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Abstract The information loss inherent in the process of
transliteration makes back-transliteration, which is
the restoration of a previously transliterated word,
a particularly difficult task. Any phonetically rea-
sonable forward transliteration is essentially correct,
although occasionally there is a standard translitera-
tion (e.g.0Omar Sharif). In the original script, how-
ever, there is usually only a single correct form. For
example, bottNaguib Mahfouz and Najib Mahfuz
are reasonable transliterations bf 2= _..<, but
Tsharlz Dykens is certainly not acceptable if one is
referring to the author dDliver Twist.

In a statistical approach to machine translitera-
tion, given a foreign wordr, we are interested in
1 Introduction finding the English word? that maximizesP(E|F).

A significant proportion of out-of-vocabulary WordsUSIng Bayes’ rule, and keeping in mind thtis
onstant, we can formulate the task as follows:

in machine translation models or cross language it
formation retrieval systems are named entities. |If P(F|E)P(E)

the languages are written in different scripts, these P(F)

names must be transliterated. Transliteration is the

task of converting a word from one writing script to —arg mgxp(ﬂE)P(E)

another, usually based on the phonetics of the orig-his is known as the noisy channel approach to
inal word. If the target language contains all thanachine transliteration, which splits the task into
phonemes used in the source language, the transtiivo parts. The language model provides an esti-
eration is straightforward. For example, the Arabienate of the probability?(E) of an English word,
transliteration ofAmanda is \M,e\ which is essen- while the transliteration model provides an estimate
tially pronounced in the same way. However, ifof the probabilityP(F|E) of a foreign word being a
some of the sounds are missing in the target lanransliteration of an English word. The probabilities
guage, they are generally mapped to the most phassigned by the transliteration and language mod-
netically similar letter. For example, the sound [plels counterbalance each other. For example, sim-
in the namePaul, does not exist in Arabic, and the ply concatenating the most common mapping for
phonotactic constraints of Arabic disallow the soungach letter in the Arabic stringiﬁ L, produces the

[a] in this context, so the word is transliterated astring maykl, which is barely pronounceable. In or-

J s, pronounced [bul]. der to generate the correkfichael, a model needs
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Transliteration is the task of converting a

word from one alphabetic script to another.

We present a novel, substring-based ap-
proach to transliteration, inspired by phrase-
based models of machine translation. We in-
vestigate two implementations of substring-

based transliteration: a dynamic program-

ming algorithm, and a finite-state transducer.

We show that our substring-based transducer
not only outperforms a state-of-the-art letter-

based approach by a significant margin, but
is also orders of magnitude faster.

F = arg max
E



to know the relatively rare letter relationships/s  to machine transliteration. Section 3 presents the
and aele, and to balance their unlikelihood againsietter-based transducer approach to Arabic-English
the probability of the correct transliteration being anransliteration proposed in (Al-Onaizan and Knight,
actual English name. 2002), which we use as the main point of com-
The search for the optimal English transliteratiorparison for our substring-based models. Section 4
E for a given foreign namé" is referred to as de- presents our substring-based approaches to translit-
coding. An efficient approach to decoding is dy-eration. In Section 5, we outline the experiments
namic programming, in which solutions to subprobused to evaluate the models and present their results.
lems are maintained in a table and used to build upinally, Section 6 contains our overall impressions
the global solution in a bottom-up approach. Dyand conclusions.
namic programming approaches are optimal as long
as the dynamic programming invariant assumptio Previous Work
holds. This assumption states that if the optimal path
through a graph happens to go through statiden Arababi et al. (1994) propose to model forward
this optimal path must include the best path up to an@ansliteration through a combination of neural net
including g. Thus, once an optimal path to states and expert systems. Their main task was to vow-
found, all other paths tg can be eliminated from €lize the Arabic names as a preprocessing step for
the search. The validity of this assumption dependgansliteration. Their method is Arabic-specific and
on the state space used to define the model. Tyﬁaquires that the Arabic names have a regular pattern
ically, for problems related to word comparison, f vowelization.
dynamic programming approach will define states as Knight and Graehl (1998) model the translitera-
positions in the source and target words. As will béion of Japanese syllabikatakana script into En-
shown later, however, not all models can be repradlish with a sequence of finite-state transducers.
sented with such a state space. After performing a conversion of the English and
The phrase-based approach developed for statkatakana sequences to their phonetic representa-
tical machine translation (Koehn et al., 2003) idions, the correspondences between the English and
designed to overcome the restrictions on many-telapanese phonemes are learned with the expectation
many mappings in word-based translation modelghaximization (EM) algorithm. Stalls and Knight
This approach is based on learning correspondencgs?98) adapt this approach to Arabic, with the mod-
between phrases, rather than words. Phrases #fgation that the English phonemes are mapped di-
generated on the basis of a word-to-word alignmentectly to Arabic letters. Al-Onaizan and Knight
with the constraint that no words within the phrasé2002) find that a model mapping directly from En-
pair are linked to words outside the phrase pair.  glish to Arabic letters outperforms the phoneme-to-
In this paper, we propose to apply phrase-basdgtter model.
translation methods to the task of machine translit- AbdulJaleel and Larkey (2003) model forward
eration, in an approach we refer to as substringfansliteration from Arabic to English by treating
based transliteration. We consider two implemerthe words as sentences and using a statistical word
tations of these models. The first is an adaptatioalignment model to align the letters. They select
of the monotone search algorithm outlined in (Zensommon English n-grams based on cases when the
and Ney, 2004).The second encodes the substringignment links an Arabic letter to several English
based transliteration model as a transducer. The rdetters, and consider these n-grams as single letters
sults of experiments on Arabic-to-English transliterfor the purpose of training. The English translitera-
ation show that the substring-based transducer ouitons are produced using probabilities, learned from
performs a state-of-the-art letter-based transducéhe training data, for the mappings between Arabic
while at the same time being orders of magnitudéetters and English letters/n-grams.
smaller and faster. Li et al. (2004) propose a letter-to-letter n-gram
The remainder of the paper is organized as fokransliteration model for Chinese-English transliter-
lows. Section 2 discusses previous approach@dion in an attempt to allow for the encoding of more
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contextual information. The model isolates individ-tion: the Viterbi substring decoder and the substring-
ual mapping operations between training pairs, anohsed transducer. Table 1 presents a comparison of
then learns n-gram probabilities for sequences dfe substring-based models to the letter-based model
these mapping operations. Ekbal et al. (2006) adagiscussed in Section 3.

this model to the transliteration of names from Benz‘rl The M h Algorith
gali to English. ) eMonotone Searc gorithm

Zens and Ney (2004) propose a linear-time decoding
3 Letter-based Trandliteration algorithm for phrase-based machine translation. The

algorithm requires that the translation of phrases be

The main po_lnt of comparison for the ?Valuat'or_‘sequential, disallowing any phrase reordering in the
of our substring-based models of transliteration % anslation

the letter-based transducer proposed by (Al-Onaizan

and Knigh_t, 20_02)' Their model is a CornIOOSitionpair of sentences, the training for the algorithm ac-
of a transliteration transducer and a language tran@épts all contiguous bilingual phrase pairs (up to a
ducer. Mappings in the transliteration transducer arﬁredetermined maximum length) whose words are
defined between 1-3 English letters and 0-2 Arabigy, ., ajigned with each other (Koehn et al., 2003).
letters, and their probabilities are learned by EMThe probabilitiesP(f|é) for each foreign phrasé
The transliteration transducer is split into three stateg 4 English phrasé are calculated on the basis
to allow mapping probabilities to be learned S€P%¢ counts gleaned from a bitext. Since the count-

rately for Iett_ers at the beginning, middle an_d end 0|fng process is much simpler than trying to learn the
a word. Unlike the transducers proposed in (Stallﬂ

) X hrases with EM, the maximum phrase length can be
and Knight, 1998) and (Knight and Graehl, 1998 ade arbitrarily long with minimal jumps in com-

no Ztter:::):] IS rr;]ade to model the pﬁonunu?tlon 0;Elexity. This allows the model to actually encode
words. Although names are generally trans Iterate((flontextual information into the translation model in-

based on how they SOL?”O"_ not how they quk, thgtead of leaving it completely to the language model.
letter-phoneme conversion itself is problematic as ¥here are no nulld) phrases so the model does not

is not a trivial task. Many transliterated words A% andle insertions or deletions explicitly. They can be

Sroperdnames,hwr;ose pronuncigtipn rgles Imay Val¥andled implicitly, however, by including inserted or
epending on't €language of origin (Lietal., 2904)deleted words as members of a larger phrase.
For examplech is generally pronounced as either

[4] or [k] in English names, but ag][in French performed with a Viterbi dynamic programming ap-
names. o _ . proach. For a foreign sentence of lengthand a
The language model is implemented as a finitgy 556 |ength maximum aff, a table is filled with a
state acceptor using a cc_)mblnatlon of _Word unlgra%wj for each position in the input foreign sentence,
and letter trigram probabilities. Essentially, the Worqepresenting a translation sequence ending at that
unigrgm model acts as a.probabili§ti.c lookup tableforeign word, and each columnrepresents possi-
allowing for words seen in the training data to bg,q fina| English words for that translation sequence.

produced with high accuracy, while the Iettertrigran]zach entry in the tablé is filled according to the
probabilities are used model words not seen in th%llowing recursion:

training data.

Starting from a word-based alignment for each

Decoding in the monotone search algorithm is

Q(0,%) = 1
4 Substring-based Trandliteration Q(j.e) = maxP(fle)P(ele)Q(',¢)
e'ef
Our substring-based transliteration approach is an (J+1,8) = maxQ(J,¢)P($]e))
adaptation of phrase-based models of machine trans- ’ e/ ’

lation to the domain of transliteration. In particular,

our methods are inspired by the monotone searabheref is a foreign phrase beginning #t+ 1, end-
algorithm proposed in (Zens and Ney, 2004). Wing atj and consisting of up td/ words. The ‘$
introduce two models of substring-based transliterasymbol is the sentence boundary marker.
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Letter Transducer  Viterbi Substring Substring Transducer
Model Type Transducer Dynamic Programming Transducer
Transliteration Model Letter Substring Substring
Language Model Word/Letter Substring/Letter Word/Letter
Null Symbols Yes No No
Alignments All Most Probable Most Probable

Table 1: Comparison of statistical transliteration models

In the above recursion, the language model is M oura d
represented a®(éle’), the probability of the En-
glish phrase given the previous English word. Be- \ ///
cause of data sparseness issues in the context of & b A

word phrases, the actual implementation approxi-

mates this probability using word n-grams. Figure 1: A one-to-one alignment d&flourad and

>l . For clarity the Arabic name is written left to
right.
We propose to adapt the monotone search algorithm

to the domain of transliteration by substituting let-

ters and substrings for the words and phrases of tf#abic string » s, and there are two valid English
original model. There are, in fact, strong indica"@mes in the language modéarim (the correct
tions that the monotone search algorithm is bettdfansliteration of the input) anidristine (the Arabic
suited to transliteration than it is to translation, Unlransliteration of which would bgxz. 5). The op-
like machine translation, where the constraint on réimal path up to the second letter might go through
ordering required by monotone search is frequentl-£:K>, <_,r>. Atthis point, itis transliterating into
violated, transliteration is an inherently sequentiail® Nameristine, but as soon as it hits the third let-
process. Also, the sparsity issue in training the larf€" (5), it is clear that this is the incorrect choice.
guage model is much less pronounced, allowing g order to recover from the_err_or, the search would
to modelP(é|¢') directly. have to backtrack to the beginning and return to state

In order to train the model, we extract the one=> from a different path, but this is an impos-
to-one Viterbi alignment of a training pair from aS|.b|I|_ty since all other paths to that state have been
stochastic transducer based on the model outiinéiMinated from the search.
in (Ristad and Yianilos, 1998). Substrings are then i
generated by iteratively appending adjacent links 04'3 Substring-based Transducer
unlinked letters to the one-to-one links of the alignThe major advantage the letter-based transducer pre-
ment. For example, assuming a maximum substringented in Section 3 has over the Viterbi substring de-
length of 2, the<r, ,> link in the alignment pre- coder is its word unigram language model, which
sented in Figure 1 would participate in the followingallows it to reproduce words seen in the training
substring pairs<r, ,>, <ur, ,>, and<ra, |,>. data with high accuracy. On the other hand, the

The fact that the Viterbi substring decoder emvViterbi substring decoder is able to encode con-
ploys a dynamic programming search through thtextual information in the transliteration model be-
source/target letter state space described in Sectiorduse of its ability to consider larger many-to-many
renders the use of a word unigram language modeiappings. In a novel approach presented here, we
impossible. This is due to the fact that alternat@ropose a substring-based transducer that draws on
paths to a given source/target letter pair are beirgpth advantages. The substring transliteration model
eliminated as the search proceeds. For examplearned for the Viterbi substring decoder is encoded
suppose the Viterbi substring decoder were given ttes a transducer, thus allowing it to use a word uni-
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gram language model. Our model, which we refeb.1 Data

to as the substring-based transducer, has several ady oyr experiments, we required bilingual name
vantages over the previously presented models. hairs for testing and development data, as well as
e The substring-based transducer can be confor the training of the transliteration models. To train
posed with a word unigram language model, althe language models, we simply needed a list of En-
lowing it to transliterate names seen in trainingglish names. Bilingual data was extracted from the
for the language model with greater accuracy. Arabic-English Parallel News part 1 (approx. 2.5M
e Longer many-to-many mappings enable tha&vords) and the Arabic Treebank Part 1-10k word
transducer to encode contextual informatiofEnglish Translation. Both bitexts contain Arabic
into the transliteration model. Compared to thé1ews articles and their English translations. The En-

letter-based transducer, it allows for the geneglish name list for the language model training was
ation of longer well-formed substrings (or po-extracted from the English-Arabic Treebank v1.0

tentially even entire words). (approx. 52k words) The language model training

« The letter-based transducer considers all possiet consisted of all words labeled as proper names
ble alignments of the training examples, mean! this corpus along with all the English names in

ing that many low-probability mappings are en_the transliteration training set. Any names in any of

coded into the model. This issue is even morth€ data sets that consisted of multiple words (e.g.

pronounced in cases where the desired transiif/St name/last name pairs) were split and consid-

eration is not in the word unigram model anc]ered individually. Training data for the translitera-
it is guided by the weaker letter trigram model tion model consisted of 2844_Eng|ish—Arabic pairs.
The substring-based transducer can eliminatEN€ language model was trained on a separate set

many of these low-probability mappings be-Of 10991 (4494 unique) English names. The final
cause of its commitment to a single high_test set of 300 English-Arabic transliteration pairs

contained no overlap with the set that was used to

probability one-to-one alignment during train- ) )
induce the transliteration models.

ing.
¢ A major computational advantage this modeb.2 Evaluation M ethodology
has over the letter-based transducer is the fagl,. aach of the 300 transliteration pairs in the test
that null charactersc) are not encoded explic- gt the name written in Arabic served as input to the
itly. Since the Arabic input to the letter-basedyggels, while its English counterpart was consid-
transducer could contain an arbitrary numbeg,e 4 gold standard transliteration for the purpose
of nulls, the potential number of output stringS¢ e\ a1yation. Two separate tests were performed on
from the transllter_gtlon Fransducer is mﬁmte.the test set. In the first, the 300 English words in
Thus, the composmon. with the language ranSpe test set were added to the training data for the
ducer must be done in such a way that therg,,,,;a5e models (theeen test), while in the sec-
is a valid path for all of the strings output by onq 41 English words in the test set were removed
_tr_\e translltergtlo_n transducer that have a POStom the language model's training data (tireseen
itive probability in the language model. ThiSegp) Both tests were run on the same set of words
leads to prohibitively large transducers. On thg, angyre that variations in performance seen and
other hand, the substring-based transducer hafliseen words were solely due to whether or not they
dles nulls implicitly (e.g. the mappinke:dim- ;55041 in the language model (and not, for exam-
plicitly representseie after ak), so the trans- e heir language of origin). Theeen test is sim-
ducer itself is not required to deal with them. ;1o tests run in (Knight and Graehl, 1998) and
5 Experiments (Stalls and Knight, 1998) where the models could

not produce any words not included in the language
In this section, we describe the evaluation of our—; o o
All corpora are distributed by the Linguistic Data Consor-

m_Odels on the task of Arabic-to-English transmer'tium. Despite the name, the English-Arabic Treebank v co
ation. tains only English data.
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model training data. The models were evaluated opnMethod Arabic | Non-Arabic | All
theseen test set in terms of exact matches to the gold Baseline 1.9 2.1 2.0
standard. Because the task of generating transliterLetter trans. 45.9 64.3 54.7
ations for theunseen test set is much more difficult, | Viterbi substring| 15.9 30.1 22.7
exact match accuracy will not provide a meaningful Substring trans.| 59.9 811 70.0
metric for comparison. Thus, a softer measure of Human | 331 | 40.6  [36.7]

performance was required to indicate how close the
generated transliterations are to the gold standargaple 2: Exact match accuracy percentage on the
We used Levenshtein distance: the number of insegza test set for various methods.

tions, deletions and substitutions required to convert

one string into another. We present the results sep-Method Arabic | Non-Arabic | All
arately for names of Arabic origin and for those of| Baseline 2.32 2.80 2.55
non-Arabic origin. Letter trans. 2.46 2.63 2.54
We also performed a third test on words that apt Viterbi substring| 1.90 2.13 2.01
pear in both the transliteration and language modelSubstring trans.| 1.92 2.41 2.16
training data. This test was not indicative of the‘ Human ‘ 1.24 ‘ 1.42 ‘ 1_33‘

overall strength of the models but was meant to give
a sense of how much each model depends on its lafigp|e 3: Average Levenshtein distance on tie
guage model versus its transliteration model. seen test set for various methods.

5.3 Setup

Five approaches were evaluated on the Arabic-
English transliteration task.

e Human: For the purpose of comparison, we
allowed an independent human subject (fluent

_ _ _ in Arabic, but a native speaker of English) to

» Basdine: As a baseline for our experiments,  harform the same task. The subject was asked
we used a simple deterministic mapping algo- 4 grangiiterate the Arabic words in the test set
rithm which maps Arabic letters to the most  ithout any additional context. No additional
likely letter or sequence of letters in English. resources or collaboration were allowed.

e Letter-based Transducer: Mapping proba-
bilities were learned by running the forward-54 Resultson the Test Set
backward algorlthm until convergence. TheTable 2 presents the word accuracy performance of
!anguage model 'S a combination of word UNsach transliterator when the test set is available to the
\gram af‘d leter tngram_ models ano_l selects %nguage models. Table 3 shows the average Leven-
word_ unigram or 'e“ef trigram ”_‘Ode"”g of theshtein distance results when the test set is unavail-
E_ngllsh Wofd depending on whichever one 353ble to the language models. Exact match perfor-
signs the h|ghes_t probability. .The Ietter—base%aInce by the automated approaches onutiseen
transducer was implemented in Carfel set did not exceed 10.3% (achieved by the Viterbi

e Viterbi Substring Decoder: We experimented substring decoder). Results on theen test sug-
with maximum substring lengths between Zyest that non-Arabic words (back transliterations)
and 10 on the development set, and found thaire easier to transliterate exactly, while results for
a maximum length of 6 was optimal. the unseen test suggest that errors on Arabic words

e Substring-based Transducer: The substring- (forward transliterations) tend to be closer to the
based transducer was also implemented igold standard.

Carmel. We found that this model worked best Overall, our substring-based transducer clearly
with a maximum substring length of 4. outperforms the letter-based transducer. Its per-

ST . _ formance is better in both tests, but its advantage
Carmel is a finite-state transducer package written b

Jonathan Graehl. It is available at http://www.isi.ecigfised- is parti_CL_JIarIy pronounced on words it has seen in
swicarmel/. the training data for the language model (the task
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Arabic | LBT SBT [ Correct Method Exact match| Avg Lev.
; "\,‘“f‘ UAth:qa: Lith:qa: (Zth:‘af” Letter transducer 81.2 0.46
= el sharl | Asa Viterbi substring 83.2 0.24
3| ey Rafeet | Arafat | Refaat -
4| wL | Istamaday| Asuma | Usama Substring transducer ~ 94.4 0.09
51 olal Erdman | Aliman | Iman ) ) )
6| Sss | Wortch | Watch | Watch Table 5: Results for testing on the transliteration
™ Mellis Mills Mills training set.
8 | ¢ | February | Firari Ferrari

letter-based transducer incorrectly choosing a name
Table 4: A sample of the errors made by the lettef;, the word unigram model. As discussed in Sec-
based (LBT) and segment-based (SBT) transducetg,, 4 3, this is likely due to mappings learned from
low-probability alignments.

for which the letter-based transducer was originall
designed). Since both transducers use exactly t
same language model, the fact that the substring-he substring-based approaches encode a great deal
based transducer outperforms the letter-based trard- contextual information into the transliteration
ducer indicates that it learns a stronger transliteranodel. In order to assess how much the perfor-
tion model. mance of each approach depends on its language
The Viterbi substring decoder seems to strugglgodel versus its transliteration model, we tested the
when it comes to recreating words seen the languadferee statistical models on the set of 2844 names
training data, as evidenced by its weak performandgeen in both the transliteration and language model
on theseen test. Obviously, its substring/letter bi- training. The results of this experiment are pre-
gram language model is no match for the word unsented in Table 5. The Viterbi substring decoder re-
igram model used by the transducers on this taskeives the biggest boost, outperforming the letter-
On the other hand, its stronger performance on tHeased transducer, which indicates that its strength
unseen test set suggests that its language model ligs mainly inits transliteration modeling as opposed
stronger than the letter trigram used by the transdut? its language modeling. The substring-based trans-
ers when it comes to generating completely novelucer, however, still outperforms it by a large mar-
words. gin, achieving near-perfect results. Most of the re-
A sample of the errors made by the letter- andnaining errors can be attributed to names with alter-
substring-based transducers is presented in Tablen@te correct spellings in English.
In generaL when both models err, the Substring_ The results also suggest that the SUbString'based
based transducer tends toward more phoneticalfjansducer practically subsumes a naive “lookup ta-
reasonable choices. The most common type of fle” approach. Although the accuracy achieved is
ror is simply correct alternate English spellings ofess than 100%, the substring-based transducer has
an Arabic name (error 1). Error 2 is an example othe great advantage of being able to handle noise in
a learned mapp|ng being misp|aced (the de|@pd the input. In other WOde, if the Spelling of an input
Error 3 indicates that the letter-based transducer Yéord does not match an Arabic word from the train-
able to avoid these misplaced mappings at the blld data, a lookup table will generate nothing, while
ginning or end of a word because of its three-statée substring-based transducer could still search for
transliteration transducer (i.e. it learns not to allovfhe correct transliteration.
vowel deletions at the beginning of a word). Errors
4 and 5 are cases where the letter-based transduéeq
produced particularly awkward transliterations. ErAnother point of comparison between the models
rors 6 and 7 are names that actually appear in the complexity. The letter-based transducer encodes
word unigram model but were missed by the letter56144 mappings while the substring-based trans-
based transducer, while error 8 is an example of thducer encodes 13948, but as shown in Table 6, once
950
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Method Size (states/arcs) feasible for the substring-based transducer because
Letter transducer 86309/547184 of its efficient memory usage. Another feature of the
Substring transducer  759/2131 substring-based transducer that we have not yet ex-
plored is its ability to easily produce anbest list of
Table 6: Transducer sizes for composition with théransliterations. We plan to investigate whether us-

word el (Helmy). ing methods like discriminative reranking (Och and
- Ney, 2002) on such am-best list could improve per-
Method Time formance.
Lt-atter.transdlljcer 5h52min Acknowledgments
Viterbi substring 3 sec
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