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Abstract model can improve recognition, where the amount
of improvement varies with context length and sen-
tence length. Thereby it was shown that these mod-
els can make use of long-term information.

In this paper the best performing measures
from (Pucher, 2005), which outperform baseline
models on word prediction for conversational tele-
phone speech are used fautomatic Speech Recog-
nition (ASR) in multi-party meetings. Thereby we
want to investigate if WordNet-based models can be
used for rescoring of ‘realV-best lists in a difficult
task.

This paper presents the application of
WordNet-based semantic relatedness mea-
sures to Automatic Speech Recognition
(ASR) in multi-party meetings. Differ-

ent word-utterance context relatedness mea-
sures and utterance-coherence measures are
defined and applied to the rescoring i5f

best lists. No significant improvements
in terms of Word-Error-Rate (WER) are
achieved compared to a large word-based
gram baseline model. We discuss our results
and the relation to other work that achieved 1.1 word prediction by semantic similarity
an improvement with such models for sim-

pler tasks The standardh-gram approach in language mod-

eling for speech recognition cannot cope with
1 Introduction long-term dependencies. Therefore (Bellegarda,
As (Pucher, 2005) has shown different WordNet—zooo) proposed combining-gram language mod-

based measures and contexts are best for word pFelf’ which are effective for predicting local de-

diction in conversational speech. The JCN (Se(gendenues, withlatent 'Semantlc Analysit.SA) :
. . ased models for covering long-term dependencies.
tion 2.1) measure performs best for nouns using t

noun-context. The LESK (Section 2.1) measure pe[- ordNet-based sema_ntl_c relat_edness measures can
o . . ~he used for word prediction using long-term depen-
forms best for verbs and adjectives using a mixe

encies, as in this example from the CallHome En-

word-context. lish telephone speech corpus:
Text-based semantic relatedness measures c%m P P pus:

improve word prediction on simulated speechrecogq)  B: | | well, you should see what the
nition hypotheses as (Demetriou et al., 2000) have | students

shown. (Demetriou et al., 2000) generat¥ebest
lists from phoneme confusion data acquired from
a speech recognizer, and a pronunciation lexicon.
Then sentence hypotheses of varyWgrd-Error-
Rate (WER) were generated based on sentences
from different genres from thBritish National Cor- In Example 1collegecan be predicted from the
pus(BNC). It was shown by them that the semantimoun context using semantic relatedness measures,
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B: after they torture them for sikyearg in
middle | school and high|school they
don’t want to do anything incollege
particular.



here betweestudentandcollege A 3-gram model 2.3 Word utterance (context) relatedness

gives a ranking oollegein the context otnything  The performance of the word-context relatedness
in. An 8-gram predictsollegefrom they don'twant  (pefinition 3) shows how well the measures work
to do anything inbut the strongest predictor $$u- o gigorithms that proceed in a left-to-right manner,
dents since the context is restricted to words that have al-
12 Testdata _re'ady been seen. For the regcoringl‘bfoeg lists

) . itis not necessary to proceed in a left-to-right man-
The JCN and LESK measure that are defined in the,, the word-utterance-context relatedness can be

next section are used fav-best list rescoring. For ,qe for the rescoring of-best lists. This related-
the WER experimentsV-best lists generated from poqq qoes not only use the context of the preceding
the decoding of conference room meeting test daWords but the whole utterance

of the NIST Rich Transcription 2005 Spring (RT- Supposd/ = (wy,...,w,) is an utterance. Let

05S) meeting evaluation (Fiscus et al., 2005) Ao (w;, U) be the set ;. w; andpost(w;, U) be

used. Thel-gram that has to be improved by they,q set{J..,; w;. Then the word-utterance-context
WordNet-based models is trained on various Corport"élatednejss is defined as

from conversational telephone speech to web data
that together contain approximately 1 billion words.

2 WordNet-based semantic relatedness rely, (w;, U, C) =
measures relw (w;, pre(w;, U) U post(w;, U) U C) . (4)

2.1 Basic measures In this case there are two types of context. The

Two similarity/distance measures from the Perdirstcontext comes from the respective meeting, and
package WordNet-Similarity written by (Pedersen gihe second context comes from the actual utterance.
al., 2004) are used. The measures are named afAnother definition is obtained if the conte&tis

ter their respective authors. All measures are infliminated ¢' = ) and just the utterance conteXxt
plemented as similarity measures. JCN (Jiang arigd taken into account.

Conrath, 1997) is based on the information content,

and LESK (Banerjee and Pedersen, 2003) allows

for comparison across Part-of-Speech (POS) bound-relu, (wi, U) =

aries. relw (w;, pre(w;, U) U post(w;, U))  (5)

2.2 \Word context relatedness Both definitions can be modified for usage with
First the relatedness between words is defined basegscoring in a left-to-right manner by restricting the
on the relatedness between sens&gw) are the contexts only to the preceding words.

senses of word. Definition 2 also performs word-

sense disambiguation.
relU3 (wiv Ua C) = relVV (wia pre(wiv U) U C) (6)

rel(w, w') = s rel(ci, ;) (2)

rely, (w;, U) = relyw (w;, pre(w;, U)) )
The relatedness of a word and a contexty;) is
defined as the average of the relatedness of the wazdt  Defining utterance coherence

and all words in the context. Using Definitions 4-7 different concepts of utterance

1 coherence can be defined. For rescoring the utter-
relw(w, C) = ol > rel(w,wi)  (3) ance coherence is used, when a score for each el-
wi€C ement of an/NV-best list is neededU is again an
utterancd/ = (wy, ..., wy).
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list. The final WordNet score is the sum of the two
1 scores.
cohUy (U, C) = il Z rely, (w,U,C)  (8) The log-linear interpolation method used for the
wel rescoring is defined as

The first semantic utterance coherence measure
(Definition 8) is based on all words in the utterance  p(S) o pyordnet (S)™ Pr-gram(S)' ™ (12)

as well as in the context. It takes the mean of the

relatedness of all words. It is based on the wordiherec denotes normalization. Based on all Word-
utterance-context relatedness (Definition 4). Net scores of anV-best list a probability is esti-
mated, which is then interpolated with thegram

1 model probability. If only the elements in aN-
cohUs(U) = —— rely, (w, U 9 . ) . . .
2(U) | U | Z U ) © best list are considered, log-linear interpolation can
o be used since it is not necessary to normalize over
The _second coherence measure (pefmmon 9 B sentences. Then there is only one paramketer
a plrJ]re |nner-uttefrance;]coherence, which r;e;m;t timize, which is done with a brute force approach.
no history apart from the utterance is needed. SUGH, g optimization a small part of the test data is

ameasure is very useful for rescoring, since the hi?éken and the WER is computed for different values
tory is often not known or because there are spee

recognition errors in the history. It is based on Defi-

welU

As a baseline the-gram mixture model trained

hition S. on all available training data~( 1 billion words) is
used. It is log-linearly interpolated with the Word-
1 Net probabilities. Additionally to this sophisticated
cohUs (U, €) = U | > reluy(w, U,C) ~ (10) interpolation, solely the WordNet scores are used

wet without then-gram scores.

The third (Definition 10) and fourth (Defini- . .
tion 11) definition are based on Definition 6 and 7,3'l ggﬁ;::feenments for inner-utterance

that do not take future words into account.
In this first group of experiments Definitions 8 and 9

1 are applied to the rescoring task. Similarity scores
cohUyu(U) = il Z rely, (w, U) (11) for each element in atV-best list are derived ac-

wel cording to the definitions. The first-best element of
) the last list is always added to the context. The con-
3 Word-error-rate (WER) experiments text size is constrained to the la2@ words. Def-

For the rescoring experiments the first-best elemeftition 8 includes context apart from the utterance
of the previousN-best list is added to the context.Context, Definition 9 only uses the utterance context.
Before applying the WordNet-based measures, the NO improvement over the:-gram baseline is
N-best lists are POS tagged with a decision tre@chieved for these two measures. Neither with the
tagger (Schmid, 1994). The WordNet measures al@d-linearly interpolated models nor with the Word-
the similarity values are used as scores, which ha¥ls in terms of WER are not significant.

to be combined with the language model scores of , \yER experiments for utterance coherence
the N-best list elements.

The JCN measure is used for computing a noulft the second group of experiments Definitions 10
score based on the noun context, and the LESK me@d 11 are applied to the rescoring task. There is
sure is used for computing a verb/adjective scor@dain one measure that uses dialog context (10) and
based on the noun/verb/adjective context. In the erfif’€ that only uses utterance context (11).

there is desk scoreand ajcn_scorefor eachN-best ~ AlSO for these experiments no improvement over
the n-gram baseline is achieved. Neither with the
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