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Abstract

Morphological segmentation has been
shown to be beneficial to a range of NLP
tasks such as machine translation, speech
recognition, speech synthesis and infor-
mation retrieval. Recently, a number of
approaches to unsupervised morphological
segmentation have been proposed. This
paper describes an algorithm that draws
from previous approaches and combines
them into a simple model for morpholog-
ical segmentation that outperforms other
approaches on English and German, and
also yields good results on agglutinative
languages such as Finnish and Turkish.
We also propose a method for detecting
variation within stems in an unsupervised
fashion. The segmentation quality reached
with the new algorithm is good enough to
improve grapheme-to-phoneme conversion.

1 Introduction

Morphological segmentation has been shown to be
beneficial to a number of NLP tasks such as ma-
chine translation (Goldwater and McClosky, 2005),
speech recognition (Kurimo et al., 2006), informa-
tion retrieval (Monz and de Rijke, 2002) and ques-
tion answering. Segmenting a word into meaning-
bearing units is particularly interesting for morpho-
logically complex languages where words can be
composed of several morphemes through inflection,
derivation and composition. Data sparseness for
such languages can be significantly decreased when

words are decomposed morphologically. There ex-
ist a number of rule-based morphological segmen-
tation systems for a range of languages. However,
expert knowledge and labour are expensive, and the
analyzers must be updated on a regular basis in or-
der to cope with language change (the emergence of
new words and their inflections). One might argue
that unsupervised algorithms are not an interesting
option from the engineering point of view, because
rule-based systems usually lead to better results.
However, segmentations from an unsupervised algo-
rithm that is language-independent are “cheap”, be-
cause the only resource needed is unannotated text.
If such an unsupervised system reaches a perfor-
mance level that is good enough to help another task,
it can constitute an attractive additional component.

Recently, a number of approaches to unsupervised
morphological segmentation have been proposed.
These algorithms autonomously discover morpheme
segmentations in unannotated text corpora. Here we
describe a modification of one such unsupervised al-
gorithm, RePortS (Keshava and Pitler, 2006). The
RePortS algorithm performed best on English in a
recent competition on unsupervised morphological
segmentation (Kurimo et al., 2006), but had very low
recall on morphologically more complex languages
like German, Finnish or Turkish. We add a new
step designed to achieve higher recall on morpho-
logically complex languages and propose a method
for identifying related stems that underwent regular
non-concatenative morphological processes such as
umlauting or ablauting, as well as morphological al-
ternations along morpheme boundaries.

The paper is structured as follows: Section
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2 discusses the relationship between language-
dependency and the level of supervision of a learn-
ing algorithm. We then give an outline of the main
steps of the RePortS algorithm in section 3 and ex-
plain the modifications to the original algorithm in
section 4. Section 5 compares results for different
languages, quantifies the gains from the modifica-
tions on the algorithm and evaluates the algorithm
on a grapheme-to-phoneme conversion task. We fi-
nally summarize our results in section 6.

2 Previous Work

The world’s languages can be classified according
to their morphology into isolating languages (little
or no morphology, e.g. Chinese), agglutinative lan-
guages (where a word can be decomposed into a
large number of morphemes, e.g. Turkish) and in-
flectional languages (morphemes are fused together,
e.g. Latin).

Phenomena that are difficult to cope with for
many of the unsupervised algorithms are non-
concatenative processes such as vowel harmoniza-
tion, ablauting and umlauting, or modifications at
the boundaries of morphemes, as well as infixation
(e.g. in Tagalog: sulat ‘write’, s-um-ulat ‘wrote’, s-
in-ulat ‘was written’), circumfixation (e.g. in Ger-
man: mach-en ‘do’, ge-mach-t ‘done’), the Ara-
bic broken plural or reduplications (e.g. in Pinge-
lapese: mejr ‘to sleep’, mejmejr ‘sleeping’, mejme-
jmejr ‘still sleeping’). For words that are subject to
one of the above processes it is not trivial to automat-
ically group related words and detect regular trans-
formational patterns.

A range of automated algorithms for morpholog-
ical analysis cope with concatenative phenomena,
and base their mechanics on statistics about hypoth-
esized stems and affixes. These approaches can be
further categorized into ones that use conditional
entropy between letters to detect segment bound-
aries (Harris, 1955; Hafer and Weiss, 1974; Déjean,
1998; Monson et al., 2004; Bernhard, 2006; Ke-
shava and Pitler, 2006; Bordag, 2006), approaches
that use minimal description length and thereby min-
imize the size of the lexicon as measured in en-
tries and links between the entries to constitute a
word form (Goldsmith, 2001; Creutz and Lagus,
2006). These two types of approaches very closely

tie the orthographic form of the word to the mor-
phemes. They are thus not well-suited for coping
with stem changes or modifications at the edges of
morphemes. Only very few approaches have ad-
dressed word internal variations (Yarowski and Wi-
centowski, 2000; Neuvel and Fulop, 2002).

A popular and effective approach for detecting in-
flectional paradigms and filter affix lists is to cluster
together affixes or regular transformational patterns
that occur with the same stem (Monson et al., 2004;
Goldsmith, 2001; Gaussier, 1999; Schone and Juraf-
sky, 2000; Yarowski and Wicentowski, 2000; Neu-
vel and Fulop, 2002; Jacquemin, 1997). We draw
from this idea of clustering in order to detect ortho-
graphic variants of stems; see Section 4.3.

A few approaches also take into account syntac-
tic and semantic information from the context the
word occurs (Schone and Jurafsky, 2000; Bordag,
2006; Yarowski and Wicentowski, 2000; Jacquemin,
1997). Exploiting semantic and syntactic informa-
tion is very attractive because it adds an additional
dimension, but these approaches have to cope with
more severe data sparseness issues than approaches
that emphasize word-internal cues, and they can
be computationally expensive, especially when they
use LSA.

The original RePortS algorithm assumes mor-
phology to be concatenative, and specializes on pre-
fixation and suffixation, like most of the above ap-
proaches, which were developed and implemented
for English (Goldsmith, 2001; Schone and Jurafsky,
2000; Neuvel and Fulop, 2002; Yarowski and Wi-
centowski, 2000; Gaussier, 1999). However, many
languages are morphologically more complex. For
example in German, an algorithm also needs to cope
with compounding, and in Turkish words can be
very long and complex. We therefore extended the
original RePortS algorithm to be better adapted to
complex morphology and suggest a method for cop-
ing with stem variation. These modifications ren-
der the algorithm more language-independent and
thereby make it attractive for applying to other lan-
guages as well.

3 The RePortS Algorithm

On English, the RePortS algorithm clearly out-
performed all other systems in Morpho Challenge
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20051 (Kurimo et al., 2006), obtaining an F-measure
of 76.8% (76.2% prec., 77.4% recall). The next best
system obtained an F-score of 69%. However, the
algorithm does not perform as well on other lan-
guages (Turkish, Finnish, German) due to low re-
call (see (Keshava and Pitler, 2006) and (Demberg,
2006), p. 47).

There are three main steps in the algorithm. First,
the data is structured in two trees, which provide the
basis for efficient calculation of transitional proba-
bilities of a letter given its context. The second step
is the affix acquisition step, during which a set of
morphemes is identified from the corpus data. The
third step uses these morphemes to segment words.

3.1 Data Structure

The data is stored in two trees, the forward tree and
the backward tree. Branches correspond to letters,
and nodes are annotated with the total corpus fre-
quency of the letter sequence from the root of the
tree up to the node. During the affix identification
process, the forward tree is used for discovering suf-
fixes by calculating the probability of seeing a cer-
tain letter given the previous letters of the word. The
backward tree is used to determine the probability
of a letter given the following letters of a word in
order to find prefixes. If the transitional probabil-
ity is high, the word should not be split, whereas
low probability is a good indicator of a morpheme
boundary. In such a tree, stems tend to stay together
in long unary branches, while the branching factor is
high in places where morpheme boundaries occur.

The underlying idea of exploiting “Letter Succes-
sor Variety” was first proposed in (Harris, 1955), and
has since been used in a number of morphemic seg-
mentation algorithms (Hafer and Weiss, 1974; Bern-
hard, 2006; Bordag, 2006).

3.2 Finding Affixes

The second step is concerned with finding good af-
fixes. The procedure is quite simple and can be di-
vided into two subtasks. (1) generating all possible
affixes and (2) validating them. The validation step
is necessary to exclude bad affix candidates (e.g. let-
ter sequences that occur together frequently such as
sch, spr or ch in German orsh, th, qu in English).

1www.cis.hut.fi/morphochallenge2005/

An affix is validated if all three criteria are satisfied
for at least 5% of its occurrences:

1. The substring that remains after peeling off an
affix is also a word in the lexicon.

2. The transitional probability between the
second-last and the last stem letter is≈ 1.

3. The transitional probability of the affix letter
next to the stem is<1 (tolerance 0.02).

Finally, all affixes that are concatenations of two or
more other suffixes (e.g.,-ungencan be split up in
-ungand-en in German) are removed. This step re-
turns two lists of morphological segments. The pre-
fix list contains prefixes as well as stems that usually
occur at the beginning of words, while the suffix list
contains suffixes and stems that occur at the end of
words. In the remainder of the paper, we will refer
to the content of these lists as “prefixes” and “suf-
fixes”, although they also include stems. There are
several assumptions encoded in this procedure that
are specific to English, and cause recall to be low for
other languages: 1) all stems are valid words in the
lexicon; 2) affixes occur at the beginning or end of
words only; and 3) affixation does not change stems.
In section 4, we propose ways of relaxing these as-
sumptions to make this step less language-specific.

3.3 Segmenting Words

The final step is the complete segmentation of words
given the list of affixes acquired in the previous step.
The original RePortS algorithm uses a very simple
method that peels off the most probable suffix that
has a transitional probability smaller than 1, until no
more affixes match or until less than half of the word
remains. This last condition is problematic since it
does not scale up well to languages with complex
morphology. The same peeling-off process is exe-
cuted for prefixes.

Although this method is better than using a
heuristic such as ‘always peel off the longest pos-
sible affix’, because it takes into account probable
sites of fractures in words, it is not sensitive to
the affix context or the morphotactics of the lan-
guage. Typical mistakes that arise from this con-
dition are that inflectional suffixes, which can only
occur word-finally, might be split off in the middle
of a word after previously having peeled off a num-
ber of other suffixes.
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4 Modifications and Extensions

4.1 Morpheme Acquisition

When we ran the original algorithm on a German
data set, no suffixes were validated but reasonable
prefix lists were found. The algorithm works fine
for English suffixes – why does it fail on German?
The algorithm’s failure to detect German suffixes is
caused by the invalid assumption that a stem must
be a word in the corpus. German verb stems do
not occur on their own (except for certain impera-
tive forms). After stripping off the suffix of the verb
abholst‘fetch’, the remaining stringabholcannot be
found in the lexicon. However, words likeabholen,
abholt, abholeor Abholungare part of the corpus.
The same problem also occurs for German nouns.

Therefore, this first condition of the affix acqui-
sition step needs to be replaced. We therefore intro-
duced an additional step for building an intermediate
stem candidate list into the affix acquisition process.
The first condition is replaced by a condition that
checks whether a stem is in the stem candidate list.
This new stem candidate acquisition procedure com-
prises three steps:
Step 1: Creation of stem candidate list
All substrings that satisfy conditions 2 and 3 but
not condition 1, are stored together with the set of
affixes they occur with. This process is similar to
the idea of registering signatures (Goldsmith, 2001;
Neuvel and Fulop, 2002). For example, let us as-
sume our corpus contains the wordsAufführender,
Aufführung, aufführt and Aufführlaunebut not the
stem itself, sinceaufführ ‘act’ is not a valid Ger-
man word. Conditions 2 and 3 are met, because
the transitional probability betweenaufführ and the
next letter is low (there are a lot of different pos-
sible continuations) and the transitional probability
P (r|auffüh) ≈ 1. The stem candidateaufführ is then
stored together with the suffix candidates{ender,
ung, en, t, laune}.
Step 2: Ranking candidate stems
There are two types of affix candidates: type-1 affix
candidates are words that are contained in the data
base as full words (those are due to compounding);
type-2 affix candidates are inflectional and deriva-
tional suffixes. When ranking the stem candidates,
we take into account the number of type-1 affix can-
didates and the average frequency of tpye-2 affix

Figure 1: Determining the threshold for validating
the best candidates from the stem candidate list.

candidates.

The first condition has very good precision, sim-
ilar to the original method. The morphemes found
with this method are predominantly stem forms that
occur in compounding or derivation (Komposition-
ssẗamme and Derivationsstämme). The second con-
dition enables us to differentiate between stems that
occur with common suffixes (and therefore have
high average frequencies), and pseudostems such
as runterschwhose affix list contains many non-
morphemes (e.g.lucken, iebt, aute). These non-
morphemes are very rare since they are not gener-
ated by a regular process.
Step 3: Pruning
All stem candidates that occur less than three times
are removed from the list. The remaining stem can-
didates are ordered according to the average fre-
quency of their non-word suffixes. This criterion
puts the high quality stem candidates (that occur
with very common suffixes) to the top of the list.
In order to obtain a high-precision stem list, it is
necessary to cut the list of candidates at some point.
The threshold for this is determined by the data: we
choose the point at which the function of list-rank
vs. score changes steepness (see Figure 1). This
visual change of steepness corresponds to the point
where potential stems found get more noisy because
the strings with which they occur are not common
affixes. We found the performance of the result-
ing morphological system to be quite stable (±1%
f-score) for any cutting point on the slope between
20% and 50% of the list (for the German data set
ranks 4000 and 12000), but importantly before the
function tails off. The threshold was also robust
across the other languages and data sets.
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4.2 Morphological Segmentation
As discussed in section 3.3, the original implemen-
tation of the algorithm iteratively chops off the most
probable affixes at both edges of the word without
taking into account the context of the affix. In mor-
phologically complex languages, this context-blind
approach often leads to suboptimal results, and also
allows segmentations that are morphotactically im-
possible, such as inflectional suffixes in the middle
of words. Another risk is that the letter sequence that
is left after removing potential prefixes and suffixes
from both ends is not a proper stem itself but just a
single letter or vowel-less letter-sequence.

These problems can be solved by using a bi-gram
language model to capture the morphotactic proper-
ties of a particular language. Instead of simply peel-
ing off the most probable affixes from both ends of
the word, all possible segmentations of the word are
generated and ranked using the language model. The
probabilities for the language model are learnt from
a set of words that were segmented with the origi-
nal simple approach. This bootstrapping allows us
to ensure that the approach remains fully unsuper-
vised. At the beginning and end of each word, an
edge marker ‘#’ is attached to the word. The model
can then also acquire probabilities about which af-
fixes occur most often at the edges of words.

Table 2 shows that filtering the segmentation re-
sults with the n-gram language model caused a sig-
nificant improvement on the overall F-score for most
languages, and led to significant changes in pre-
cision and recall. Whereas the original segmen-
tation yielded balanced precision and recall (both
68%), the new filtering boosts precision to over
73%, with 64% recall. Which method is preferable
(i.e. whether precision or recall is more important)
is task-dependent.

In future work, we plan to draw on (Creutz and
Lagus, 2006), who use a HMM with morphemic cat-
egories to impose morphotactic constraints. In such
an approach, each element from the affix list is as-
signed with a certain probability to the underlying
categories of “stem”, “prefix” or “suffix”, depend-
ing on the left and right perplexity of morphemes, as
well as morpheme length and frequency. The tran-
sitional probabilities from one category to the next
model the morphotactic rules of a language, which
can thus be learnt automatically.

4.3 Learning Stem Variation
Stem variation through ablauting and umlauting
(an English example is run–ran) is an interest-
ing problem that cannot be captured by the algo-
rithm outlined above, as variations take place within
the morphemes. Stem variations can be context-
dependent and do not constitute a morpheme in
themselves. German umlauting and ablauting leads
to data sparseness problems in morphological seg-
mentation and affix acquisition. One problem is that
affixes which usually cause ablauting or umlauting
are very difficult to find. Typically, ablauted or um-
lauted stems are only seen with a very small number
of different affixes, which means that the affix sets
of such stems are divided into several unrelated sub-
sets, causing the stem to be pruned from the stem
candidate list. Secondly, ablauting and umlauting
lead to low transitional probabilities at the positions
in stems where these phenomena occur. Consider
for example the affix set for the stem candidatebock-
spr, which contains the pseudoaffixesung, üngeand
ingen. The morphemessprung, sprüng andsprin-
genare derived from the rootspring ‘to jump’. In
the segmentation step this low transitional probabil-
ity thus leads to oversegmentation.

We therefore investigated whether we can learn
these regular stem variations automatically. A sim-
ple way to acquire the stem variations is to look at
the suffix clusters which are calculated during the
stem-acquisition step. When looking at the sets of
substrings that are clustered together by having the
same prefix, we found that they are often inflections
of one another, because lexicalized compounds are
used frequently in different inflectional variants. For
example, we findTrainingssprungas well asTrain-
ingsspr̈ungein the corpus. The affix list of the stem
candidatetrainings thus contains the wordssprung
and sprünge. Edit distance can then be used to
find differences between all words in a certain affix
list. Pairs with small edit distances are stored and
ranked by frequency. Regular transformation rules
(e.g. ablauting and umlauting,u → ü..e) occur at
the top of the list and are automatically accepted as
rules (see Table 1). This method allows us to not
only find the relation between two words in the lex-
icon (SprungandSpr̈unge) but also to automatically
learn rules that can be applied to unknown words to
check whether their variant is a word in the lexicon.
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freq. diff. examples
1682 aä..e sack-s̈acke, brach-br̈ache, stark-stärke
344 aä sahen-s̈ahen, garten-g̈arten
321 uü..e flug-fl̈uge, bund-b̈unde
289 ä a..s vertr̈age-vertrages, p̈asse-passes
189 oö..e chor-cḧore, strom-str̈ome, ?r̈ohre-rohr
175 t en setzt-setzen, bringt-bringen
168 a u laden-luden, *damm-dumm
160 ß ss l̈aßt-l̈asst, mißbrauch-missbrauch

[. . .]
136 a en firma-firmen, thema-themen

[. . .]
2 ß g *fließen-fliegen, *laßt-lagt
2 um o *studiums-studios

Table 1: Excerpts from the stem variation detection
algorithm results. Morphologically unrelated word
pairs are marked with an asterisk.

We integrated information about stem variation
from the regular stem transformation rules (those
with the highest frequencies) into the segmentation
step by creating equivalence sets of letters. For ex-
ample, the ruleu→ ü..e generates an equivalence
set{ü, u}. These two letters then count as the same
letter when calculating transitional probabilities. We
evaluated the benefit of integrating stem variation
information for German on the German CELEX
data set, and achieved an improvement of 2% in
recall, without any loss in precision (F-measure:
69.4%, Precision: 68.1%, Recall: 70.8%; values for
RePortS-stems). For better comparability to other
systems and languages, results reported in the next
section refer to the system version that does not in-
corporate stem variation.

5 Evaluation

For evaluating the different versions of the algorithm
on English, Turkish and Finnish, we used the train-
ing and test sets from MorphoChallenge to enable
comparison with other systems. Performance of the
algorithm on German was evaluated on 244k manu-
ally annotated words from CELEX because German
was not included in the MorphoChallenge data.

Table 2 shows that the introduction of the stem
candidate acquisition step led to much higher recall
on German, Finnish and Turkish, but caused some
losses in precision. For English, adding both com-
ponents did not have a large effect on either preci-
sion or recall. This means that this component is
well behaved, i.e. it improves performance on lan-
guages where the intermediate stem-acquisition step

Lang. alg.version F-Meas. Prec. Recall

Eng1 original 76.8% 76.2% 77.4%
stems 67.6% 62.9% 73.1%
n-gram seg. 75.1% 74.4% 75.9%

Ger2 original 59.2% 71.1% 50.7%
stems 68.4% 68.1% 68.6%
n-gram seg. 68.9% 73.7% 64.6%

Tur1 original 54.2% 72.9% 43.1%
stems 61.8% 65.9% 58.2%
n-gram seg. 64.2% 65.2% 63.3%

Fin1 original 47.1% 84.5% 32.6%
stems 56.6% 74.1% 45.8%
n-gram seg. 58.9% 76.1% 48.1%
max-split* 61.3% 66.3% 56.9%

Table 2: Performance of the algorithm with the mod-
ifications on different languages.
1MorphoChallenge Data,2German CELEX

is needed, but does not impair results on other lan-
guages. Recall for Finnish is still very low. It can be
improved (at the expense of precision) by selecting
the analysis with the largest number of segments in
the segmentation step. The results for this heuris-
tic was only evaluated on a smaller test set (ca. 700
wds), hence marked with an asterisk in Table 2.

The algorithm is very efficient: When trained on
the 240m tokens of the German TAZ corpus, it takes
up less than 1 GB of memory. The training phase
takes approx. 5 min on a 2.4GHz machine, and the
segmentation of the 250k test words takes 3 min for
the version that does the simple segmentation and
about 8 min for the version that generates all possi-
ble segmentations and uses the language model.

5.1 Comparison to other systems

This modified version of the algorithm performs sec-
ond best for English (after original RePortS) and
ranks third for Turkish (after Bernhards algorithm
with 65.3% F-measure and Morfessor-Categories-
MAP with 70.7%). On German, our method sig-
nificantly outperformed the other unsupervised al-
gorithms, see Table 3. While most of the systems
compared here were developed for languages other
than German, (Bordag, 2006) describes a system ini-
tially built for German. When trained on the “Pro-
jekt Deutscher Wortschatz” corpus which comprises
24 million sentences, it achieves an F-score of 61%
(precision 60%, recall 62%2) when evaluated on the
full CELEX corpus.

2Data from personal communication.
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morphology F-Meas. Prec. Recall
SMOR-disamb2 83.6% 87.1% 80.4%
ETI 79.5% 75.4% 84.1%
SMOR-disamb1 71.8% 95.4% 57.6%
RePortS-lm 68.8% 73.7% 64.6%
RePortS-stems 68.4% 68.1% 68.6%
best Bernhard 63.5% 64.9% 62.1%
Bordag 61.4% 60.6% 62.3%
orig. RePortS 59.2% 71.1% 50.7%
best Morfessor 1.0 52.6% 70.9% 41.8%

Table 3: Evaluating rule-based and data-based sys-
tems for morphological segmentation with respect to
CELEX manual morphological annotation.

Rule-based systems are currently the most com-
mon approach to morphological decomposition and
perform better at segmenting words than state-of-
the-art unsupervised algorithms (see Table 3 for per-
formance of state-of-the-art rule-based systems eval-
uated on the same data). Both the ETI3 and the
SMOR (Schmid et al., 2004) systems rely on a large
lexicon and a set of rules. The SMOR system re-
turns a set of analyses that can be disambiguated in
different ways. For details refer to pp. 29–33 in
(Demberg, 2006).

5.2 Evaluation on Grapheme-to-Phoneme
Conversion

Morphological segmentation is not of value in itself
– the question is whether it can help improve results
on an application. Performance improvements due
to morphological information have been reported for
example in MT, information retrieval, and speech
recognition. For the latter task, morphological seg-
mentations from the unsupervised systems presented
here have been shown to improve accuracy (Kurimo
et al., 2006).

Another motivation for evaluating the system on
a task rather than on manually annotated data is
that linguistically motivated morphological segmen-
tation is not necessarily the best possible segmenta-
tion for a certain task. Evaluation against a manu-
ally annotated corpus prefers segmentations that are
closest to linguistically motivated analyses. Further-
more, it might be important for a certain task to
find a particular type of morpheme boundaries (e.g.
boundaries between stems), but for another task it

3Eloquent Technology, Inc. (ETI) TTS system.
www.mindspring.com/˜ssshp/ssshp_cd/ss_
eloq.htm

morphology F-Meas. (CELEX) PER (dt)
CELEX 100% 2.64%
ETI 79.5% 2.78%
SMOR-disamb2 83.0% 3.00%
SMOR-disamb1 71.8% 3.28%
RePortS-lm 68.8% 3.45%
no morphology 3.63%
orig. RePortS 59.2% 3.83%
Bernhard 63.5% 3.88%
RePortS-stem 68.4% 3.98%
Morfessor 1.0 52.6% 4.10%
Bordag 64.1% 4.38%

Table 4: F-measure for evaluation on manually an-
notated CELEX and phoneme error rate (PER) from
g2p conversion using a decision tree (dt).

might be very important to find boundaries between
stems and suffixes. The standard evaluation proce-
dure does not differentiate between the types of mis-
takes made. Finally, only evaluation on a task can
provide information as to whether high precision or
high recall is more important, therefore, the decision
as to which version of the algorithm should be cho-
sen can only be taken given a specific task.

For these reasons we decided to evaluate the seg-
mentation from the new versions of the RePortS al-
gorithm on a German grapheme-to-phoneme (g2p)
conversion task. The evaluation on this task is moti-
vated by the fact that (Demberg, 2007) showed that
good-quality morphological preprocessing can im-
prove g2p conversion results. We here compare the
effect of using our system’s segmentations to a range
of different morphological segmentations from other
systems. We ran each of the rule-based systems
(ETI, SMOR-disamb1, SMOR-disamb2) and the
unsupervised algorithms (original RePortS, Bern-
hard, Morfessor 1.0, Bordag) on the CELEX data
set and retrained our decision tree (an implementa-
tion based on (Lucassen and Mercer, 1984)) on the
different morphological segmentations.

Table 4 shows the F-score of the different systems
when evaluated on the manually annotated CELEX
data (full data set) and the phoneme error rate (PER)
for the g2p conversion algorithm when annotated
with morphological boundaries (smaller test set,
since the decision tree is a supervised method and
needs training data). As we can see from the results,
the distribution of precision and recall (see Table 3)
has an important impact on the conversion quality:
the RePortS version with higher precision signifi-
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cantly outperforms the other version on the task, al-
though their F-measures are almost identical. Re-
markably, the RePortS version that uses the filter-
ing step is the only unsupervised system that beats
the no-morphology baseline (p < 0.0001). While
all other unsupervised systems tested here make the
system perform worse than it would without mor-
phological information, this new version improves
accuracy on g2p conversion.

6 Conclusions
A significant improvement in F-score was achieved
by three simple modifications to the RePortS al-
gorithm: generating an intermediary high-precision
stem candidate list, using a language model to dis-
ambiguate between alternative segmentations, and
learning patterns for regular stem variation, which
can then also be exploited for segmentation. These
modifications improved results on four different lan-
guages considered: English, German, Turkish and
Finnish, and achieved the best results reported so far
for an unsupervised system for morphological seg-
mentation on German. We showed that the new ver-
sion of the algorithm is the only unsupervised sys-
tem among the systems evaluated here that achieves
sufficient quality to improve transcription perfor-
mance on a grapheme-to-phoneme conversion task.
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H. Déjean. 1998. Morphemes as necessary concepts for struc-
tures: Discovery from untagged corpora. InWorkshop on
paradigms and Grounding in Natural Language Learning,
pages 295–299, Adelaide, Australia.

Vera Demberg. 2006. Letter-to-phoneme conversion for a Ger-
man TTS-System. Master’s thesis.IMS, Univ. of Stuttgart.

Vera Demberg. 2007. Phonological constraints and morpho-
logical preprocessing for grapheme-to-phoneme conversion.
In Proc. of ACL-2007.

Eric Gaussier. 1999. Unsupervised learning of derivational
morphology from inflectional lexicons. InACL ’99 Work-
shop Proceedings, University of Maryland.

CELEX German Linguistic User Guide, 1995.Center for Lex-
ical Information. Max-Planck-Institut for Psycholinguistics,
Nijmegen.

John Goldsmith. 2001. Unsupervised learning of the mor-
phology of a natural language.computational Linguistics,
27(2):153–198, June.

S. Goldwater and D. McClosky. 2005. Improving statistical mt
through morphological analysis. InProc. of EMNLP.

Margaret A. Hafer and Stephen F. Weiss. 1974. Word segmen-
tation by letter successor varieties.Information Storage and
Retrieval 10, pages 371–385.

Zellig Harris. 1955. From phoneme to morpheme.Language
31, pages 190–222.

Christian Jacquemin. 1997. Guessing morphology from terms
and corpora. InResearch and Development in Information
Retrieval, pages 156–165.

S. Keshava and E. Pitler. 2006. A simpler, intuitive approach
to morpheme induction. InProceedings of 2nd Pascal Chal-
lenges Workshop, pages 31–35, Venice, Italy.

M. Kurimo, M. Creutz, M. Varjokallio, E. Arisoy, and M. Sar-
aclar. 2006. Unsupervsied segmentation of words into mor-
phemes – Challenge 2005: An introduction and evaluation
report. InProc. of 2nd Pascal Challenges Workshop, Italy.

J. Lucassen and R. Mercer. 1984. An information theoretic
approach to the automatic determination of phonemic base-
forms. InICASSP 9.

C. Monson, A. Lavie, J. Carbonell, and L. Levin. 2004. Un-
supervised induction of natural language morphology inflec-
tion classes. InProceedings of the Seventh Meeting of ACL-
SIGPHON, pages 52–61, Barcelona, Spain.

C. Monz and M. de Rijke. 2002. Shallow morphological analy-
sis in monolingual information retrieval for Dutch, German,
and Italian. InProceedings CLEF 2001, LNCS 2406.

Sylvain Neuvel and Sean Fulop. 2002. Unsupervised learning
of morphology without morphemes. InProc. of the Wshp on
Morphological and Phonological Learning, ACL Pub.

Helmut Schmid, Arne Fitschen, and Ulrich Heid. 2004.
SMOR: A German computational morphology covering
derivation, composition and inflection. InProc. of LREC.

Patrick Schone and Daniel Jurafsky. 2000. Knowledge-free
induction of morphology using latent semantic analysis. In
Proc. of CoNLL-2000 and LLL-2000, Lisbon, Portugal.

Tageszeitung (TAZ) Corpus. Contrapress Media GmbH.
https://www.taz.de/pt/.etc/nf/dvd .

David Yarowski and Richard Wicentowski. 2000. Minimally
supervised morphological analysis by multimodal align-
ment. InProceedings of ACL 2000, Hong Kong.

927


