheese but a kitchen knife is
a knife (used) IN a kitchen. An advantage of this
approach is that preposition-noun co-occurrences
can efficiently be mined from large corpora using
shallow techniques. On the other hand, interpret-
ing a paraphrase requires further disambiguation as
one preposition can map onto many semantic rela-
tions.1 Girju et al. (2005) and Nastase and Szpakow-
icz (2003) both present large inventories of seman-

1The interpretation of prepositions is itself the focus of a
Semeval task in 2007.

73

tic relations that describe noun-noun dependencies.
Such relations provide richer semantic information,
but it is harder for both humans and machines to
identify their occurrence in text. Larger invento-
ries can also suffer from class sparsity; for exam-
ple, 14 of Girju et al.’s 35 relations do not occur in
their dataset and 7 more occur in less than 1% of
the data. Nastase and Szpakowicz’ scheme mitigates
this problem by the presence of 5 supercategories.

Each of these proposals has its own advantages
and drawbacks, and there is a need for principled cri-
teria for choosing one. As the literature on semantic
annotation “best practice” is rather small,2 I devised
a novel set of design principles based on empirical
and theoretical considerations:

1. The inventory of informative categories should
account for as many compounds as possible

2. The category boundaries should be clear and
categories should describe a coherent concept

3. The class distribution should not be overly
skewed or sparse

4. The concepts underlying the categories should
generalise to other linguistic phenomena

5. The guidelines should make the annotation pro-
cess as simple as possible

6. The categories should provide useful semantic
information

These intuitively appear to be desirable principles
for any semantic annotation scheme. The require-
ment of class distribution balance is motivated by
the classification task. Where one category domi-
nates, the most-frequent-class baseline can be diffi-
cult to exceed and care must be taken in evaluation
to consider macro-averaged performance as well as
raw accuracy. It has been suggested that classifiers
trained on skewed data may perform poorly on mi-
nority classes (Zhang and Oles, 2001). Of course,
this is not a justification for conflating concepts with
little in common, and it may well be that the natural
distribution of data is inherently skewed.

There is clearly a tension between these criteria,
and only a best-fit solution is possible. However, it
was felt that a new scheme might satisfy them more
optimally than existing schemes. Such a proposal

2One relevant work is Wilson and Thomas (1997).

Relation Distribution Example
BE 191 (9.55%) steel knife
HAVE 199 (9.95%) street name
IN 308 (15.40%) forest hut
INST 266 (13.30%) rice cooker
ACTOR 236 (11.80%) honey bee
ABOUT 243 (12.15%) fairy tale
REL 81 (4.05%) camera gear
LEX 35 (1.75%) home secretary
UNKNOWN 9 (0.45%) simularity crystal
MISTAG 220 (11.00%) blazing fire
NONCOMP 212 (10.60%) [real tennis] club

Table 1: Sample class frequencies

necessitates a method of evaluation. Not all the cri-
teria are easily evaluable. It is difficult to prove gen-
eralisability and usefulness conclusively, but it can
be maximised by building on more general work on
semantic representation; for example, the guidelines
introduced here use a conception of events and par-
ticipants compatible with that of FrameNet (Baker
et al., 1998). Good results on agreement and base-
line classification will provide positive evidence for
the coherence and balance of the classes; agreement
measures can confirm ease of annotation.

In choosing an appropriate level of granularity, I
wished to avoid positing a large number of detailed
but rare categories. Levi’s (1978) set of nine se-
mantic relations was used as a starting point. The
development process involved a series of revisions
over six months, aimed at satisfying the six criteria
above and maximising interannotator agreement in
annotation trials. The nature of the decisions which
had to be made is exemplified by the compound car
factory, whose standard referent seems to qualify as
FOR, CAUSE, FROM and IN in Levi’s scheme (and
causes similar problems for the other schemes I am
aware of). Likewise there seems to be no princi-
pled way to choose between a locative or purposive
label for dining room. Such examples led to both
redefinition of category boundaries and changes in
the category set; for example, FOR was replaced by
INST and AGENT, which are independent of purpo-
sivity. This resulted in the class inventory shown in
Table 1 and a detailed set of annotation guidelines.3

3The guidelines are publicly available at http://www.
cl.cam.ac.uk/˜do242/guidelines.pdf.

74

The scheme’s development is described at length in
Ó Séaghdha (2007b).

Many of the labels are self-explanatory. AGENT
and INST(rument) apply to sentient and non-
sentient participants in an event respectively, with
ties (e.g., stamp collector) being broken by a hier-
archy of coarse semantic roles. REL is an OTHER-
style category for compounds encoding non-specific
association. LEX(icalised) applies to compounds
which are semantically opaque without prior knowl-
edge of their meanings. MISTAG and NON-
COMP(ound) labels are required to deal with se-
quences that are not valid two-noun compounds but
have been identified as such due to tagging errors
and the simple data extraction heuristic described in
Section 3.1. Coverage is good, as 92% of valid com-
pounds in the dataset described below were assigned
one of the six main semantic relations.

3 Annotation Experiment

3.1 Data

A simple heuristic was used to extract noun se-
quences from the 90 million word written part of the
British National Corpus.4 The corpus was parsed
using the RASP parser5 and all sequences of two
common nouns were extracted except those adjacent
to another noun and those containing non-alphabetic
characters. This yielded almost 1.6 million tokens
with 430,555 types. 2,000 unique tokens were ran-
domly drawn for use in annotation and classification
experiments.

3.2 Method

Two annotators were used: the current author and
an annotator experienced in lexicography but with-
out any special knowledge of compounds or any role
in the development of the annotation scheme. In all
the trials described here, each compound was pre-
sented alongside the sentence in which it was found
in the BNC. The annotators had to assign one of the
labels in Table 1 and the rule that licensed that la-
bel in the annotation guidelines. For example, the
compound forest hut in its usual sense would be an-
notated IN,2,2.1.3.1 to indicate the semantic

4http://www.natcorp.ox.ac.uk/
5http://www.informatics.susx.ac.uk/

research/nlp/rasp/

relation, the direction of the relation (it is a hut in
a forest, not a forest in a hut) and that the label is
licensed by rule 2.1.3.1 in the guidelines (N1/N2 is
an object spatially located in or near N2/N1).6 Two
trial batches of 100 compounds were annotated to
familiarise the second annotator with the guidelines
and to confirm that the guidelines were indeed us-
able for others. The first trial resulted in agreement
of 52% and the second in agreement of 73%. The
result of the second trial, corresponding to a Kappa
beyond-chance agreement estimate (Cohen, 1960)
of κ̂ = 0.693, was very impressive and it was de-
cided to proceed to a larger-scale task. 500 com-
pounds not used in the trial runs were drawn from
the 2,000-item set and annotated.
3.3 Results and Analysis

Agreement on the test set was 66.2% with κ̂ = 0.62.
This is less than the score achieved in the second
trial run, but may be a more accurate estimator of the
true population κ due to the larger sample size. On
the other hand, the larger dataset may have caused
annotator fatigue. Pearson standardised residuals
(Haberman, 1973) were calculated to identify the
main sources of disagreement.7 In the context of
inter-annotator agreement one expects these residu-
als to have large positive values on the agreement di-
agonal and negative values in all other cells. Among
the six main relations listed at the top of Table 1,
a small positive association was observed between
INST and ABOUT, indicating that borderline topics
such as assessment task and gas alarm were likely
to be annotated as INST by the first annotator and
ABOUT by the second. It seems that the guidelines
might need to clarify this category boundary.

It is clear from analysis of the data that the REL,
LEX and UNKNOWN categories show very low
agreement. They all have low residuals on the agree-
ment diagonal (that for UNKNOWN is negative) and
numerous positive entries off it. REL and LEX are
also the categories for which it is most difficult to

6The additional information provided by the direction and
rule annotations could be used to give a richer classification
scheme but has not yet been used in this way in my experiments.

7The standardised residual of cell ij is calculated as

eij =
nij − p̂i+p̂+j√

p̂i+p̂+j(1− p̂i+)(1− p̂+j)

where nij is the observed value of cell ij and p̂i+, p̂+j are row
and column marginal probabilities estimated from the data.

75

provide clear guidelines. On the other hand, the
MISTAG and NONCOMP categories showed good
agreement, with slightly higher agreement residu-
als than the other categories. To get a rough idea
of agreement on the six categories used in the clas-
sification experiments described below, agreement
was calculated for all items which neither annota-
tor annotated with any of REL, LEX, UNKNOWN,
MISTAG and NONCOMP. This left 343 items with
agreement of 73.6% and κ̂ = 0.683.

3.4 Discussion

This is the first work I am aware of where com-
pounds were annotated in their sentential context.
This aspect is significant, as compound meaning is
often context dependent (compare school manage-
ment decided. . . and principles of school manage-
ment) and in-context interpretation is closer to the
dynamic of real-world language use. Context can
both help and hinder agreement, and it is not clear
whether in- or out-of-context annotation is easier.

Previous work has given out-of-context agree-
ment figures for corpus data. Kim and Bald-
win (2005) report an experiment using 2,169 com-
pounds taken from newspaper text and the categories
of Nastase and Szpakowicz (2003). Their annota-
tors could assign multiple labels in case of doubt
and were judged to agree on an item if their anno-
tations had any label in common. This less strin-
gent measure yielded agreement of 52.31%. Girju
et al. (2005) report agreement for annotation using
both Lauer’s 8 prepositional labels (κ̂ = 0.8) and
their own 35 semantic relations (κ̂ = 0.58). These
figures are difficult to interpret as annotators were
again allowed assign multiple labels (for the prepo-
sitions this occurred in “almost all” cases) and the
multiply-labelled items were excluded from the cal-
culation of Kappa. This entails discarding the items
which are hardest to classify and thus most likely to
cause disagreement.

Girju (2006) has recently published impressive
agreement results on a related task. This involved
annotating 2,200 compounds extracted from an on-
line dictionary, each presented in five languages, and
resulted in a Kappa score of 0.67. This task may
have been facilitated by the data source and its mul-
tilingual nature. It seems plausible that dictionary
entries are more likely to refer to familiar concepts

than compounds extracted from a balanced corpus,
which are frequently context-dependent coinages or
rare specialist terms. Furthermore, the translations
of compounds in Romance languages often pro-
vide information that disambiguates the compound
meaning (this aspect was the main motivation for the
work) and translations from a dictionary are likely
to correspond to an item’s most frequent meaning.
A qualitative analysis of the experiment described
above suggests that about 30% of the disagreements
can confidently be attributed to disagreement about
the semantics of a given compound (as opposed to
how a given meaning should be annotated).8

4 SVM Learning with Co-occurrence Data

4.1 Method

The data used for classification was taken from the
2,000 items used for the annotation experiment, an-
notated by a single annotator. Due to time con-
straints, this annotation was done before the second
annotator had been used and was not changed af-
terwards. All compounds annotated as BE, HAVE,
IN, INST, AGENT and ABOUT were used, giving a
dataset of 1,443 items. All experiments were run us-
ing Support Vector Machine classifiers implemented
in LIBSVM.9 Performance was measured via 5-fold
cross-validation. Best performance was achieved
with a linear kernel and one-against-all classifica-
tion. The single SVM parameter C was estimated
for each fold by cross-validating on the training set.
Due to the efficiency of the linear kernel the optimi-
sation, training and testing steps for each fold could
be performed in under an hour.

I investigated what level of performance could
be achieved using only corpus information. Feature
vectors were extracted from the written BNC for
each modifier and head in the dataset under the
following conditions:

w5, w10: Each word within a window of 5 or 10
words on either side of the item is a feature.
Rbasic, Rmod, Rverb, Rconj: These feature sets

8For example, one annotator thought peat boy referred to a
boy who sells peat (AGENT) while the other thought it referred
to a boy buried in peat (IN).

9http://www.csie.ntu.edu.tw/˜cjlin/
libsvm

76

use the grammatical relation output of the RASP
parser run over the written BNC. The Rbasic feature
set conflates information about 25 grammatical
relations; Rmod counts only prepositional, nominal
and adjectival noun modification; Rverb counts
only relations among subjects, objects and verbs;
Rconj counts only conjunctions of nouns. In each
case, each word entering into one of the target
relations with the item is a feature and only the
target relations contribute to the feature values.

Each feature vector counts the target word’s co-
occurrences with the 10,000 words that most fre-
quently appear in the context of interest over the en-
tire corpus. Each compound in the dataset is rep-
resented by the concatenation of the feature vectors
for its head and modifier. To model aspects of co-
occurrence association that might be obscured by
raw frequency, the log-likelihood ratio G2 was used
to transform the feature space.10

4.2 Results and Analysis
Results for these feature sets are given in Table 2.
The simple word-counting conditions w5 and w10
perform relatively well, but the highest accuracy is
achieved by Rconj. The general effect of the log-
likelihood transformation cannot be stated categor-
ically, as it causes some conditions to improve and
others to worsen, but the G2-transformed Rconj fea-
tures give the best results of all with 54.95% ac-
curacy (53.42% macro-average). Analysis of per-
formance across categories shows that in all cases
accuracy is lower (usually below 30%) on the BE
and HAVE relations than on the others (often above
50%). These two relations are least common in the
dataset, which is why the macro-averaged figures are
slightly lower than the micro-averaged accuracy.

4.3 Discussion
It is interesting that the conjunction-based features
give the best performance, as these features are also
the most sparse. This may be explained by the fact
that words appearing in conjunctions are often tax-
onomically similar (Roark and Charniak, 1998) and
that taxonomic information is particularly useful for

10This measure is relatively robust where frequency counts
are low and consistently outperformed other association mea-
sures in the empirical evaluation of Evert (2004).

Raw G2

Accuracy Macro Accuracy Macro
w5 52.60% 51.07% 51.35% 49.93%
w10 51.84% 50.32% 50.10% 48.60%
Rbasic 51.28% 49.92% 51.83% 50.26%
Rmod 51.35% 50.06% 48.51% 47.03%
Rverb 48.79% 47.13% 48.58% 47.07%
Rconj 54.12% 52.44% 54.95% 53.42%

Table 2: Performance of BNC co-occurrence data

compound interpretation, as evidenced by the suc-
cess of WordNet-based methods (see Section 5).

In comparing reported classification results, it is
difficult to disentangle the effects of different data,
annotation schemes and classification methods. The
results described here should above all be taken to
demonstrate the feasibility of learning using a well-
motivated annotation scheme and to provide a base-
line for future work on the same data. In terms of
methodology, Turney’s (2006) Vector Space Model
experiments are most similar. Using feature vec-
tors derived from lexical patterns and frequencies re-
turned by a Web search engine, a nearest-neighbour
classifier achieves 45.7% accuracy on compounds
annotated with 5 semantic classes. Turney improves
accuracy to 58% with a combination of query ex-
pansion and linear dimensionality reduction. This
method trades off efficiency for accuracy, requiring
many times more resources in terms of time, stor-
age and corpus size than that described here. Lap-
ata and Keller (2004) obtain accuracy of 55.71% on
Lauer’s (1995) prepositionally annotated data using
simple search engine queries. Their method has the
advantage of not requiring supervision, but it cannot
be used with deep semantic relations.

5 SVM Classification with WordNet

5.1 Method

The experiments reported in this section make a ba-
sic use of the WordNet11 hierarchy. Binary feature
vectors are used whereby a vector entry is 1 if the
item belongs to or is a hyponym of the synset corre-
sponding to that feature, and 0 otherwise. Each com-
pound is represented by the concatenation of two
such vectors, for the head and modifier. The same

11http://wordnet.princeton.edu/

77

classification method is used as in Section 4.

5.2 Results and Discussion

This method achieves accuracy of 56.76% and
macro-averaged accuracy of 54.59%, slightly higher
than that achieved by the co-occurrence features.
Combining WordNet and co-occurrence vectors by
simply concatenating the G2-transformed Rconj
vector and WordNet feature vector for each com-
pound gives a further boost to 58.35% accuracy
(56.70% macro-average).

These results are higher than those reported for
similar approaches on open-text data (Kim and
Baldwin, 2005; Girju et al., 2005), though the same
caveat applies about comparison. The best results
(over 70%) reported so far for compound inter-
pretation use a combination of multiple lexical re-
sources and detailed additional annotation (Girju et
al., 2005; Girju, 2006).

6 Conclusion and Future Directions

The annotation scheme described above has been
tested on a rigorous multiple-annotator task and
achieved superior agreement to comparable results
in the literature. Further refinement should be possi-
ble but would most likely yield diminishing returns.
In the classification experiments, my goal was to
see what level of performance could be gained by
using straightforward techniques so as to provide
a meaningful baseline for future research. Good
results were achieved with methods that rely nei-
ther on massive corpora or broad-coverage lexical
resources, though slightly better performance was
achieved using WordNet. An advantage of resource-
poor methods is that they can be used for the many
languages where compounding is common but such
resources are limited.

The learning approach described here only cap-
tures the lexical semantics of the individual con-
situents. It seems intuitive that other kinds of corpus
information would be useful; in particular, contexts
in which the head and modifier of a compound both
occur may make explicit the relations that typically
hold between their referents. Kernel methods for us-
ing such relational information are investigated in Ó
Séaghdha (2007a) with promising results, and I am
continuing my research in this area.

References
Collin Baker, Charles Fillmore, and John Lowe. 1998.

The Berkeley FrameNet project. In Proc. ACL-
COLING-98, pages 86–90, Montreal, Canada.

Jacob Cohen. 1960. A coefficient of agreement for nom-
inal scales. Educational and Psychological Measure-
ment, 20:37–46.

Stefan Evert. 2004. The Statistics of Word Cooccur-
rences: Word Pairs and Collocations. Ph.D. thesis,
Universität Stuttgart.

Roxana Girju, Dan Moldovan, Marta Tatu, and Daniel
Antohe. 2005. On the semantics of noun compounds.
Computer Speech and Language, 19(4):479–496.

Roxana Girju. 2006. Out-of-context noun phrase seman-
tic interpretation with cross-linguistic evidence. In
Proc. CIKM-06, pages 268–276, Arlington, VA.

Shelby J. Haberman. 1973. The analysis of residuals in
cross-classified tables. Biometrics, 29(1):205–220.

Su Nam Kim and Timothy Baldwin. 2005. Automatic
interpretation of noun compounds using WordNet sim-
ilarity. In Proc. IJCNLP-05, pages 945–956, Jeju Is-
land, Korea.

Mirella Lapata and Frank Keller. 2004. The Web as a
baseline: Evaluating the performance of unsupervised
Web-based models for a range of NLP tasks. In Proc.
HLT-NAACL-04, pages 121–128, Boston, MA.

Mark Lauer. 1995. Designing Statistical Language
Learners: Experiments on Compound Nouns. Ph.D.
thesis, Macquarie University.

Judith N. Levi. 1978. The Syntax and Semantics of Com-
plex Nominals. Academic Press, New York.

Vivi Nastase and Stan Szpakowicz. 2003. Exploring
noun-modifier semantic relations. In Proc. IWCS-5,
Tilburg, Netherlands.

Brian Roark and Eugene Charniak. 1998. Noun-
phrase co-occurrence statistics for semi-automatic se-
mantic lexicon construction. In Proc. ACL-COLING-
98, pages 1110–1106, Montreal, Canada.

Diarmuid Ó Séaghdha. 2007a. Co-occurrence contexts
for corpus-based noun compound interpretation. In
Proc. of the ACL Workshop A Broader Perspective on
Multiword Expressions, Prague, Czech Republic.

Diarmuid Ó Séaghdha. 2007b. Designing and evaluating
a semantic annotation scheme for compound nouns. In
Proc. Corpus Linguistics 2007, Birmingham, UK.

Peter D. Turney. 2006. Similarity of semantic relations.
Computational Linguistics, 32(3):379–416.

Andrew Wilson and Jenny Thomas. 1997. Semantic an-
notation. In R. Garside, G. Leech, and A. McEnery,
editors, Corpus Annotation. Longman, London.

Tong Zhang and Frank J. Oles. 2001. Text categorization
based on regularized linear classification methods. In-
formation Retrieval, 4(1):5–31.

78

Proceedings of the ACL 2007 Student Research Workshop, pages 79–84,
Prague, June 2007. c©2007 Association for Computational Linguistics

Semantic Classification of Noun Phrases Using

Web Counts and Learning Algorithms

 Paul Nulty

School of Computer Science and Informatics

University College Dublin

Belfield, Dublin 4, Ireland

paul.nulty@ucd.ie

Abstract

This paper investigates the use of machine

learning algorithms to label modifier-noun
compounds with a semantic relation. The

attributes used as input to the learning algo-

rithms are the web frequencies for phrases
containing the modifier, noun, and a prepo-

sitional joining term. We compare and

evaluate different algorithms and different
joining phrases on Nastase and Szpako-

wicz’s (2003) dataset of 600 modifier-noun

compounds. We find that by using a Sup-

port Vector Machine classifier we can ob-
tain better performance on this dataset than

a current state-of-the-art system; even with

a relatively small set of prepositional join-
ing terms.

1 Introduction

Noun-modifier word pairs occur frequently in

many languages, and the problem of semantic dis-
ambiguation of these phrases has many potential

applications in areas such as question-answering

and machine translation. One very common ap-
proach to this problem is to define a set of seman-

tic relations which capture the interaction between

the modifier and the head noun, and then attempt

to assign one of these semantic relations to each
noun-modifier pair. For example, the phrase “flu

virus” could be assigned the semantic relation

“causal” (the virus causes the flu); the relation for

“desert storm” could be “location” (the storm is

located in the desert).

There is no consensus as to which set of seman-
tic relations best captures the differences in mean-

ing of various noun phrases. Work in theoretical

linguistics has suggested that noun-noun com-

pounds may be formed by the deletion of a predi-
cate verb or preposition (Levi 1978). However,

whether the set of possible predicates numbers 5 or

50, there are likely to be some examples of noun
phrases that fit into none of the categories and

some that fit in multiple categories.

Modifier-noun phrases are often used inter-
changeably with paraphrases which contain the

modifier and the noun joined by a preposition or

simple verb. For example, the query “morning ex-

ercise” returns 133,000 results from the Yahoo
search engine, and a query for the phrase “exercise

in the morning” returns 47,500 results. Sometimes

people choose to use a modifier-noun compound
phrase to describe a concept, and sometimes they

choose to use a paraphrase which includes a prepo-

sition or simple verb joining head noun and the

modifier. One method for deducing semantic rela-
tions between words in compounds involves gath-

ering n-gram frequencies of these paraphrases,

containing a noun, a modifier and a “joining term”
that links them. Some algorithm can then be used

to map from joining term frequencies to semantic

relations and so find the correct relation for the
compound in question. This is the approach we use

in our experiments. We choose two sets of joining

terms, based on the frequency with which they oc-

cur in between nouns in the British National Cor-

79

pus (BNC). We experiment with three different

learning algorithms; Nearest Neighbor, Multi-
Layer Perceptron and Support Vector Machines

(SVM).

2 Motivation

The motivation for this paper is to discover which

joining terms are good predictors of a semantic

relation, and which learning algorithms perform
best at the task of mapping from joining terms to

semantic relations for modifier-noun compounds.

2.1 Joining Terms

Choosing a set of joining terms in a principled
manner in the hope of capturing the semantic rela-

tion between constituents in the noun phrase is dif-

ficult, but there is certainly some correlation be-

tween a prepositional term or short linking verb
and a semantic relation. For example, the preposi-

tion “during” indicates a temporal relation, while

the preposition “in” indicates a locative relation,
either temporal or spatial.

 In this paper, we are interested in whether the

frequency with which a joining term occurs be-
tween two nouns is related to how it indicates a

semantic interaction. This is in part motivated by

Zipf’s theory which states that the more frequently

a word occurs in a corpus the more meanings or
senses it is likely to have (Zipf 1929). If this is

true, we would expect that very frequent preposi-

tions, such as “of”, would have many possible
meanings and therefore not reliably predict a se-

mantic relation. However, less frequent preposi-

tions, such as “while” would have a more limited

set of senses and therefore accurately predict a se-
mantic relation.

2.2 Machine Learning Algorithms

We are also interested in comparing the perform-

ance of machine learning algorithms on the task of
mapping from n-gram frequencies of joining terms

to semantic relations. For the experiments we use

Weka, (Witten and Frank, 1999) a machine learn-
ing toolkit which allows for fast experimentation

with many standard learning algorithms. In Section

5 we present the results obtained using the nearest-

neighbor, neural network (i.e. multi-layer percep-
tron) and SVM. The mechanisms of these different

learning approaches will be discussed briefly in

Section 4.

3 Related Work

3.1 Web Mining

Much of the recent work conducted on the problem

of assigning semantic relations to noun phrases has

used the web as a corpus. The use of hit counts

from web search engines to obtain lexical
information was introduced by Turney (2001). The

idea of searching a large corpus for specific lexico-

syntactic phrases to indicate a semantic relation of
interest was first described by Hearst (1992).

 A lexical pattern specific enough to indicate a

particular semantic relation is usually not very

frequent, and using the web as a corpus alleviates
the data sparseness problem. However, it also

introduces some problems.

• The query language permitted by the large

search engines is somewhat limited.

• Two of the major search engines (Google and

Yahoo) do not provide exact frequencies, but

give rounded estimates instead.

• The number of results returned is unstable as

new pages are created and deleted all the time.
 Nakov and Hearst (2005) examined the use of

web-based n-gram frequencies for an NLP task and

concluded that these issues do not greatly impact

the interpretation of the results. Keller and Lapata
(2003) showed that web frequencies correlate

reliably with standard corpus frequencies.

 Lauer (1995) tackles the problem of semantically
disambiguating noun phrases by trying to find the

preposition which best describes the relation

between the modifier and head noun. His method
involves searching a corpus for occurrences

paraphrases of the form “noun preposition

modifier”. Whichever preposition is most frequent

in this context is chosen. Lapata and Keller (2005)
improved on Lauer's results at the same task by

using the web as a corpus. Nakov and Hearst

(2006) use queries of the form “noun that *
modifier” where '*' is a wildcard operator. By

retrieving the words that most commonly occurred

in the place of the wildcard they were able to

identify very specific predicates that are likely to
represent the relation between noun and modifier.

80

3.2 Machine Learning Approaches

There have been two main approaches used when
applying machine learning algorithms to the se-

mantic disambiguation of modifier-noun phrases.

 The first approach is to use semantic properties of
the noun and modifier words as attributes, using a

lexical hierarchy to extract these properties. This

approach was used by Rosario and Hearst (2001)

within a specific domain – medical texts. Using an
ontology of medical terms they train a neural net-

work to semantically classify nominal phrases,

achieving 60% accuracy over 16 classes.
 Nastase and Szpakowicz (2003) use the position

of the noun and modifier words within general se-

mantic hierarchies (Roget's Thesaurus and Word-
Net) as attributes for their learning algorithms.

They experiment with various algorithms and con-

clude that a rule induction system is capable of

generalizing to characterize the noun phrases.
Moldovan et al (2004) also use WordNet. They

experiment with a Bayesian algorithm, decision

trees, and their own algorithm; semantic scattering.
There are some drawbacks to the technique of us-

ing semantic properties extracted from a lexical

hierarchy. Firstly, it has been noted that the distinc-
tions between word senses in WordNet are very

fine-grained, making the task of word-sense dis-

ambiguation tricky. Secondly, it is usual to use a

rule-based learning algorithm when the attributes
are properties of the words rather than n-gram fre-

quency counts. As Nastase and Szpakowicz (2003)

point out, a large amount of labeled data is re-
quired to allow these rule-based learners to effec-

tively generalize, and manually labeling thousands

of modifier-noun compounds would be a time-

consuming task.

Table 1: Examples for each of the five relations

The second approach is to use statistical informa-
tion about the occurrence of the noun and modifier

in a corpus to generate attributes for a machine

learning algorithm. This is the method we will de-

scribe in this paper. Turney and Littman (2005)

use a set of 64 short prepositional and conjunctive

phrases they call “joining terms” to generate exact
queries for AltaVista of the form “noun joining

term modifier”, and “modifier joining term noun”.

 These hit counts were used with a nearest
neighbor algorithm to assign the noun phrases se-

mantic relations. Over the set of 5 semantic rela-

tions defined by Nastase and Szpakowicz (2003),

they achieve an accuracy of 45.7% for the task of
assigning one of 5 semantic relations to each of the

600 modifier-noun phrases.

4 Method

 The method described in this paper is similar to

the work presented in Turney and Littman (2005).

We collect web frequencies for queries of the form
“head joining term modifier”. We did not collect

queries of the form “modifier joining term head”;

in the majority of paraphrases of noun phrases the
head noun occurs before the modifying word. As

well as trying to achieve reasonable accuracy, we

were interested in discovering what kinds of join-
ing phrases are most useful when trying to predict

the semantic relation, and which machine learning

algorithms perform best at the task of using vectors

of web-based n-gram frequencies to predict the
semantic relation.

 For our experiments we used the set of 600 la-

beled noun-modifier pairs of Nastase and Szpako-
wicz (2003). This data was also used by Turney

and Littman (2005). Of the 600 modifier-noun

phrases, three contained hyphenated or two-word
modifier terms, for example “test-tube baby”. We

omitted these three examples from our experi-

ments, leaving a dataset of 597 examples.

 The data is labeled with two different sets of
semantic relations: one set of 30 relations with

fairly specific meanings, and another set of 5 rela-

tions with more abstract meanings. For our ex-
periments we focused on the set of 5 relations. One

reason for this is that dividing a set of 600 in-

stances into 30 classes results in a fairly sparse and

uneven dataset. Table 1 is a list of the relations
used and examples of compounds that are labeled

with each relation.

4.1 Collecting Web Frequencies

In order to collect the n-gram frequencies, we used
the Yahoo Search API. Collecting frequencies for

causal flu virus, onion tear

temporal summer travel, morning class

spatial west coast, home remedy

participant mail sorter, blood donor

quality rice paper, picture book

81

600 noun-modifier pairs, using 28 different joining

terms required 16,800 calls to the search engine.
We will discuss our choice of the joining terms in

the next section.

 When collecting web frequencies we took advan-
tage of the OR operator provided by the search

engine. For each joining term, we wanted to sum

the number of hits for the term on its own, the term

followed by 'a' and the term followed by 'the'. In-
stead of conducting separate queries for each of

these forms, we were able to sum the results with

just one search. For example, if the noun phrase
was “student invention” and the joining phrase was

“by”; one of the queries would be:

“invention by student” OR “invention by a student” OR

“invention by the student”

This returns the sum of the number of pages

matched by each of these three exact queries. The

idea is that these sensible paraphrases will return
more hits than nonsense ones, such as:

 “invention has student” OR “invention has a student”

OR “invention has the student”

It would be possible to construct a set of hand-

coded rules to map from joining terms to semantic
relations; for example “during” maps to temporal,

“by” maps to causal and so on. However, we hope

that the classifiers will be able to identify combina-

tions of prepositions that indicate a relation.

4.2 Choosing a Set of Joining Terms

Possibly the most difficult problem with this

method is deciding on a set of joining terms which

is likely to provide enough information about the
noun-modifier pairs to allow a learning algorithm

to predict the semantic relation. Turney and Litt-

man (2005) use a large and varied set of joining
terms. They include the most common preposi-

tions, conjunctions and simple verbs like “has”,

“goes” and “is”. Also, they include the wildcard

operator '*' in many of their queries; for example
“not”, “* not” and “but not” are all separate que-

ries. In addition, they include prepositions both

with and without the definite article as separate
queries, for example “for” and “for the”.

 The joining terms used for the experiments in this

paper were chosen by examining which phrases

most commonly occurred between two nouns in

the BNC. We counted the frequencies with which

phrases occurred between two nouns and chose the
28 most frequent of these phrases as our joining

terms. We excluded conjunctions and determiners

from the list of the most frequent joining terms.
We excluded conjunctions on the basis that in most

contexts a conjunction merely links the two nouns

together for syntactic purposes; there is no real

sense in which one of the nouns modifies another
semantically in this context. We excluded deter-

miners on the basis that the presence of a deter-

miner does not affect the semantic properties of the
interaction between the head and modifier.

4.3 Learning Algorithms

 There were three conditions experimented with

using three different algorithms. For the first con-
dition, the attributes used by the learning algo-

rithms consisted of vectors of web hits obtained

using the 14 most frequent joining terms found in

the BNC. The next condition used a vector of web
hits obtained using the joining terms that occurred

Table 2: Joining terms ordered by the frequency

with which they occurred between two nouns in
the BNC.

from position 14 to 28 in the list of the most fre-

quent terms found in the BNC. The third condition

used all 28 joining terms. The joining terms are
listed in Table 2. We used the log of the web

counts returned, as recommended in previous work

(Keller and Lapata, 2003).
 The first learning algorithm we experimented

with was the nearest neighbor algorithm ‘IB1’, as

1-14 15-28

of

in

to

for

on

with
at

is

from

as

by

between

about

has

against

within

during

through

over

towards
without

across

because

behind

after

before

while

under

82

implemented in Weka. This algorithm considers

the vector of n-gram frequencies as a multi-
dimensional space, and chooses the label of the

nearest example in this space as the label for each

new example. Testing for this algorithm was done
using leave-one-out cross validation.

 The next learning algorithm we used was the

multi-layer perceptron, or neural network. The

network was trained using the backpropagation of
error technique implemented in Weka. For the first

two sets of data we used a network with 14 input

nodes, one hidden layer with 28 nodes, and 5 out-
put nodes. For the final condition, which uses the

frequencies for all 28 joining terms, we used 28

input nodes, one hidden layer with 56 nodes, and
again 5 outputs, one for each class. We used 20-

fold cross validation with this algorithm.

 The final algorithm we tested was an SVM

trained with the Sequential Minimal Optimization
method provided by Weka. A support vector ma-

chine is a method for creating a classification func-

tion which works by trying to find a hypersurface
in the space of possible inputs that splits the posi-

tive examples from the negative examples for each

class. For this test we again used 20-fold cross
validation.

5. Results

The accuracy of the algorithms on each of the con-
ditions is illustrated below in Table 3. Since the

largest class in the dataset accounts for 43% of the

examples, the baseline accuracy for the task
(guessing “participant” all the time) is 43%.

 The condition containing the counts for the less

frequent joining terms performed slightly better

than that containing the more frequent ones, but
the best accuracy resulted from using all 28 fre-

quencies. The Multi-Layer Perceptron performed

better than the nearest neighbor algorithm on all
three conditions. There was almost no difference in

accuracy between the first two conditions, and

again using all of the joining terms produced the

best results.

 The SVM algorithm produced the best accuracy
of all, achieving 50.1% accuracy using the com-

bined set of joining terms. The less frequent join-

ing terms achieve slightly better accuracy using the
Nearest Neighbor and SVM algorithms, and very

slightly worse accuracy using the neural network.

Using all of the joining terms resulted in a signifi-

cant improvement in accuracy for all algorithms.
The SVM consistently outperformed the baseline;

neither of the other algorithms did so.

6. Discussion and Future Work

Our motivation in this paper was twofold. Firstly,

we wanted to compare the performance of different

machine learning algorithms on the task of map-
ping from a vector of web frequencies of para-

phrases containing joining terms to semantic rela-

tions. Secondly, we wanted to discover whether the
frequency of joining terms was related to their ef-

fectiveness at predicting a semantic relation.

6.1 Learning Algorithms

The results suggest that the nearest neighbor ap-
proach is not the most effective algorithm for the

classification task. Turney and Littman (2005)

achieve an accuracy of 45.7%, where we achieve a

maximum accuracy of 38.1% on this dataset using
a nearest neighbor algorithm. However, their tech-

nique uses the cosine of the angle between the vec-

tors of web counts as the similarity metric, while
the nearest neighbor implementation in Weka uses

the Euclidean distance.

Also, they use 64 joining terms and gather

counts for both the forms “noun joining term modi-
fier” and “modifier joining term noun” (128 fre-

quencies in total); while we use only the former

construction with 28 joining terms. By using the
SVM classifier, we were able to achieve a higher

accuracy than Turney and Littman (50.1% versus

45.7%) with significantly fewer joining terms (28
versus 128). However, one issue with the SVM is

Table 3: Accuracy for each algorithm using each set of joining terms on the Nastase and Szpako-
wicz test set of modifier-noun compounds.

 Joining Terms 1-14 Joining terms 15-28 All 28 Joining terms

Nearest Neighbor 32.6 34.7 38.1

Multi Layer Perceptron 37.6 37.4 42.2

Support Vector Machine 44.2 45.9 50.1

83

that it never predicted the class “causal” for any of

the examples. The largest class in our dataset is
“participant”, which is the label for 43% of the

examples; the smallest is “temporal”, which labels

9% of the examples. “Causal” labels 14% of the
data. It is difficult to explain why the algorithm

fails to account for the “causal” class; a useful task

for future work would be to conduct a similar ex-

periment with a more balanced dataset.

6.2 Joining Terms

The difference in accuracy achieved by the two

sets of joining terms is quite small, although for

two of the algorithms the less frequent terms did
achieve slightly better results. The difficulty is that

the task of deducing a semantic relation from a

paraphrase such as “storm in the desert” requires
many different types of information. It requires

knowledge about the preposition “in”; i.e. that it

indicates a location. It requires knowledge about

the noun “desert”, i.e. that it is a location in space
rather than time, and it requires the knowledge that

a “storm” may refer both to an event in time and an

entity in space. It may be that a combination of
semantic information from an ontology and statis-

tical information about paraphrases could be used

together to achieve better performance on this task.

 Another interesting avenue for future work in
this area is investigation into exactly how “joining

terms” relate to semantic relations. Given Zipf's

observation that high frequency words are more
ambiguous than low frequency words, it is possible

that there is a relationship between the frequency

of the preposition in a paraphrase such as “storm
in the desert” and the ease of understanding that

phrase. For example, the preposition 'of' is very

frequent and could be interpreted in many ways.

Therefore, the ‘of’ may be used in phrases where
the semantic relation can be easily deduced from

the nominals in the phrase alone. Less common

(and therefore more informative) prepositions such
as ‘after’ or ‘because’ may be used more often in

phrases where the nominals alone do not contain

enough information to deduce the relation, or the
relation intended is not the most obvious one given

the two nouns.

References

Marti A. Hearst. 1992. Automatic Acquisition of Hypo-

nyms from Large Text Corpora. COLING 92: (2) pp.

539-545, Nantes, France,

Frank Keller and Mirella Lapata. 2003. Using the Web

to Obtain Frequencies for Unseen Bigrams. Compu-

tational Linguistics, 29: pp 459-484.

Mirella Lapata and Frank Keller. 2005. Web-Based

Models for Natural Language Processing. ACM

Transactions on Speech and Language Processing

2:1, pp 1-31.

Mark Lauer. 1995. Designing Statistical Language

Learners: Experiments on Noun Compounds. PhD

thesis, Macquarie University, NSW 2109, Australia.

Judith Levi. 1978. The Syntax and Semantics of Com-
plex Nominals, Academic Press, New York, NY.

Dan Moldovan, Adriana Badulescu, Marta Tatu, Daniel

Antohe and Roxana Girju. 2004. Models for the Se-

mantic Classification of Noun Phrases. In Proceed-

ings of the HLT/NAACL Workshop on Computational

Lexical Semantics. pp 60-67 Boston , MA.

Preslav Nakov and Marti Hearst. 2006. Using Verbs to

Characterize Noun-Noun Relations. In Proceedings

of AIMSA 2006, pp 233-244, Varne, Bulgaria.

Preslav Nakov and Marti Hearst. 2005. Using the Web

as an Implicit Training Set: Application to Structural

Ambiguity Resolution. In Proceedings of
HLT/EMNLP'05. pp 835-842, Vancouver, Canada.

 Vivi Nastase and Stan Szpakowicz. 2003. Exploring

Noun-Modifier Semantic Relations. In Fifth Interna-

tional Workshop on Computational Semantics, pp

285-301. Tillburg, Netherlands.

Barbara Rosario and Marti A. Hearst. 2001. Classifying

the semantic relations in noun compounds via a do-

main-specific lexical hierarchy. In Proceedings of

EMNLP 2001, pp 82-90, Pittsburgh, PA, USA.

Peter D. Turney. 2001. Mining the web for synonyms:

PM-IR vs LSA on TOEFL. Proceedings of
ECML'01. pp 491-502. Freiburg, Germany.

Peter D. Turney and Michael L. Littman. 2005. Corpus-

based learning of analogies and semantic relations.

Machine Learning, 60(1–3):251–278.

Ian H. Witten and Eibe Frank. 1999. Data Mining:

Practical Machine Learning Tools and Techniques

with Java Implementations. Morgan Kaufmann.

George K. Zipf. 1932. Selected Studies of the Principle

of Relative Frequency in Language. Cambridge, MA.

84

Proceedings of the ACL 2007 Student Research Workshop, pages 85–90,
Prague, June 2007. c©2007 Association for Computational Linguistics

Computing Lexical Chains with Graph Clustering

Olena Medelyan
Computer Science Department

The University of Waikato
New Zealand

olena@cs.waikato.ac.nz

Abstract

This paper describes a new method for
computing lexical chains. These are
sequences of semantically related words
that reflect a text’s cohesive structure. In
contrast to previous methods, we are able
to select chains based on their cohesive
strength. This is achieved by analyzing the
connectivity in graphs representing the
lexical chains. We show that the generated
chains significantly improve performance
of automatic text summarization and
keyphrase indexing.

1 Introduction

Text understanding tasks such as topic detection,
automatic summarization, discourse analysis and
question answering require deep understanding of
the text’s meaning. The first step in determining
this meaning is the analysis of the text’s concepts
and their inter-relations. Lexical chains provide a
framework for such an analysis. They combine
semantically related words across sentences into
meaningful sequences that reflect the cohesive
structure of the text.

Lexical chains, introduced by Morris and Hirst
(1991), have been studied extensively in the last
decade, since large lexical databases are available
in digital form. Most approaches use WordNet or
Roget’s thesaurus for computing the chains and
apply the results for text summarization.

We present a new approach for computing
lexical chains by treating them as graphs, where

nodes are document terms and edges reflect
semantic relations between them. In contrast to
previous methods, we analyze the cohesive
strength within a chain by computing the diameter
of the chain graph. Weakly cohesive chains with a
high graph diameter are decomposed by a graph
clustering algorithm into several highly cohesive
chains. We use WordNet and alternatively a
domain-specific thesaurus for obtaining semantic
relations between the terms.

We first give an overview of existing methods
for computing lexical chains and related areas.
Then we discuss the motivation behind the new
approach and describe the algorithm in detail. Our
evaluation demonstrates the advantages of using
extracted lexical chains for the task of automatic
text summarization and keyphrase indexing,
compared to a simple baseline approach. The
results are compared to annotations produced by a
group of humans.

2 Related Work

Morris and Hirst (1991) provide the theoretical
background behind lexical chains and demonstrate
how they can be constructed manually from
Roget’s thesaurus. The algorithm was re-
implemented as soon as digital WordNet and
Roget’s became available (Barzilay and Elhadad,
1997) and its complexity was improved (Silber and
McCoy, 2002; Galley and McKeown, 2003). All
these algorithms perform explicit word sense
disambiguation while computing the chains. For
each word in a document the algorithm chooses
only one sense, the one that relates to members of
existing lexical chains. Reeve et al. (2006)

85

compute lexical chains with a medical thesaurus
and suggest an implicit disambiguation: once the
chains are computed, weak ones containing
irrelevant senses are eliminated. We also follow
this approach.

One of the principles of building lexical chains
is that each term must belong to exactly one chain.
If several chains are possible, Morris and Hirst
(1991) choose the chain to whose overall score the
term contributes the most. This score is a sum over
weights of semantic relations between chain
members. This approach produces different lexical
chains depending on the order of words in the
document. This is not justified, as the same content
can be expressed with different sequences of
statements. We propose an alternative order
independent approach, where a graph clustering
algorithm calculates the chain to which a term
should belong.

3 Lexical Chains

The following notation is used throughout the
paper. A lexical chain is a graph G = (V,E) with
nodes viV being terms and edges (vi, vj, wij)E
representing semantic relations between them,
where wij is a weight expressing the strength of the
relation. 1 A set of terms and semantic relations
building a graph is a valid lexical chain if the graph
is connected, i.e. there are no unconnected nodes
and no isolated groups of nodes.

The graph distance d(vi, vj) between two nodes
vi and vj is the minimum length of the path
connecting them. And the graph diameter is the
“longest shortest distance” between any two nodes
in a graph, defined as:

(1)),(max , jivv vvdm
ji

 .

1 The initial experiments presented in this paper use an
unweighted graph with wi,j = 1 for any semantic relation.

Because semantic relations are either bi-
directional or inverse, we treat lexical chains as
undirected graphs.

3.1 The Cohesive Strength

Lexical cohesion is the property of lexical
entities to “stick together” and function as a whole
(Morris and Hirst, 1991). How strongly the
elements of a lexical chain “stick together,” that is
the cohesive strength of the chain, has been
defined as the sum of semantic relations between
every pair of chain members (e.g. Morris and Hirst,
1991; Silber and McCoy, 2002). This number
increases with the length of a chain, but longer
lexical chains are not necessarily more cohesive
than shorter ones.

Instead, we define the cohesive strength as the
diameter of the chain graph. Depending on their
diameter we propose to group lexical chains as
follows:

1. Strongly cohesive lexical chains (Fig. 1a)
build fully connected graphs where each term is
related to all other chain members and m = 1.

2. Weakly cohesive lexical chains (Fig. 1b)
connect terms without cycles and with a diameter
m = |V|  1.

3. Moderately cohesive lexical chains (Fig. 1c)
are in-between the above cases with m [1, |V| 1].

To detect individual topics in texts it is more
useful to extract strong lexical chains. For
example, Figure 1a describes “physiographic
features” and 1c refers to “seafood,” while it is
difficult to summarize the weak chain 1b with a
single term. The goal is to compute lexical chains
with the highest possible cohesion. Thus, the
algorithm must have a way to control the selection.

physiographic
features

valleys lowland plains lagoons

(a) strong m = 1

symptoms eyes

vision

senses

pain

(b) weak m = 4

shelfish

seafoods

squids

foods
fish

(c) average m = 2

Semantic relation: broader term sister term related term

physiographic
features

valleys lowland plains lagoons

(a) strong m = 1

symptoms eyes

vision

senses

pain

(b) weak m = 4

shelfish

seafoods

squids

foods
fish

(c) average m = 2

Semantic relation: broader term sister term related term

Figure 1. Lexical chains of different cohesive strength.

86

3.2 Computing Lexical Chains

The algorithm consists of two stages. First, we
compute lexical chains in a text with only one
condition: to be included into a chain a term needs
to be related to at least one of its members. Then,
we apply graph clustering on the resulting weak
chains to determine their strong subchains.

I. Determining all chains. First, the documents’
n-grams are mapped onto terms in the thesaurus.
To improve conflation we ignore stopwords and
sort the remaining stemmed words alphabetically.
Second, for each thesaurus term t that was found in
the document we search for an appropriate lexical
chain. We iterate over the list L containing
previously created chains and check whether term t
is related to any of the members of each chain. The
following cases are possible:

1. No lexical chains were found.
A new lexical chain with the term t as a
single element is created and included in L.

2. One lexical chain was found.
This chain is updated with the term t.

3. Two or more lexical chains were found.
We merge these chains into a single new
chain, and remove the old chains from L.

II. Clustering within the weak chains.
Algorithms for graph clustering divide sparsely
connected graphs into dense subgraphs with a
similar diameter. We consider each lexical chain in
L with diameter 3m as a weak chain and apply
graph clustering to identify highly cohesive
subchains within this chain. The list L is updated
with the newly generated chains and the original
chain is removed.

A popular graph clustering algorithm, Markov
Clustering (MCL) is based on the idea that “a
random walk that visits a dense cluster will likely
not leave the cluster until many of its vertices have
been visited” (van Dongen, 2000). MCL is
implemented as a sequence of iterative operations
on a matrix representing the graph. We use
ChineseWhispers (Biemann, 2006), a special case
of MCL that performs the iteration in a more
aggressive way, with an optimized linear
complexity with the number of graph edges.

Figure 2 demonstrates how an original weakly
cohesive lexical chain has been divided by
ChineseWhispers into five strong chains.

4 Lexical Chains for Text Summarization

Lexical chains are usually evaluated in terms of their
performance on the automatic text summarization
task, where the most significant sentences are
extracted from a document into a summary of a
predefined length. The idea is to use the cohesive
information about sentence members stored in
lexical chains. We first describe the summarization
approach and then compare results to manually
created summaries.

4.1 Identifying the Main Sentences

The algorithm takes one document at a time and
computes its lexical chains as described in Section
3.2, using the lexical database WordNet. First, we
consider all semantic senses of each document
term. However, after weighting the chains we
eliminate senses appearing in low scored chains.

Doran et al. (2004) state that changes in
weighting schemes have little effect on summaries.
We have observed significant differences between
reported functions on our data and achieved best
results with the formula produced by Barzilay and
Elhadad (1997):

(2)  



LCt

LCt

tfreq
tfreq

LC
LCScore)()

)(

||
1()(

Here, |LC| is the length of the chain and freq(t) is
the frequency of the term t in the document. All
lexical chains with score lower than a threshold
contain irrelevant word senses and are eliminated.

Next we identify the main sentences for the final
summary of the document. Different heuristics
have been proposed for sentence extraction based
on the information in lexical chains. For each top
scored chain, Barzilay and Elhadad (1997) extract

econometrics

statistsical
methods

economic
analysis

case
studies

methods

measurement

evaluation

statistical
data

data
analysis cartography

data
collection

surveys

censures

econometrics

statistsical
methods

economic
analysis

case
studies

methods

measurement

evaluation

statistical
data

data
analysis cartography

data
collection

surveys

censures

Figure 2. Clustering of a weak chain
with ChineseWhispers.

87

 Rater 2
Positive Negative

Positive a bRater 1
Negative c d

Table 1. Possible choices for any two raters

that sentence which contains the first appearance
of a chain member. Doran et al. (2004) sum up the
weights all words in the sentence, which
correspond to the chain weights in which these
words occur. We choose the latter heuristic
because it significantly outperforms the former
method in our experiments.

The highest scoring sentences from the
document, presented in their original order, form
the automatically generated summary. How many
sentences are extracted depends on the requested
summary length, which is defined as the
percentage of the document length.

4.2 Experimental Settings

For evaluation we used a subset of a manually
annotated corpus specifically created to evaluate
text summarization systems (Hasler et al. 2003).
We concentrate only on documents with at least
two manually produced summaries: 11 science and
29 newswire articles with two summaries each, and
7 articles additionally annotated by a third person.
This data allows us to compare the consistency of
the system with humans to their consistency with
each other.

The results are evaluated with the Kappa
statistic , defined for Table 1 as follows:

(3)
))(()9)((

)(2

badbcca

bcab






It takes into account the probability of chance
agreement and is widely used to measure inter-
rater agreement (Hripcsak and Rothshild, 2005).
The ideal automatic summarization algorithm
should have as high agreement with human
subjects as they have with each other.

We also use a baseline approach (BL) to
estimate the advantage of using the proposed
lexical chaining algorithm (LCA). It extracts text
summaries in exactly the manner described in
Section 4.1, with the exception of the lexical
chaining stage. Thus, when weighting sentences,
the frequencies of all WordNet mappings are taken
into account without the implicit word sense
disambiguation provided by lexical chains.

Humans BL LCA
S1 0.19 0.2029 newswire

articles S2
0.32

0.20 0.24
S1 0.08 0.1311 science

articles S2
0.34

0.13 0.22

Table 2. Kappa agreement on 40 summaries

vs. human
2,3 and 1 vs. BL vs. LCA

human 1 0,41 0,30 0,30
human 2 0,38 0,22 0,24
human 3 0,28 0,17 0,24

average 0,36 0,23 0,26

Table 3. Kappa agreement on 7 newswire articles

4.3 Results

Table 2 compares the agreement among the human
annotators and their agreement with the baseline
approach BL and the lexical chain algorithm LCA.
The agreement between humans is low, which
confirms that sentence extraction is a highly
subjective task. The lexical chain approach LCA
significantly outperforms the baseline BL,
particularly on the science articles.

While the average agreement of the LCA with
humans is still low, the picture changes when we
look at the agreement on individual documents.
Human agreement varies a lot (stdev = 0.24), while
results produced by LCA are more consistent
(stdev = 0.18). In fact, for over 50% of documents
LCA has greater or the same agreement with one
or both human annotators than they with each
other. The overall superior performance of humans
is due to exceptionally high agreement on a few
documents, whereas on another couple of
documents LCA failed to produce a consistent
summary with both subjects. This finding is similar
to the one mentioned by Silber and McCoy (2002).

Table 3 shows the agreement values for 7
newswire articles that were summarized by three
human annotators. Again, LCA clearly
outperforms the baseline BL. Interestingly, both
systems have a greater agreement with the first
subject than the first and the third human subjects
with each other.

5 Lexical Chains for Keyphrase Indexing

Keyphrase indexing is the task of identifying the
main topics in a document. The drawback of
conventional indexing systems is that they analyze

88

Professional Indexers
1 2 3 4 5 6 Avg

1 61 51 64 57 57 58
2 61 48 53 60 52 55
3 51 48 54 44 61 51
4 64 53 54 51 57 56
5 57 60 44 51 49 52
6 57 52 61 57 49 55

BL 42 39 37 39 39 35 39
LCA 43 42 40 40 39 40 41

Table 4. Topic consistency over 30 documents

document terms individually. Lexical chains enable
topical indexing, where first highly cohesive terms
are organized into larger topics and then the main
topics are selected. Properties of chain members
help to identify terms that represent each
keyphrases. To compute lexical chains and assign
keyphrases this time we use a domain-specific
thesaurus instead of WordNet.

5.1 Finding Keyphrases in Lexical Chains

The ranking of lexical chains is essential for
determining the main topics of a document. Unlike
in summarization, it should capture the specificity
of the individual chains. Also, for some topics, e.g.
proper nouns, the number of terms to express it can
be limited; therefore we average frequencies over
all chain members. Our measure of chain
specificity combines TFIDFs and term length, 2

which boosts chains containing specific terms that
are particularly frequent in a given document:

(4)
LC

tlengthtTFIDF
LCScore LCtLCt







)()(
)(

We assume that the top ranked weighted lexical
chains represent the main topics in a document. To
determine the keyphrases, for each lexical chain
we need to choose a term that describes this chain
in the best way, just as “seafood” is the best
descriptor for the chain in Figure 1c.

Each member of the chain t is scored as follows:

(5))()()()(tlengthtNDtTFIDFtScore 

where ND(t) is the node degree, or the number of
edges connecting term t to other chain members.
The top scored term is chosen as a keyphrase.

2 Term length, measured in words, gives an indirect but
simple measure of its specificity. E.g., “tropical rain
forests” is more specific than “forests”.

Professional indexers tend to choose more than
one term for a document’s most prominent topics.
Thus, we extract the top two keyphrases from the
top two lexical chains with |LC|  3. If the second
keyphrase is a broader or a narrower term of the
first one, this rule does not apply.

5.2 Evaluation of the Extracted Keyphrases

This approach is evaluated on 30 documents
indexed each by 6 professional indexers from the
UN’s Food and Agriculture Organization. The
keyphrases are driven from the agricultural
thesaurus Agrovoc3 with around 40,000 terms and
30,000 semantic relations between them.

The effectiveness of the lexical chains is shown
in comparison to a baseline approach, which given
a document simply defines keyphrases as Agrovoc
terms with top TFIDF values.

Indexing consistency is computed with the F-
Measure F, which can be expressed in terms of
Table 1 (Section 4.1) as following:4

(6)
cba

a
F




2

2

The overlap between two keyphrase sets a is
usually computed by exact matching of keyphrases.
However, discrepancies between professional
human indexers show that there are no “correct”
keyphrases. Capturing main topics rather than
exact term choices is more important. Lexical
chains provide a way of measuring this so called
topical consistency. Given a set of lexical chains
extracted from a document, we first compute
chains that are covered in its keyphrase set and
then compute consistency in the usual manner.

5.3 Results

Table 4 shows topical consistency between each
pair of professional human indexers, as well as
between the indexers and the two automatic
approaches, baseline BL and the lexical chain
algorithm LCA, averaged over 30 documents.

The overall consistency between the human
indexers is 55%. The baseline BL is 16 percentage
points less consistent with the 6 indexers, while

3 http://www.fao.org/agrovoc/
4 When vocabulary is large, the consistency is the same,
whether it is computed with the Kappa statistic or the F-
Measure (Hripcsak and Rothshild, 2005).

89

LCA is 1 to 5 percentage points more consistent
with each indexer than the baseline.

6 Discussion

Professional human indexers first perform
conceptual analysis of a document and then
translate the discovered topics into keyphrases. We
show how these two indexing steps are realized
with lexical chain approach that first builds an
intermediate semantic representation of a
document and then translates chains into
keyphrases. Conceptual analysis with lexical
chains in text summarization helps to identify
irrelevant word senses.

The initial results show that lexical chains
perform better than baseline approaches in both
experiments. In automatic summarization, lexical
chains produce summaries that in most cases have
higher consistency with human annotators than
they with each other, even using a simplified
weighting technique. Integrating lexical chaining
into existing keyphrase indexing systems is a
promising step towards their improvement.

The lexical chaining does not require any
resources other than a controlled vocabulary. We
have shown that it performs well with a general
lexical database and with a domain-specific
thesaurus. We use the Semantic Knowledge
Organization Standard 5 which allows easy inter-
changeability of thesauri. Thus, this approach is
domain and language independent.

7 Conclusions

We have shown a new method for computing
lexical chains based on graph clustering. While
previous chaining algorithms did not analyze the
lexical cohesion within each chain, we force our
algorithm to produce highly cohesive lexical
chains based on the minimum diameter of the chain
graph. The required cohesion can be controlled by
increasing the diameter value and adjusting
parameters of the graph clustering algorithm.

Experiments on text summarization and key-
phrase indexing show that the lexical chains
approach produces good results. It combines
symbolic analysis with statistical features and

5 http://www.w3.org/2004/02/skos/

outperforms a purely statistical baseline. The
future work will be to further improve the lexical
chaining technique and integrate it into a more
complex topical indexing system.

8 Acknowledgements

I would like to thank my PhD supervisors
Ian H. Witten and Eibe Frank, as well as Gordon
Paynter and Michael Poprat and the anonymous
reviewers of this paper for their valuable comments.
This work is supported by a Google Scholarship.

References

Chris Biemann 2006. Chinese Whispers—an Efficient
Graph Clustering Algorithm and its Application to
Natural Language Processing Problems. In Proc of
the HLT-NAACL-06 Workshop on Textgraphs, pp.
73-80.

Regina Barzilay and Michael Elhadad. 1997. Using
Lexical Chains for Text Summarization, In Proc of
the ACL Intelligent Scalable Text Summarization
Workshop, pp. 10-17.

Stijn M. van Dongen. 2000. Graph Clustering by Flow
Simulation. PhD thesis, University of Utrecht.

William P. Doran, Nicola Stokes, Joe Carthy and John
Dunnion. 2004. Assessing the Impact of Lexical
Chain Scoring Methods on Summarization. In Proc of
CICLING’04, pp. 627-635.

Laura Hasler, Constantin Orasan and Ruslan Mitkov.
2003. Building Better Corpora for Summarization. In
Proc of Corpus Linguistics CL’03, pp. 309-319.

George Hripcsak and Adam S. Rothschild. 2005.
Agreement, the F-Measure, and Reliability in IR.
JAMIA, (12), pp. 296-298.

Jane Morris and Graeme Hirst. 1991. Lexical Cohesion
Computed by Thesaural Relations as an Indicator of
the Structure of Text. Computational Linguistics,
17(1), pp. 21-48.

Lawrence H. Reeve, Hyoil Han and Ari D. Brooks.
2006. BioChain: Using Lexical Chaining for
Biomedical Text Summarization. In Proc of the ACM
Symposium on Applied Computing, pp. 180-184.

Gregory Silber and Kathleen McCoy, 2002. Efficiently
Computed Lexical Chains as an Intermediate
Representation for Automatic Text Summarization.
Computational Linguistics, vol. 28, pp. 487-496.

90

Proceedings of the ACL 2007 Student Research Workshop, pages 91–96,
Prague, June 2007. c©2007 Association for Computational Linguistics

Clustering Hungarian Verbs on the Basis of Complementation Patterns

Kata Gábor
Dept. of Language Technology

Linguistics Institute, HAS
1399 Budapest, P. O. Box 701/518

Hungary
gkata@nytud.hu

Enikő Héja
Dept. of Language Technology

Linguistics Institute, HAS
1399 Budapest, P. O. Box 701/518

Hungary
eheja@nytud.hu

Abstract

Our paper reports an attempt to apply an un-
supervised clustering algorithm to a Hun-
garian treebank in order to obtain seman-
tic verb classes. Starting from the hypo-
thesis that semantic metapredicates underlie
verbs’ syntactic realization, we investigate
how one can obtain semantically motivated
verb classes by automatic means. The 150
most frequent Hungarian verbs were clus-
tered on the basis of their complementation
patterns, yielding a set of basic classes and
hints about the features that determine ver-
bal subcategorization. The resulting classes
serve as a basis for the subsequent analysis
of their alternation behavior.

1 Introduction

For over a decade, automatic construction of wide-
coverage structured lexicons has been in the center
of interest in the natural language processing com-
munity. On the one hand, structured lexical data-
bases are easier to handle and to expand because
they allow making generalizations over classes of
words. On the other hand, interest in the automatic
acquisition of lexical information from corpora is
due to the fact that manual construction of such re-
sources is time-consuming, and the resulting data-
base is difficult to update. Most of the work in
the field of acquisition of verbal lexical properties
aims at learning subcategorization frames from cor-
pora e.g. (Pereira et al., 1993; Briscoe and Car-
roll, 1997; Sass, 2006). However, semantic group-

ing of verbs on the basis of their syntactic distribu-
tion or other quantifiable features has also gained at-
tention (Schulte im Walde, 2000; Schulte im Walde
and Brew, 2002; Merlo and Stevenson, 2001; Dorr
and Jones, 1996). The goal of these investigations is
either the validation of verb classes based on (Levin,
1993), or finding algorithms for the categorization of
new verbs.

Unlike these projects, we report an attempt to
cluster verbs on the basis of their syntactic proper-
ties with the further goal of identifying the seman-
tic classes relevant for the description of Hungarian
verbs’ alternation behavior. The theoretical ground-
ing of our clustering attempts is provided by the
so-called Semantic Base Hypothesis (Levin, 1993;
Koenig et al., 2003). It is founded on the observation
that semantically similar verbs tend to occur in simi-
lar syntactic contexts, leading to the assumption that
verbal semantics determines argument structure and
the surface realization of arguments. While in Eng-
lish semantic argument roles are mapped to confi-
gurational positions in the tree structure, Hungarian
codes complement structure in its highly rich nom-
inal inflection system. Therefore, we start from the
examination of case-marked NPs in the context of
verbs.

The experiment discussed in this paper is the first
stage of an ongoing project for finding the semantic
verb classes which are syntactically relevant in Hun-
garian. As we do not have presuppositions about
which classes have to be used, we chose an unsu-
pervised clustering method described in (Schulte
im Walde, 2000). The 150 most frequent Hunga-
rian verbs were categorized according to their comp-

91

lementation structures in a syntactically annotated
corpus, the Szeged Treebank (Csendes et al., 2005).
We are seeking the answer to two questions:

1. Are the resulting clusters semantically coherent
(thus reinforcing the Semantic Base Hypothe-
sis)?

2. If so, what are the alternations responsible for
their similar behavior?

The subsequent sections present the input features
[2] and the clustering methods [3], followed by the
presentation of our results [4]. Problematic issues
raised by the evaluation are discussed in [5]. Future
work is outlined in [6]. The paper ends with the con-
clusions [7].

2 Feature Space

As currently available Hungarian parsers (Babarczy
et al., 2005; Gábor and Héja, 2005) cannot be used
satisfactorily for extracting verbal argument struc-
tures from corpora, the first experiment was carried
out using a manually annotated Hungarian corpus,
the Szeged Treebank. Texts of the corpus come from
different topic areas such as business news, daily
news, fiction, law, and compositions of students. It
currently comprises 1.2 million words with POS tag-
ging and syntactic annotation which extends to top-
level sentence constituents but does not differentiate
between complements and adjuncts.

When applying a classification or clustering algo-
rithm to a corpus, a crucial question is which quan-
tifiable features reflect the most precisely the lin-
guistic properties underlying word classes. (Brent,
1993) uses regular patterns. (Schulte im Walde,
2000; Schulte im Walde and Brew, 2002; Briscoe
and Carroll, 1997) use subcategorization frame
frequencies obtained from parsed corpora, poten-
tially completed by semantic selection information.
(Merlo and Stevenson, 2001) approximates diathesis
alternations by hand-selected grammatical features.
While this method has the advantage of working on
POS-tagged, unparsed corpora, it is costly with res-
pect to time and linguistic expertise. To overcome
this drawback, (Joanis and Stevenson, 2003) de-
velop a general feature space for supervised verb
classification. (Stevenson and Joanis, 2003) inves-
tigate the applicability of this general feature space

to unsupervised verb clustering tasks. As unsuper-
vised methods are more sensitive to noisy features,
the key issue is to filter out the large number of
probably irrelevant features. They propose a semi-
supervised feature selection method which outper-
forms both hand-selection of features and usage of
the full feature set.

As in our experiment we do not have a pre-defined
set of semantic classes, we need to apply unsu-
pervised methods. Neither have we manually de-
fined grammatical cues, not knowing which alter-
nations should be approximated. Hence, similarly
to (Schulte im Walde, 2000), we represent verbs by
their subcategorization frames.

In accordance with the annotation of the treebank,
we included both complements and adjuncts in sub-
categorization patterns. It is important to note, how-
ever, that not only practical considerations lead us
to this decision. First, there are no reliable syntactic
tests for differentiating complements from adjuncts.
This is due to the fact that Hungarian is a highly in-
flective, non-configurational language, where con-
stituent order does not reveal dependency relations.
Indeed, complements and adjuncts of verbs tend to
mingle. In parallel, Hungarian presents a very rich
nominal inflection system: there are 19 case suf-
fixes, and most of them can correspond to more than
one syntactic function, depending on the verb class
they occur with. Second, we believe that adjuncts
can be at least as revealing of verbal meaning as
complements are: many of them are not productive
(in the sense that they cannot be added to any verb),
they can only appear with predicates the meaning of
which is compatible with the semantic role of the ad-
junct. For these considerations we chose to include
both complements and adjuncts in subcategorization
patterns.

Subcategorization frames to be extracted from
the treebank are composed of case-marked NPs
and infinitives that belong to a children node of
the verb’s maximal projection. As Hungarian is a
non-configurational language, this operation simply
yields a non-ordered list of the verb’s syntactic de-
pendents. There was no upper bound on the num-
ber of syntactic dependents to be included in the
frame. Frame types were obtained from individual
frames by omitting lexical information as well as
every piece of morphosyntactic description except

92

for the POS tag and the case suffix. The generaliza-
tion yielded 839 frame types altogether.1

3 Clustering Methods

In accordance with our goal to set up a basis for
a semantic classification, we chose to perform the
first clustering trial on the 150 most frequent verbs
in the Szeged Treebank. The representation of verbs
and the clustering process were carried out based on
(Schulte im Walde, 2000). The data to be compared
were the maximum likelihood estimates of the pro-
bability distribution of verbs over the possible frame
types:

p(t|v) =
f(v, t)
f(v)

(1)

with f(v) being the frequency of the verb, and
f(v, t) being the frequency of the verb in the frame.
These values have been calculated for each of the
150 verbs and 839 frame types.

Probability distributions were compared using re-
lative entropy as a distance measure:

D(x‖y) =
n∑

i=1

xi · log
xi

yi
(2)

Due to the large number of subcategorization
frame types, verbs’ representation comprise a lot of
zero probability figures. Using relative entropy as
a distance measure compels us to apply a smoothing
technique to be able to deal with these figures. How-
ever, we do not want to lose the information coded
in zero frequencies - namely, the presumable incom-
patibility of the verb with certain semantic roles as-
sociated with specific case suffixes. Since we work
with the 150 most frequent verbs, we wish to use
a method which is apt to reflect that a gap in the
case of a high-frequency lemma is more likely to be
an impossible event than in the case of a relatively
less frequent lemma (where it might as well be acci-
dental). That is why we have chosen the smoothing
technique below:

fe =
0, 001
f(v)

if

fc(t, v) = 0
(3)

1The order in which syntactic dependents appear in the sen-
tence was not taken into account.

where fe is the estimated and fc is the observed fre-
quency.
Two alternative bottom-up clustering algorithms
were then applied to the data:

1. First we employed an agglomerative clustering
method, starting from 150 singleton clusters.
At every iteration we merged the two most sim-
ilar clusters and re-counted the distance mea-
sures. The problem with this approach, as
Schulte im Walde notes on her experiment, is
that verbs tend to gather in a small number of
big classes after a few iterations. To avoid this,
we followed her in setting to four the maximum
number of elements occuring in a cluster. This
method - and the size of the corpus - allowed
us to categorize 120 out of 150 verbs into 38
clusters, as going on with the process would
have led us to considerably less coherent clus-
ters. However, the results confronted us with
the chaining effect, i.e. some of the clusters
had a relatively big distance between their least
similar members.

2. In the second experiment we put a restriction
on the distance between each pair of verbs be-
longing to the same cluster. That is, in order for
a new verb to be added to a cluster, its distance
from all of the current cluster members had to
be smaller than the maximum distance stated
based on test runs. In this experiment we could
categorize 71 verbs into 23 clusters. The con-
venience of this method over the first one is its
ability to produce popular yet coherent clusters,
which is a particularly valuable feature given
that our goal at this stage is to establish basic
verb classes for Hungarian. However, we are
also planning to run a top-down clustering al-
gorithm on the data to get a probably more pre-
cise overview of their structure.

4 Results

With both methods we describe in Section 3, a big
part of the verbs showed a tendency to gather to-
gether in a few but popular clusters, while the rest
of them were typically paired with their nearest
synonym (e.g.: zár (close) with végez (finish) or
antonym (e.g.: ül (sit) with áll (stand)). Naturally,

93

method 1 (i.e. placing an upper limit on the num-
ber of verbs within a cluster) produced more clus-
ters and gave more valuable results on the least fre-
quent verbs. On the other hand, method 2 (i.e. plac-
ing an upper limit on the distance between each pair
of verbs within the class) is more efficient for iden-
tifying basic verb classes with a lot of members.
Given our objective to provide a Levin-type classi-
fication for Hungarian, we need to examine whether
the clusters are semantically coherent, and if so,
what kind of semantic properties are shared among
class members. The three most popular verb clusters
were investigated first, because they contain many
of the most frequent verbs and yet are characterized
by strong inter-cluster coherence due to the method
used. The three clusters absorbed one third of the 71
categorized verbs. The clusters are the following:

C-1 VERBS OF BEING: marad (remain), van (be),
lesz (become), nincs (not being)

C-2 MODALS: megpróbál (try out), próbál (try),
szokik (used to), szeret (like), akar (want),
elkezd (start), fog (will), kı́ván (wish), kell
(must)

C-3 MOVEMENT VERBS: indul (leave), jön (come),
elindul (depart), megy (go), kimegy (go out),
elmegy (go away)

Verb clusters C-1 and C-3 exhibit intuitively
strong semantic coherence, whereas C-2 is best de-
fined along syntactic lines as ’modals’. A subclass
of C-2 is composed of verbs which express some
mental attitude towards undertaking an action, e.g.
(szeret (like), akar (want), kı́ván (wish)), but for the
rest of the verbs it is hard to capture shared meaning
components.
It can be said in general about the clusters ob-
tained that many of them can be anchored to ge-
neral semantic metapredicates or one of the argu-
ments’ semantic role, e.g.: CHANGE OF STATE

VERBS (erősödik (get stronger), gyengül (intransi-
tive weaken), emelkedik (intransitive rise)), verbs
with a beneficiary role (biztosı́t (guarantee), ad
(give), nyújt (provide), készı́t(make)), VERBS OF

ABILITY (sikerül (succeed), lehet (be possible), tud
(be able, can)). Some clusters seem to result from a
tighter semantic relation, e.g. VERBS OF APPEA-

RANCE or VERBS OF JUDGEMENT were put to-
gether. In other cases the relation is broader as verbs
belonging to the class seem to share only aspectual
characteristics, e.g. AGENTIVE VERBS OF CONTI-
NUOS ACTIVITIES (ül (be sitting), áll (be standing),
lakik (live somewhere), dolgozik (work)). At the
other end of the scale we find one group of verbs
which ’accidentally’ share the same syntactic pat-
terns without being semantically related (foglalkozik
(deal with sg), találkozik (meet sy), rendelkezik (dis-
pose of sg)).

5 Evaluation and Discussion

As (Schulte im Walde, 2007) notes, there is no
widely accepted practice of evaluating semantic
verb classes. She divides the methods into two major
classes. The first type of methods assess whether the
resulting clusters are coherent enough, i. e. elements
belonging to the same cluster are closer to each other
than to elements outside the class, according to an
independent similarity/distance measure. However,
relying on such a method would not help us eva-
luating the semantic coherence of our classes. The
second type of methods use gold standards. Widely
accepted gold standards in this field are Levin’s verb
classes or verbal WordNets. As we do not dispose
of a Hungarian equivalent of Levin’s classification
– that is exactly why we experiment with automatic
clustering – we cannot use it directly.

We also run across difficulties when considering
Hungarian verbal WordNet (Kuti et al., 2005) as the
standard for evaluation. Mapping verb clusters to
the net would require to state semantic relatedness
in terms of WordNet-type hierarchy relations. How-
ever, if we try to capture the distance between verbal
meanings by the number of intermediary nodes in
the WordNet, we face the problem that the semantic
distance between mother-children nodes is not uni-
form.

As our work is about obtaining a Levin-type verb
classification, it could be an obvious choice to eva-
luate semantic classes by collecting alternations spe-
cific to the given class. Hungarian language hardly
lends itself to this method because of its peculiar
syntactic features. The large number of subcatego-
rization frames and the optionality of most comple-
ments and adjuncts yield too much possible alterna-

94

acc ins abl ela
indul - ins/com source source
jön - ins/com source source

elindul - ins/com source source
megy - ins/com source source

kimegy - ins/com source source
elmegy - ins/com source source

Table 1: The semantic roles of cases beside C-3 verb
cluster

tions. Hence, we decided to narrow down the scope
of investigation. We start from verb clusters and the
meaning components their members share. Then we
attempt to discover which semantic roles can be li-
cenced by these meaning components. If verbs in
the same cluster agree both in being compatible with
the same semantic roles and in the syntactic encod-
ing of these roles, we consider that they form a cor-
rect cluster.

To put it somewhat more formally, we represent
verb classes by matrices with a) nominal case suf-
fixes in columns and b) individual verb lemmata in
rows. The first step of the evaluation process is to fill
in the cells with the semantic roles the given suffix
can code in the context of the verb. We consider the
clusters correct, if the corresponding matrices meet
two requirements:

1. They have to be specific to the cluster.

2. Cells in the same column have to contain the
same semantic role.

Tables 1. and 2. illustrate coherent and distinctive
case matrices2.

According to Table 1. ablative case, just as e-
lative, codes a physical source in the environment
of movement verbs. Both cases having the same
semantic role, the decision between them is deter-
mined by the semantics of the corresponding NP.
These cases code an other semantic role – cause –
in the case of verbs of existence (Table 2).

It is important to note that we do not dispose of a
preliminary list of semantic roles. To avoid arbitrary

2Com is for comitative – approximately encoding the mean-
ing ’together with’ , ins is for the instrument of the described
event, source denotes a starting point in the space, cause refers
to entity which evoked the eventuality described by the verb.

acc ins abl ela
marad - com cause material

van - com cause material
lesz - com cause material

nincs - com cause material

Table 2: The semantic roles of cases beside C-1 verb
cluster

or vague role specifications, we need more than one
persons to fill in the cells, based on example sen-
tences.

6 Future Work

There are two major directions regarding our fu-
ture work. With respect to the automatic cluster-
ing process, we have the intention of widening the
scope of the grammatical features to be compared
by enriching subcategorization frames by other mor-
phological properties. We are also planning to test
top-down clustering methods such as the one de-
scribed in (Pereira et al., 1993). On the long run, it
will be inevitable to make experiments on larger cor-
pora. The obvious choice is the 180 million words
Hungarian National Corpus (Váradi, 2002). It is a
POS-tagged corpus but does not contain any syntac-
tic annotation; hence its use would require at least
some partial parsing such as NP analysis to be em-
ployable for our purposes. The other future direc-
tion concerns evaluation and linguistic analysis of
verb clusters. We define well-founded verb classes
on the basis of semantic role matrices. These se-
mantic roles can be filled in a sentence by case-
marked NPs. Therefore, evaluation of automatically
obtained clusters presupposes the definition of such
matrices, which is our major linguistic task in the
future. When we have the supposed matrices at our
disposal, we can start evaluating the clusters via ex-
ample sentences which illustrate case suffix alterna-
tions or roles characteristic to specific classes.

7 Conclusions

The experiment of clustering the 150 most frequent
Hungarian verbs is the first step towards finding the
semantic verb classes underlying verbs’ syntactic
distribution. As we did not have presuppositions

95

about the relevant classes, neither any gold standard
for automatic evaluation, the results have to serve
as input for a detailed linguistic analysis to find out
at what extent they are usable for the syntactic des-
cription of Hungarian. However, as demonstrated
in Section 4, the verb clusters we got show surpris-
ingly transparent semantic coherence. These results,
obtained from a corpus which is by several orders of
magnitude smaller than what is usual for such pur-
poses, is a reinforcement of the usability of the Se-
mantic Base Hypothesis for language analysis. Our
further work will emphasize both the refinement of
the clustering methods and the linguistic interpre-
tation of the resulting classes.

References
Anna Babarczy, Bálint Gábor, Gábor Hamp, András

Kárpáti, András Rung and István Szakadát. 2005.
Hunpars: mondattani elemző alkalmazás [Hunpars: A
rule-based sentence parser for Hungarian]. Proceed-
ings of the 3th Hungarian Conference of Computa-
tional Linguistics (MSZNY05), pages 20-28, Szeged,
Hungary.

Michael R. Brent. 1993. From grammar to lexicon: un-
supervised learning of lexical syntax. Computational
Linguistics, 19(2):243–262, MIT Press, Cambridge,
MA, USA.

Ted Briscoe and John Carroll. 1997. Automatic Extrac-
tion of Subcategorization from Corpora. Proceedings
of the 5th Conference on Applied Natural Language
Processing (ANLP-97), pages 356–363, Washington,
DC, USA.

Dóra Csendes, János Csirik, Tibor Gyimóthy and András
Kocsor. 2005. The Szeged Treebank. LNCS series
Vol. 3658, 123-131.

Bonnie J. Dorr and Doug Jones. 1996. Role of Word
Sense Disambiguation in Lexical Acquisition: Predict-
ing Semantics from Syntactic Cues. Proceedings of
the 14th International Conference on Computational
Linguistics (COLING-96), pages 322–327, Kopen-
hagen, Denmark.

Kata Gábor and Enikő Héja. 2005. Vonzatok és sza-
bad határozók szabályalapú kezelése [A Rule-based
Analysis of Complements and Adjuncts]. Proceedings
of the 3th Hungarian Conference of Computational
Linguistics (MSZNY05), pages 245-256, Szeged, Hun-
gary.

Eric Joanis and Suzanne Stevenson. 2003. A general
feature space for automatic verb classification. Pro-

ceedings of the 10th Conference of the EACL (EACL
2003), pages 163–170, Budapest, Hungary.

Jean-Pierre Koenig, Gail Mauner and Breton Bienvenue.
2003. Arguments for Adjuncts. Cognition, 89, 67-
103.

Judit Kuti, Péter Vajda and Károly Varasdi. 2005.
Javaslat a magyar igei WordNet kialakı́tására [Pro-
posal for Developing the Hungarian WordNet of
Verbs]. Proceedings of the 3th Hungarian Conference
of Computational Linguistics (MSZNY05), pages 79–
87, Szeged, Hungary.

Beth Levin. 1993. English Verb Classes And Alterna-
tions: A Preliminary Investigation. Chicago Univer-
sity Press.

Paola Merlo and Suzanne Stevenson. 2001. Automatic
Verb Classification Based on Statistical Distributions
of Argument Structure. Computational Linguistics,
27(3), pages 373-408.

Fernando C. N. Pereira, Naftali Tishby and Lillan Lee.
1993. Distributional Clustering of English Words.
31st Annual Meeting of the ACL, pages 183-190,
Columbus, Ohio, USA.

Bálint Sass. 2006. Igei vonzatkeretek az MNSZ tagmon-
dataiban [Exploring Verb Frames in the Hungarian Na-
tional Corpus]. Proceedings of the 4th Hungarian
Conference of Computational Linguistics (MSZNY06),
pages 15–22, Szeged, Hungary.

Sabine Schulte im Walde. 2000. Clustering Verbs Se-
mantically According to their Alternation Behaviour.
Proceedings of the 18th International Conference on
Computational Linguistics (COLING-00), pages 747–
753, Saarbrücken, Germany.

Sabine Schulte im Walde and Chris Brew. 2002. Induc-
ing German Semantic Verb Classes from Purely Syn-
tactic Subcategorisation Information. Proceedings of
the 40th Annual Meeting of the Association for Com-
putational Linguistics, pages 223-230, Philadelphia,
PA.

Sabine Schulte im Walde. to appear. The Induction of
Verb Frames and Verb Classes from Corpora. Corpus
Linguistics. An International Handbook., Anke Lüde-
ling and Merja Kytö (eds). Mouton de Gruyter, Berlin.

Suzanne Stevenson and Eric Joanis. 2003. Semi-
supervised Verb Class Discovery Using Noisy Fea-
tures. Proceedings of the 7th Conference on Computa-
tional Natural Language Learning (CoNLL-03), pages
71-78, Edmonton, Canada.

Tamás Váradi. 2002. The Hungarian National Corpus.
Proceedings of the Third International Conference on
Language Resources and Evaluation, pages 385–389,
Las Palmas, Spain.

96

Author Index

Buczyński, Aleksander, 13

Cramer, Bart, 43

Gábor, Kata, 91

Héja, Enikő, 91

Johansson, Richard, 49

Medelyan, Olena, 85
Moszczyński, Radosław, 19
Mulloni, Andrea, 25

Naughton, Martina, 31
Nulty, Paul, 79

Ó Séaghdha, Diarmuid, 73

Ponvert, Elias, 7
Prokić, Jelena, 61

Sanders, Nathan C., 1
Scheible, Silke, 67
Scherrer, Yves, 55

Zagibalov, Taras, 37

97

	Program
	Measuring Syntactic Difference in British English
	Inducing Combinatory Categorial Grammars with Genetic Algorithms
	An Implementation of Combined Partial Parser and Morphosyntactic Disambiguator
	A Practical Classification of Multiword Expressions
	Automatic Prediction of Cognate Orthography Using Support Vector Machines
	Exploiting Structure for Event Discovery Using the MDI Algorithm
	Kinds of Features for Chinese Opinionated Information Retrieval
	Limitations of Current Grammar Induction Algorithms
	Logistic Online Learning Methods and Their Application to Incremental Dependency Parsing
	Adaptive String Distance Measures for Bilingual Dialect Lexicon Induction
	Identifying Linguistic Structure in a Quantitative Analysis of Dialect Pronunciation
	Towards a Computational Treatment of Superlatives
	Annotating and Learning Compound Noun Semantics
	Semantic Classification of Noun Phrases Using Web Counts and Learning Algorithms
	Computing Lexical Chains with Graph Clustering
	Clustering Hungarian Verbs on the Basis of Complementation Patterns

