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Abstract

We present a formalization of dependency
labeling with Integer Linear Programming.
We focus on the integration of subcatego-
rization into the decision making process,
where the various subcategorization frames
of a verb compete with each other. A maxi-
mum entropy model provides the weights for
ILP optimization.

1 Introduction

Machine learning classifiers are widely used, al-
though they lack one crucial model property: they
can’t adhere to prescriptive knowledge. Take gram-
matical role (GR) labeling, which is a kind of (shal-
low) dependency labeling, as an example: chunk-
verb-pairs are classified according to a GR (cf.
(Buchholz, 1999)). The trials are independent of
each other, thus, local decisions are taken such that
e.g. a unique GR of a verb might (erroneously) get
multiply instantiated etc. Moreover, if there are al-
ternative subcategorization frames of a verb, they
must not be confused by mixing up GR from dif-
ferent frames to a non-existent one. Often, a subse-
quent filter is used to repair such inconsistent solu-
tions. But usually there are alternative solutions, so
the demand for an optimal repair arises.

We apply the optimization method Integer Linear
Programming (ILP) to (shallow) dependency label-
ing in order to generate a globally optimized con-
sistent dependency labeling for a given sentence.
A maximum entropy classifier, trained on vectors
with morphological, syntactic and positional infor-
mation automatically derived from the TIGER tree-
bank (German), supplies probability vectors that are
used as weights in the optimization process. Thus,
the probabilities of the classifier do not any longer
provide (as usually) the solution (i.e. by picking out
the most probable candidate), but count as proba-
bilistic suggestions to a - globally consistent - solu-

tion. More formally, the dependency labeling prob-
lem is: given a sentence with (i) verbs,

���
, (ii) NP

and PP chunks1 , ��� , label all pairs (
����� �	��

�� ����� �	� ) with a dependency relation (including a

class for the null assignment) such that all chunks
get attached and for each verb exactly one subcate-
gorization frame is instantiated.

2 Integer Linear Programming

Integer Linear Programming is the name of a class
of constraint satisfaction algorithms which are re-
stricted to a numerical representation of the problem
to be solved. The objective is to optimize (e.g. max-
imize) a linear equation called the objective function
(a) in Fig. 1) given a set of constraints (b) in Fig. 1):� 
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Figure 1: ILP Specification

where, <=%?> �� � � ��"@ and
� �  � � :� #

are variables,' �A � � ' # ,
- . and ��. �B � � �,. # are constants.

For dependency labeling we have:
�C#

are binary
class variables that indicate the (non-) assignment of
a chunk D to a dependency relation E of a subcat
frame � of a verb F . Thus, three indices are needed:EHGJILK . If such an indicator variable EMGJILK is set to
1 in the course of the maximization task, then the
dependency label E between these chunks is said to
hold, otherwise ( ENGJI:K�%PO ) it doesn’t hold. ' �� � � ' #
from Fig.1 are interpreted as weights that represent
the impact of an assignment.

3 Dependency Labeling with ILP

Given the chunks �	��Q (NP, PP and verbs) of a sen-
tence, each pair �	��QR�S�	��Q is formed. It can

1Note that we use base chunks instead of heads.
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Figure 2: Objective Function

stand in one of eight dependency relations, includ-
ing a pseudo relation representing the null class.
We consider the most important dependency labels:
subject ( = ), direct object ( > ), indirect object (? ),
clausal complement ( � ), prepositional complement
( @ ), attributive (NP or PP) attachment ( � ) and ad-
junct ( # ). Although coarse-grained, this set allows
us to capture all functional dependencies and to con-
struct a dependency tree for every sentence in the
corpus2 . Technically, indicator variables are used
to represent attachment decisions. Together with a
weight, they form the addend of the objective func-
tion. In the case of attributive modifiers or adjuncts
(the non-governable labels), the indicator variables
correspond to triples. There are two labels of this
type: � . � represents that chunk A modifies chunk< and # . � represents that chunk A is in an adjunct
relation to chunk < . �

and
�

are defined as the
weighted sum of such pairs (cf. Eq. 1 and Eq 2.
from Fig. 2), the weights (e.g. ����� � ) stem from the
statistical model.

For subcategorized labels, we have quadruples,
consisting of a label name E , a frame index � ,
a verb F and a chunk D (also verb chunks are al-
lowed as a D ): E GJI:K . We define

�
to be the

weighted sum of all label instantiations of all verbs
(and their subcat frames), see Eq. 3 in Fig. 2.
The subscript B I is a list of pairs, where each

2Note that we are not interested in dependencies beyond the
(base) chunk level

pair consists of a label and a subcat frame index.
This way, B I represents all subcat frames of a
verb F . For example, B of “to believe” could be:CED = � >GF �GD > � >GF �GD = �IH F �GD � �JH F �KD = �JL F �KD ? �IL FJM . There
are three frames, the first one requires a = and a > .

Consider the sentence “He believes these stories”.
We have NPO =

C
believes M and QSR Q =

C
He, believes,

stories M . Assume B � to be the B of “to believe” as
defined above. Then, e.g. T 0 �VU % > represents the
assignment of “stories” as the filler of the subject
relation T of the second subcat frame of “believes”.

To get a dependency tree, every chunk must find
a head (chunk), except the root verb. We define a
root verb A as a verb that stands in the relation

9 . �
to all other verbs < . 9 (cf. Eq.4 from Fig.2) is the
weighted sum of all null assignment decisions. It is
part of the maximization task and thus has an impact
(a weight). The objective function is defined as the
sum of equations 1 to 4 (Eq.5 from Fig.2).

So far, our formalization was devoted to the maxi-
mization task, i.e. which chunks are in a dependency
relation, what is the label and what is the impact.
Without any further (co-occurrence) restrictions, ev-
ery pair of chunks would get related with every la-
bel. In order to assure a valid linguistic model, con-
straints have to be formulated.

4 Basic Global Constraints

Every chunk A from QSR ( W%XQYR Q ) must find a head,
that is, be bound either as an attribute, adjunct or a
verb complement. This requires all indicator vari-
ables with A as the dependent (second index) to sum
up to exactly 1.

� ���Z�� K � K � )
� ���'�� . # . � )

� �&�'�� I �
(*)!+ G-,/.10 2 E GJI � % > � (6)

[ A$�
O]\^A 5 _ QSR _

A verb is attached to any other verb either as a
clausal object � (of some verb frame � ) or as

9
(null

class) indicating that there is no dependency relation
between them.

9 . � ) �
(a`b+ G-,/.10 � � G . � % > � [ < � A � <cW%XA�
 � O]\�< � A 5 _ NSO _

(7)
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This does not exclude that a verb gets attached to
several verbs as a � . We capture this by constraint 8:� �&���� . �

(a`b+ G-,/.10 � � G . � 5 > � [ A��
O \^A 5 _ N O _
(8)

Another (complementary) constraint is that a depen-
dency label E of a verb must have at most one filler.
We first introduce a indicator variable E GJI :

EHG�I
% � ����$%�� K EHGJI:K (9)

In order to serve as an indicator of whether a labelE (of a frame � of a verb F ) is active or inactive, we
restrict E GJI to be at most 1:EHGJI 5 > � [ F � � � E �,O \ F 5 _ NPO _ � D E � �&F�� B I (10)

To illustrate this by the example previously given:
the subject of the second verb frame of “to believe”
is defined as T 0 � % = 0 �"� ) = 0 �VU (with T 0 � 5 > ).
Either = 0 �"� % > or = 0 �VU % > or both are zero, but if
one of them is set to one, then T 0 � = 1. Moreover,
as we show in the next section, the selection of the
label indicator variable of a frame enforces the frame
to be selected as well3.

5 Subcategorization as a Global Constraint

The problem with the selection among multiple sub-
cat frames is to guarantee a valid distribution of
chunks to verb frames. We don’t want to have chunkD � be labeled according to verb frame � � and chunkD 0 according to verb frame � 0 . Any valid attachment
must be coherent (address one verb frame) and com-
plete (select all of its labels).

We introduce an indicator variable � GJI with frame
and verb indices. Since exactly one frame of a verb
has to be active at the end, we restrict:

��� 2�G � � � GJIH% > � [ FC� O]\ F 5 _ N O _
(11)

( 	
� I is the number of subcat frames of verb F )
However, we would like to couple a verb’s ( F )

frame ( � ) to the frame’s label set and restrict it to
be active (i.e. set to one) only if all of its labels
are active. To achieve this, we require equivalence,

3There are more constraints, e.g. that no two chunks can be
attached to each other symmetrically (being chunk and modifier
of each other at the same time). We won’t introduce them here.

namely that selecting any label of a frame is equiv-
alent to selecting the frame. As defined in equation
10, a label is active, if the label indicator variable
( EHGJI ) is set to one. Equivalence is represented by
identity, we thus get (cf. constraint 12):
� GJIH% EHGJI � [ F � � � E � O \ F 5 _ NSO _ � D E � �&F�� B I (12)

If any E GJI is set to one (zero), then � G�I is set to one
(zero) and all other ENG�I of the same subcat frame
are forced to be one (completeness). Constraint 11
ensures that exactly one subcat frame � GJI can be ac-
tive (coherence).

6 Maximum Entropy and ILP Weights

A maximum entropy approach was used to induce
a probability model that serves as the basis for the
ILP weights. The model was trained on the TIGER
treebank (Brants et al., 2002) with feature vectors
stemming from the following set of features: the
part of speech tags of the two candidate chunks, the
distance between them in chunks, the number of in-
tervening verbs, the number of intervening punctu-
ation marks, person, case and number features, the
chunks, the direction of the dependency relation (left
or right) and a passive/active voice flag.

The output of the maxent model is for each pair of
chunks a probability vector, where each entry repre-
sents the probability that the two chunks are related
by a particular label ( = � >  � � 

including
9

).

7 Empirical Results

A 80% training set (32,000 sentences) resulted in
about 700,000 vectors, each vector representing ei-
ther a proper dependency labeling of two chunks, or
a null class pairing. The accuracy of the maximum
entropy classifier was 87.46%. Since candidate pairs
are generated with only a few restrictions, most pair-
ings are null class labelings. They form the majority
class and thus get a strong bias. If we evaluate the
dependency labels, therefore, the results drop appre-
ciably. The maxent precision then is 62.73% (recall
is 85.76%, f-measure is 72.46 %).

Our first experiment was devoted to find out how
good our ILP approach was given that the correct
subcat frame was pre-selected by an oracle. Only
the decision which pairs are labeled with which de-
pendency label was left to ILP (also the selection
and assignment of the non subcategorized labels).
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There are 8000 sentence with 36,509 labels in the
test set; ILP retrieved 37,173; 31,680 were correct.
Overall precision is 85.23%, recall is 86.77%, the
f-measure is 85.99% (F������� in Fig. 3).

F������� F K���	 �

Prec Rec F-Mea Prec Rec F-Mea= 91.4 86.1 88.7 90.3 80.9 85.4> 90.4 83.3 86.7 81.4 73.3 77.2? 88.5 76.9 82.3 75.8 55.5 64.1@ 79.3 73.7 76.4 77.8 40.9 55.6� 98.6 94.1 96.3 91.4 86.7 89.1

# 76.7 75.6 76.1 74.5 72.3 73.4

� 75.7 76.9 76.3 74.1 74.2 74.2

Figure 3: Pre-selected versus Competing Frames

The results of the governable labels ( = down to� ) are good, except PP complements ( @ ) with a f-
measure of 76.4%. The errors made with �
������� : the
wrong chunks are deemed to stand in a dependency
relation or the wrong label (e.g. = instead of > )
was chosen for an otherwise valid pair. This is not a
problem of ILP, but one of the statistical model - the
weights do not discriminate well. Improvements of
the statistical model will push ILP’s precision.

Clearly, performance drops if we remove the sub-
cat frame oracle letting all subcat frames of a verb
compete with each other (F K���	 � , Fig.3). How close
can F K���	 � come to the oracle setting F�����
� . The
overall precision of the F K���	 � setting is 81.8%, re-
call is 85.8% and the f-measure is 83.7% (f-measure
of F������� was 85.9%). This is not too far away.

We have also evaluated how good our model is at
finding the correct subcat frame (as a whole). First
some statistics: In the test set are 23 different sub-
cat frames (types) with 16,137 occurrences (token).
15,239 out of these are cases where the underlying
verb has more than one subcat frame (only here do
we have a selection problem). The precision was
71.5%, i.e. the correct subcat frame was selected in
10,896 out of 15,239 cases.

8 Related Work

ILP has been applied to various NLP problems in-
cluding semantic role labeling (Punyakanok et al.,
2004), which is similar to dependency labeling: both
can benefit from verb specific information. Actually,
(Punyakanok et al., 2004) take into account to some

extent verb specific information. They disallow ar-
gument types a verb does not “subcategorize for” by
setting an occurrence constraint. However, they do
not impose co-occurrence restrictions as we do (al-
lowing for competing subcat frames).

None of the approaches to grammatical role label-
ing tries to scale up to dependency labeling. More-
over, they suffer from the problem of inconsistent
classifier output (e.g. (Buchholz, 1999)). A com-
parison of the empirical results is difficult, since e.g.
the number and type of grammatical/dependency re-
lations differ (the same is true wrt. German depen-
dency parsers, e.g (Foth et al., 2005)). However, our
model seeks to integrate the (probabilistic) output of
such systems and - in the best case - boosts the re-
sults, or at least turn it into a consistent solution.

9 Conclusion and Future Work

We have introduced a model for shallow depen-
dency labeling where data-driven and theory-driven
aspects are combined in a principled way. A clas-
sifier provides empirically justified weights, linguis-
tic theory contributes well-motivated global restric-
tions, both are combined under the regiment of opti-
mization. The empirical results of our approach are
promising. However, we have made idealized as-
sumptions (small inventory of dependency relations
and treebank derived chunks) that clearly must be
replaced by a realistic setting in our future work.
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bust parsing with weighted constraints. Natural Lan-
guage Engineering, 11(1):1-25 2005.

Vasin Punyakanok, Dan Roth, Wen-tau Yih, and
Dave Zimak. 2004. Semantic Role Labeling via Inte-
ger Linear Programming Inference. COLING ’04.

204


