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Abstract 

This paper presents a comparative study of 

five parameter estimation algorithms on four 

NLP tasks. Three of the five algorithms are 

well-known in the computational linguistics 

community: Maximum Entropy (ME) estima-

tion with L2 regularization, the Averaged 

Perceptron (AP), and Boosting.  We also in-

vestigate ME estimation with L1 regularization 

using a novel optimization algorithm, and 

BLasso, which is a version of Boosting with 

Lasso (L1) regularization.  We first investigate 

all of our estimators on two re-ranking tasks: a 

parse selection task and a language model 

(LM) adaptation task.  Then we apply the best 

of these estimators to two additional tasks 

involving conditional sequence models: a 

Conditional Markov Model (CMM) for part of 

speech tagging and a Conditional Random 

Field (CRF) for Chinese word segmentation. 

Our experiments show that across tasks, three 

of the estimators — ME estimation with L1 or 

L2 regularization, and AP — are in a near sta-

tistical tie for first place. 

1 Introduction 

Parameter estimation is fundamental to many sta-

tistical approaches to NLP. Because of the 

high-dimensional nature of natural language, it is 

often easy to generate an extremely large number of 

features.  The challenge of parameter estimation is 

to find a combination of the typically noisy, re-

dundant features that accurately predicts the target 

output variable and avoids overfitting. Intuitively, 

this can be achieved either by selecting a small 

number of highly-effective features and ignoring 

the others, or by averaging over a large number of 

weakly informative features.  The first intuition 

motivates feature selection methods such as 

Boosting and BLasso (e.g., Collins 2000; Zhao and 

Yu, 2004), which usually work best when many 

features are completely irrelevant. L1 or Lasso 

regularization of linear models, introduced by 

Tibshirani (1996), embeds feature selection into 

regularization so that both an assessment of the 

reliability of a feature and the decision about 

whether to remove it are done in the same frame-

work, and has generated a large amount of interest 

in the NLP community recently (e.g., Goodman 

2003; Riezler and Vasserman 2004).  If on the other 

hand most features are noisy but at least weakly 

correlated with the target, it may be reasonable to 

attempt to reduce noise by averaging over all of the 

features.  ME estimators with L2 regularization, 

which have been widely used in NLP tasks (e.g., 

Chen and Rosenfeld 2000; Charniak and Johnson 

2005; Johnson et al. 1999), tend to produce models 

that have this property.  In addition, the perceptron 

algorithm and its variants, e.g., the voted or aver-

aged perceptron, is becoming increasingly popular 

due to their competitive performance, simplicity in 

implementation and low computational cost in 

training (e.g., Collins 2002). 

While recent studies claim advantages for L1 

regularization, this study is the first of which we are 

aware to systematically compare it to a range of 

estimators on a diverse set of NLP tasks.  Gao et al. 

(2006) showed that BLasso, due to its explicit use of 

L1 regularization, outperformed Boosting in the LM 

adaptation task.  Ng (2004) showed that for logistic 

regression, L1 regularization outperforms L2 regu-

larization on artificial datasets which contain many 

completely irrelevant features.  Goodman (2003) 

showed that in two out of three tasks, an ME esti-

mator with a one-sided Laplacian prior (i.e., L1 

regularization with the constraint that all feature 

weights are positive) outperformed a comparable 

estimator using a Gaussian prior (i.e., L2 regulari-

zation).  Riezler and Vasserman (2004) showed that 

an L1-regularized ME estimator outperformed an 

L2-regularized estimator for ranking the parses of a 

stochastic unification-based grammar. 
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While these individual estimators are well de-

scribed in the literature, little is known about the 

relative performance of these methods because the 

published results are generally not directly compa-

rable.  For example, in the parse re-ranking task, 

one cannot tell whether the L2- regularized ME 

approach used by Charniak and Johnson (2005) 

significantly outperforms the Boosting method by 

Collins (2000) because different feature sets and 

n-best parses were used in the evaluations of these 

methods.  

This paper conducts a much-needed comparative 

study of these five parameter estimation algorithms 

on four NLP tasks: ME estimation with L1 and L2 

regularization, the Averaged Perceptron (AP), 

Boosting, and BLasso, a version of Boosting with 

Lasso (L1) regularization.  We first investigate all of 

our estimators on two re-ranking tasks: a parse 

selection task and a language model adaptation task. 

Then we apply the best of these estimators to two 

additional tasks involving conditional sequence 

models: a CMM for POS tagging and a CRF for 

Chinese word segmentation.  Our results show that 

ME estimation with L2 regularization achieves the 

best performing estimators in all of the tasks, and 

AP achieves almost as well and requires much less 

training time. L1 (Lasso) regularization also per-

forms well and leads to sparser models. 

2 Estimators 

All the four NLP tasks studied in this paper are 

based on linear models (Collins 2000) which re-

quire learning a mapping from inputs 𝑥 ∈ 𝑋 to 

outputs 𝑦 ∈ 𝑌.  We are given: 

 Training samples (𝑥𝑖 ,𝑦𝑖) for 𝑖 = 1…𝑁, 

 A procedure 𝑮𝑬𝑵 to generate a set of candi-

dates 𝑮𝑬𝑵(𝑥) for an input x,  

 A feature mapping Φ:𝑋 × 𝑌 ↦ ℝ𝐷  to map 

each (𝑥,𝑦) to a vector of feature values, and 

 A parameter vector 𝒘 ∈ ℝ𝐷 , which assigns a 

real-valued weight to each feature. 

For all models except the CMM sequence model for 

POS tagging, the components 𝑮𝑬𝑵, Φ and 𝒘 di-

rectly define a mapping from an input 𝑥 to an output 

𝐹(𝑥) as follows: 

𝐹 𝑥 = arg max𝑦∈𝑮𝑬𝑵 𝑋 Φ 𝑥,𝑦 ⋅ 𝒘. (1) 

In the CMM sequence classifier, locally normalized 

linear models to predict the tag of each word token 

are chained together to arrive at a probability esti-

mate for the entire tag sequence, resulting in a 

slightly different decision rule. 

Linear models, though simple, can capture very 

complex dependencies because the features can be 

arbitrary functions of the input/output pair.  For 

example, we can define a feature to be the log con-

ditional probability of the output as estimated by 

some other model, which may in turn depend on 

arbitrarily complex interactions of „basic‟ features.  

In practice, with an appropriate feature set, linear 

models achieve very good empirical results on 

various NLP tasks.  The focus of this paper however 

is not on feature definition (which requires domain 

knowledge and varies from task to task), but on 

parameter estimation (which is generic across 

tasks).  We assume we are given fixed feature 

templates from which a large number of features are 

generated.  The task of the estimator is to use the 

training samples to choose a parameter vector 𝒘, 

such that the mapping 𝐹(𝑥) is capable of correctly 

classifying unseen examples. We will describe the 

five estimators in our study individually. 

2.1 ME estimation with L2 regularization 

Like many linear models, the ME estimator chooses 

𝒘 to minimize the sum of the empirical loss on the 

training set and a regularization term: 

𝒘 = arg min𝒘  𝐿 𝒘 + 𝑅 𝒘   . (2) 

In this case, the loss term L(w) is the negative con-

ditional log-likelihood of the training data, 

 𝐿 𝒘 = − log𝑃 𝑦𝑖  𝑥𝑖)
𝑛
𝑖=1 ,  where 

𝑃 𝑦 𝑥) =
exp Φ 𝑥,𝑦 ⋅ 𝒘 

 exp(Φ 𝑥,𝑦 ′ ⋅ 𝒘)𝑦 ′∈𝐺𝐸𝑁 𝑥 
 

and the regularizer term 𝑅 𝒘 = 𝛼 𝑤𝑗
2

𝑗  is the 

weighted squared L2 norm of the parameters. Here, 

 is a parameter that controls the amount of regu-

larization, optimized on held-out data.  

This is one of the most popular estimators,  

largely due to its appealing computational proper-

ties: both 𝐿 𝒘  and 𝑅(𝒘) are convex and differen-

tiable, so gradient-based numerical algorithms can 

be used to find the global minimum efficiently.  

In our experiments, we used the limited memory 

quasi-Newton algorithm (or L-BFGS, Nocedal and 

Wright 1999) to find the optimal 𝒘 because this 

method has been shown to be substantially faster 

than other methods such as Generalized Iterative 

Scaling (Malouf 2002).  
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Because for some sentences there are multiple 

best parses (i.e., parses with the same F-Score), we 

used the variant of ME estimator described in 

Riezler et al. (2002), where 𝐿 𝒘  is defined as the 

likelihood of the best parses 𝑦 ∈ 𝑌(𝑥) relative to 

the n-best parser output 𝑮𝑬𝑵 𝑥 ,  (i.e., 𝑌 𝑥 ⊑
𝑮𝑬𝑵(𝑥)): 𝐿 𝒘 = − log 𝑃(𝑦𝑖 |𝑥𝑖)𝑦𝑖∈𝑌(𝑥𝑖)

𝑛
𝑖=1 . 

We applied this variant in our experiments of 

parse re-ranking and LM adaptation, and found that 

on both tasks it leads to a significant improvement 

in performance for the L2-regularied ME estimator 

but not for the L1-regularied ME estimator. 

2.2 ME estimation with L1 regularization 

This estimator also minimizes the negative condi-

tional log-likelihood, but uses an L1 (or Lasso) 

penalty. That is, 𝑅(𝒘) in Equation (2) is defined 

according to 𝑅 𝒘 = 𝛼  𝑤𝑗  𝑗 . L1 regularization 

typically leads to sparse solutions in which many 

feature weights are exactly zero, so it is a natural 

candidate when feature selection is desirable. By 

contrast, L2 regularization produces solutions in 

which most weights are small but non-zero. 

Optimizing the L1-regularized objective function 

is challenging because its gradient is discontinuous 

whenever some parameter equals zero. Kazama and 

Tsujii (2003) described an estimation method that 

constructs an equivalent constrained optimization 

problem with twice the number of variables.  

However, we found that this method is impracti-

cally slow for large-scale NLP tasks. In this work 

we use the orthant-wise limited-memory qua-

si-Newton algorithm (OWL-QN), which is a mod-

ification of L-BFGS that allows it to effectively 

handle the discontinuity of the gradient (Andrew 

and Gao 2007). We provide here a high-level de-

scription of the algorithm. 

A quasi-Newton method such as L-BFGS uses 

first order information at each iterate to build an 

approximation to the Hessian matrix, 𝑯, thus mod-

eling the local curvature of the function. At each 

step, a search direction is chosen by minimizing a 

quadratic approximation to the function: 

𝑄 𝑥 =
1

2
 𝑥 − 𝑥0 

′𝑯 𝑥 − 𝑥0 + 𝑔0
′ (𝑥 − 𝑥0) 

where 𝑥0 is the current iterate, and 𝑔0 is the func-

tion gradient at 𝑥0 .  If 𝑯 is positive definite, the 

minimizing value of 𝑥 can be computed analytically 

according to: 𝑥∗ = 𝑥0 −𝑯−1𝑔0. 

L-BFGS maintains vectors of the change in gradient 

𝑔𝑘 − 𝑔𝑘−1 from the most recent iterations, and uses 

them to construct an estimate of the inverse Hessian 

𝑯−𝟏. Furthermore, it does so in such a way that 

𝑯−1𝑔0 can be computed without expanding out the 

full matrix, which is typically unmanageably large. 

The computation requires a number of operations 

linear in the number of variables. 

OWL-QN is based on the observation that when 

restricted to a single orthant, the L1 regularizer is 

differentiable, and is in fact a linear function of 𝒘.  

Thus, so long as each coordinate of any two con-

secutive search points does not pass through zero, 

𝑅(𝒘) does not contribute at all to the curvature of 

the function on the segment joining them.  There-

fore, we can use L-BFGS to approximate the Hes-

sian of 𝐿 𝒘  alone, and use it to build an approxi-

mation to the full regularized objective that is valid 

on a given orthant. To ensure that the next point is in 

the valid region, we project each point during the 

line search back onto the chosen orthant.1 At each 

iteration, we choose the orthant containing the 

current point and into which the direction giving the 

greatest local rate of function decrease points. 

This algorithm, although only a simple modifi-

cation of L-BFGS, works quite well in practice. It 

typically reaches convergence in even fewer itera-

tions than standard L-BFGS takes on the analogous 

L2-regularized objective (which translates to less 

training time, since the time per iteration is only 

negligibly higher, and total time is dominated by 

function evaluations). We describe OWL-QN more 

fully in (Andrew and Gao 2007). We also show that 

it is significantly faster than Kazama and Tsujii‟s 

algorithm for L1 regularization and prove that it is 

guaranteed converge to a parameter vector that 

globally optimizes the L1-regularized objective. 

2.3 Boosting 

The Boosting algorithm we used is based on Collins 

(2000).  It optimizes the pairwise exponential loss 

(ExpLoss) function (rather than the logarithmic loss 

optimized by ME).  Given a training sample 

(𝑥𝑖 ,𝑦𝑖), for each possible output 𝑦𝑗 ∈ 𝑮𝑬𝑵(𝑥𝑖), we 

                                                      
1 This projection just entails zeroing-out any coordinates 

that change sign. Note that it is possible for a variable to 

change sign in two iterations, by moving from a negative 

value to zero, and on a the next iteration moving from 

zero to a positive value. 
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define the margin of the pair (𝑦𝑖 ,𝑦𝑗 ) with respect to 

𝒘 as 𝑀 𝑦𝑖 ,𝑦𝑗  = Φ 𝑥𝑖 ,𝑦𝑖 ⋅ 𝒘 −  Φ 𝑥𝑖 ,𝑦𝑗  ⋅ 𝒘. 

Then ExpLoss is defined as 

ExpLoss 𝒘 =   exp  −M yi , yj  

𝑦𝑗∈𝑮𝑬𝑵 𝑥𝑖 𝑖

 (3) 

Figure 1 summarizes the Boosting algorithm we 

used. It is an incremental feature selection proce-

dure. After initialization, Steps 2 and 3 are repeated 

T times; at each iteration, a feature is chosen and its 

weight is updated as follows.  

First, we define Upd(𝒘,𝑘, 𝛿)  as an updated 

model, with the same parameter values as 𝑤 with 

the exception of 𝑤𝑘 , which is incremented by 𝛿: 

Upd 𝒘, 𝑘, 𝛿 = (𝑤1 ,… ,𝑤𝑘 + 𝛿,… ,𝑤𝐷)  

Then, Steps 2 and 3 in Figure 1 can be rewritten as 

Equations (4) and (5), respectively. 

 𝑘∗, 𝛿∗ = arg min
𝑘 ,𝛿

ExpLoss(Upd 𝒘, 𝑘, 𝛿 ) (4) 

𝒘𝑡 = Upd(𝒘𝑡−1, 𝑘∗, 𝛿∗) (5) 

Because Boosting can overfit we update the weight 

of 𝑓𝑘∗ by a small fixed step size , as in Equation (6), 

following the FSLR algorithm (Hastie et al. 2001).  

𝒘𝑡 = Upd(𝒘𝑡−1, 𝑘∗, 𝜖 × sign 𝛿∗ ) (6) 

By taking such small steps, Boosting imposes a 

kind of implicit regularization, and can closely 

approximate the effect of L1 regularization in a local 

sense (Hastie et al. 2001).  Empirically, smaller 

values of 𝜖 lead to smaller numbers of test errors. 

2.4 Boosted Lasso 

The Boosted Lasso (BLasso) algorithm was origi-

nally proposed in Zhao and Yu (2004), and was 

adapted for language modeling by Gao et al. (2006). 

BLasso can be viewed as a version of Boosting with 

L1 regularization. It optimizes an L1-regularized 

ExpLoss function: 

LassoLoss 𝒘 = ExpLoss(𝒘) + 𝑅(𝒘) (7) 

where 𝑅 𝒘 = 𝛼  𝑤𝑗  𝑗  . 

BLasso also uses an incremental feature selec-

tion procedure to learn parameter vector 𝒘, just as 

Boosting does.  Due to the explicit use of the regu-

larization term 𝑅(𝒘), however, there are two major 

differences from Boosting.  

At each iteration, BLasso takes either a forward 

step or a backward step.  Similar to Boosting, at 

each forward step, a feature is selected and its 

weight is updated according to Eq. (8) and (9). 

 𝑘∗, 𝛿∗ = 𝑎𝑟𝑔 𝑚𝑖𝑛
𝑘 ,𝛿=±𝜖

ExpLoss(Upd 𝒘, 𝑘, 𝛿 ) (8) 

𝒘𝑡 = Upd(𝒘𝑡−1, 𝑘∗, 𝜖 × sign 𝛿∗ ) (9) 

There is a small but important difference between 

Equations (8) and (4). In Boosting, as shown in 

Equation (4), a feature is selected by its impact on 

reducing the loss with its optimal update 𝛿∗ . By 

contrast, in BLasso, as shown in Equation (8), 

rather than optimizing over 𝛿 for each feature, the 

loss is calculated with an update of either +𝜖 or −𝜖, 

i.e., grid search is used for feature weight estima-

tion.  We found in our experiments that this mod-

ification brings a consistent improvement. 

The backward step is unique to BLasso.  At each 

iteration, a feature is selected and the absolute value 

of its weight is reduced by 𝜖 if and only if it leads to 

a decrease of the LassoLoss, as shown in Equations 

(10) and (11), where   is a tolerance parameter. 

𝑘∗ = arg min
𝑘 :𝑤𝑘≠0

ExpLoss(Upd(𝒘, 𝑘,−𝜖sign 𝑤𝑘 ) (10) 

𝒘𝑡 = Upd(𝒘𝑡−1 , 𝑘∗,sign(𝑤𝑘∗) × 𝜖)  (11) 

if LassoLoss 𝒘𝑡−1,𝛼𝑡−1 − LassoLoss 𝒘𝑡 ,𝛼𝑡 > 𝜃 

Figure 2 summarizes the BLasso algorithm we 

used. After initialization, Steps 4 and 5 are repeated 

T times; at each iteration, a feature is chosen and its 

weight is updated either backward or forward by a 

fixed amount 𝜖.  Notice that the value of 𝛼 is adap-

tively chosen according to the reduction of ExpLoss 

during training.  The algorithm starts with a large 

initial 𝛼, and then at each forward step the value of 

𝛼 decreases until ExpLoss stops decreasing.  This is 

intuitively desirable: it is expected that most highly 

effective features are selected in early stages of 

training, so the reduction of ExpLoss at each step in 

early stages are more substantial than in later stages.  

These early steps coincide with the Boosting steps 

most of the time.  In other words, the effect of 

backward steps is more visible at later stages.  It can 

be proved that for a finite number of features and 

𝜃 =0, the BLasso algorithm shown in Figure 2 

converges to the Lasso solution when 𝜖 → 0. See 

Gao et al. (2006) for implementation details, and 

Zhao and Yu (2004) for a theoretical justification 

for BLasso. 

1 Set w0 = argminw0ExpLoss(w); and wd = 0 for d=1…D 

2 Select a feature fk* which has largest estimated 
impact on reducing ExpLoss of Equation (3) 

3 Update λk*   λk* + δ*, and return to Step 2 

Figure 1: The boosting algorithm 
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2.5 Averaged Perceptron 

The perceptron algorithm can be viewed as a form 

of incremental training procedure (e.g., using sto-

chastic approximation) that optimizes a minimum 

square error (MSE) loss function (Mitchell, 1997).  

As shown in Figure 3, it starts with an initial pa-

rameter setting and updates it for each training 

example. In our experiments, we used the Averaged 

Perceptron algorithm of Freund and Schapire 

(1999), a variation that has been shown to be more 

effective than the standard algorithm (Collins 

2002).  Let 𝒘𝑡,𝑖  be the parameter vector after the 𝑖th
 

training sample has been processed in pass 𝑡 over 

the training data. The average parameters are de-

fined as𝒘  =
𝟏

𝑻𝑵
  𝒘𝒕,𝒊

𝒊𝒕  where T is the number of 

epochs, and N is the number of training samples. 

3 Evaluations 

From the four tasks we consider, parsing and lan-

guage model adaptation are both examples of 

re-ranking.  In these tasks, we assume that we have 

been given a list of candidates 𝑮𝑬𝑵(𝑥) for each 

training or test sample  𝑥,𝑦 , generated using a 

baseline model.  Then, a linear model of the form in 

Equation (1) is used to discriminatively re-rank the 

candidate list using additional features which may 

or may not be included in the baseline model.  Since 

the mapping from 𝑥 to 𝑦 by the linear model may 

make use of arbitrary global features of the output 

and is performed “all at once”, we call such a linear 

model a global model.  

In the other two tasks (i.e., Chinese word seg-

mentation and POS tagging), there is no explicit 

enumeration of 𝑮𝑬𝑵(𝑥).  The mapping from 𝑥 to 𝑦 

is determined by a sequence model which aggre-

gates the decisions of local linear models via a 

dynamic program.  In the CMM, the local linear 

models are trained independently, while in the CRF 

model, the local models are trained jointly.  We call 

these two linear models local models because they 

dynamically combine the output of models that use 

only local features. 

While it is straightforward to apply the five es-

timators to global models in the re-ranking 

framework, the application of some estimators to 

the local models is problematic. Boosting and 

BLasso are too computationally expensive to be 

applied to CRF training and we compared the other 

three better performing estimation methods for this 

model. The CMM is a probabilistic sequence model 

and the log-loss used by ME estimation is most 

natural for it; thus we limit the comparison to the 

two kinds of ME models for CMMs. Note that our 

goal is not to compare locally trained models to 

globally trained ones; for a study which focuses on 

this issue, see (Punyakanok et al. 2005). 

In each task we compared the performance of 

different estimators using task-specific measures. 

We used the Wilcoxon signed rank test to test the 

statistical significance of the difference among the 

competing estimators. We also report other results 

such as number of non-zero features after estima-

tion, number of training iterations, and computation 

time (in minutes of elapsed time on an XEON
TM

 MP 

3.6GHz machine). 

3.1 Parse re-ranking 

We follow the experimental paradigm of parse 

re-ranking outlined in Charniak and Johnson 

(2005), and fed the features extracted by their pro-

gram to the five rerankers we developed.  Each uses 

a linear model trained using one of the five esti-

mators. These rerankers attempt to select the best 

parse 𝑦  for a sentence 𝑥  from the 50-best list of 

possible parses 𝑮𝑬𝑵 𝑥  for the sentence. The li-

near model combines the log probability calculated 

by the Charniak (2000) parser as a feature with 

1,219,272 additional features.  We trained the fea-

1 Initialize w0: set w0 = argminw0ExpLoss(w), and wd = 0 
for d=1…D. 

2 Take a forward step according to Eq. (8) and (9), and 
the updated model is denoted by w1 

3 Initialize  = (ExpLoss(w0)-ExpLoss(w1))/ 
4 Take a backward step if and only if it leads to a de-

crease of LassoLoss according to Eq. (10) and (11), 

where   = 0; otherwise 
5 Take a forward step according to Eq. (8) and (9); 

update  = min(, (ExpLoss(wt-1)-ExpLoss(wt))/ ); 
and return to Step 4. 

Figure 2: The BLasso algorithm 

1 Set w0 = 1 and wd = 0 for d=1…D 
2 For t = 1…T (T = the total number of iterations) 
3    For each training sample (xi, yi), i = 1…N 
4 

𝑧𝑖 = arg max
𝑧∈𝐺𝐸𝑁 𝑥_𝑖 

Φ 𝑥𝑖 , 𝑧 ⋅ 𝑤 

Choose the best candidate zi from GEN(xi) using 
the current model w, 

5       w = w +  η((xi, yi) – (xi, zi)), where η is the size of 
learning step, optimized on held-out data. 

Figure 3: The perceptron algorithm 
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ture weights w on Sections 2-19 of the Penn Tree-

bank, adjusted the regularizer constant 𝛼 to max-

imize the F-Score on Sections 20-21 of the Tree-

bank, and evaluated the rerankers on Section 22.  

The results are presented in Tables 12 and 2, where 

Baseline results were obtained using the parser by 

Charniak (2000).  

The ME estimation with L2 regularization out-

performs all of the other estimators significantly 

except for the AP, which performs almost as well 

and requires an order of magnitude less time in 

training.  Boosting and BLasso are feature selection 

methods in nature, so they achieve the sparsest 

models, but at the cost of slightly lower perfor-

mance and much longer training time. The 

L1-regularized ME estimator also produces a rela-

tively sparse solution whereas the Averaged Per-

ceptron and the L2-regularized ME estimator assign 

almost all features a non-zero weight.  

3.2 Language model adaptation 

Our experiments with LM adaptation are based on 

the work described in Gao et al. (2006). The va-

riously trained language models were evaluated 

according to their impact on Japanese text input 

accuracy, where input phonetic symbols 𝑥  are 

mapped into a word string 𝑦. Performance of the 

application is measured in terms of character error 

                                                      
2
 The result of ME/L2 is better than that reported in 

Andrew and Gao (2007) due to the use of the variant of 

L2-regularized ME estimator, as described in Section 2.1. 

 CER # features time (min) #train iter 

Baseline 10.24%    
MAP 7.98%    
ME/L2 6.99% 295,337 27 665 
ME/L1 7.01% 53,342 25 864 
AP 7.23% 167,591 6 56 
Boost 7.54% 32,994 175 71,000 
BLasso 7.20% 33,126 238 250,000 

Table 3. Performance summary of estimators 

(lower is better) on language model adaptation 

 ME/L2 ME/L1 AP Boost BLasso 

ME/L2  ~ >> >> >> 
ME/L1 ~  >> >> >> 
AP << <<  >> ~ 
Boost << << <<  << 
BLasso << << ~ >>  

Table 4. Statistical significance test results. 

rate (CER), which is the number of characters 

wrongly converted from 𝑥 divided by the number of 

characters in the correct transcript. 

Again we evaluated five linear rerankers, one for 

each estimator. These rerankers attempt to select the 

best conversions 𝑦 for an input phonetic string 𝑥 

from a 100-best list 𝑮𝑬𝑵(𝑥)of possible conver-

sions proposed by a baseline system. The linear 

model combines the log probability under a trigram 

language model as base feature and additional 

865,190 word uni/bi-gram features.  These 

uni/bi-gram features were already included in the 

trigram model which was trained on a background 

domain corpus (Nikkei Newspaper). But in the 

linear model their feature weights were trained 

discriminatively on an adaptation domain corpus 

(Encarta Encyclopedia). Thus, this forms a cross 

domain adaptation paradigm.  This also implies that 

the portion of redundant features in this task could 

be much larger than that in the parse re-ranking 

task, especially because the background domain is 

reasonably similar to the adaptation domain.  

We divided the Encarta corpus into three sets 

that do not overlap.  A 72K-sentences set was used 

as training data, a 5K-sentence set as development 

data, and another 5K-sentence set as testing data. 

The results are presented in Tables 3 and 4, where 

Baseline is the word-based trigram model trained 

on background domain corpus, and MAP (maxi-

mum a posteriori) is a traditional model adaptation 

method, where the parameters of the background 

model are adjusted so as to maximize the likelihood 

of the adaptation data.  

 F-Score # features time (min) # train iter 

Baseline 0.8986     
ME/L2 0.9176 1,211,026 62     129  
ME/L1 0.9165 19,121 37 174  
AP 0.9164 939,248 2 8  
Boosting 0.9131 6,714 495 92,600  
BLasso 0.9133 8,085 239 56,500  

Table 1: Performance summary of estimators on 

parsing re-ranking (ME/L2: ME with L2 regulari-

zation; ME/L1:  ME with L1 regularization) 

 ME/L2 ME/L1 AP Boost BLasso 

ME/L2  >> ~ >> >> 
ME/L1 <<  ~ > ~ 
AP ~ ~  >> > 
Boost << < <<  ~ 
Blasso << ~ < ~  

Table 2: Statistical significance test results (“>>” 

or “<<” means P-value < 0.01; > or < means 0.01 < 

P-value  0.05; “~” means P-value > 0.05)  
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The results are more or less similar to those in 

the parsing task with one visible difference: L1 

regularization achieved relatively better perfor-

mance in this task.  For example, while in the 

parsing task ME with L2 regularization significantly 

outperforms ME with L1 regularization, their per-

formance difference is not significant in this task. 

While in the parsing task the performance differ-

ence between BLasso and Boosting is not signifi-

cant, BLasso outperforms Boosting significantly in 

this task.  Considering that a much higher propor-

tion of the features are redundant in this task than 

the parsing task, the results seem to corroborate the 

observation that L1 regularization is robust to the 

presence of many redundant features. 

3.3 Chinese word segmentation 

Our third task is Chinese word segmentation 

(CWS). The goal of CWS is to determine the 

boundaries between words in a section of Chinese 

text.  The model we used is the hybrid Mar-

kov/semi- Markov CRF described by Andrew 

(2006), which was shown to have state-of-the-art 

accuracy. We tested models trained with the various 

estimation methods on the Microsoft Research Asia 

corpus from the Second International Chinese Word 

Segmentation, and we used the same train/test split 

used in the competition.  The model and experi-

mental setup is identical with that of Andrew (2006) 

except for two differences.  First, we extracted 

features from both positive and negative training 

examples, while Andrew (2006) uses only features 

that occur in some positive training example. 

Second, we used the last 4K sentences of the 

training data to select the weight of the regularizers 

and to determine when to stop perceptron training. 

We compared three of the best performing es-

timation procedures on this task: ME with L2 regu-

larization, ME with L1 regularization, and the Av-

eraged Perceptron.  In this case, ME refers to mi-

nimizing the negative log-probability of the correct 

segmentation, which is globally normalized, while 

the perceptron is trained using at each iteration the 

exact maximum-scoring segmentation with the 

current weights. We observed the same pattern as in 

the other tasks: the three algorithms have nearly 

identical performance, while L1 uses only 6% of the 

features, and the Averaged Perceptron requires 

significantly fewer training iterations.  In this case, 

L1 was also several times faster than L2. The results 

are summarized in Table 5.3 

We note that all three algorithms performed 

slightly better than the model used by Andrew 

(2006), which also used L2 regularization (96.84 

F1).  We believe the difference is due to the use of 

features derived from negative training examples. 

3.4 POS tagging 

Finally we studied the impact of the regularization 

methods on a Maximum Entropy conditional 

Markov Model (MEMM, McCallum et al. 2000) for 

POS tagging. MEMMs decompose the conditional 

probability of a tag sequence given a word sequence 

as follows: 

𝑃 𝑡1 … 𝑡𝑛  𝑤1 …𝑤𝑛 =  𝑃(𝑡𝑖|𝑡𝑖−1 …𝑡𝑖−𝑘 ,𝑤1 …𝑤𝑛)

𝑛

𝑖=1

 

where the probability distributions for each tag 

given its context are ME models.  Following pre-

vious work (Ratnaparkhi, 1996), we assume that the 

tag of a word is independent of the tags of all pre-

ceding words given the tags of the previous two 

words (i.e., 𝑘=2 in the equation above). The local 

models at each position include features of the 

current word, the previous word, the next word, and 

features of the previous two tags.  In addition to 

lexical identity of the words, we used features of 

word suffixes, capitalization, and number/special 

character signatures of the words. 

We used the standard splits of the Penn Treebank 

from the tagging literature (Toutanova et al. 2003) 

for training, development and test sets.  The training 

set comprises Sections 0-18, the development set — 

Sections 19-21, and the test set — Sections 22-24.  

We compared training the ME models using L1 and 

L2 regularization.  For each of the two types of 

regularization we selected the best value of the 

regularization constant using grid search to optim-

ize the accuracy on the development set.  We report 

final accuracy measures on the test set in Table 6.  

The results on this task confirm the trends we 

have seen so far.  There is almost no difference in 

                                                      
3 Only the L2 vs. AP comparison is significant at a 0.05 

level according to the Wilcoxon signed rank test. 

 Test F1 # features # train iter 

ME/L2 0.9719 8,084,086 713 
ME/L1 0.9713 317,146 201 
AP 0.9703 1,965,719 162 

Table 5. Performance summary of estimators on 

CWS 
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accuracy of the two kinds of regularizations, and 

indeed the differences were not statistically signif-

icant.  Estimation with L1 regularization required 

considerably less time than estimation with L2, and 

resulted in a model which is more than ten times 

smaller.  

4 Conclusions 

We compared five of the most competitive para-

meter estimation methods on four NLP tasks em-

ploying a variety of models, and the results were 

remarkably consistent across tasks.  Three of the 

methods — ME estimation with L2 regularization, 

ME estimation with L1 regularization, and the Av-

eraged Perceptron — were nearly indistinguishable 

in terms of test set accuracy, with ME estimation 

with L2 regularization perhaps enjoying a slight 

lead.  Meanwhile, ME estimation with L1 regulari-

zation achieves the same level of performance while 

at the same time producing sparse models, and the 

Averaged Perceptron provides an excellent com-

promise of high performance and fast training. 

These results suggest that when deciding which 

type of parameter estimation to use on these or 

similar NLP tasks, one may choose any of these 

three popular methods and expect to achieve com-

parable performance.  The choice of which to im-

plement should come down to other considerations: 

if model sparsity is desired, choose ME estimation 

with L1 regularization (or feature selection methods 

such as BLasso); if quick implementation and 

training is necessary, use the Averaged Perceptron; 

and ME estimation with L2 regularization may be 

used if it is important to achieve the highest ob-

tainable level of performance. 
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 Accuracy (%) # features # train iter 
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POS tagging 
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