
Proceedings of the 45th Annual Meeting of the Association of Computational Linguistics, pages 824–831,
Prague, Czech Republic, June 2007. c©2007 Association for Computational Linguistics

A Comparative Study of Parameter Estimation Methods for
Statistical Natural Language Processing

Jianfeng Gao*, Galen Andrew*, Mark Johnson*&, Kristina Toutanova*
*Microsoft Research, Redmond WA 98052, {jfgao,galena,kristout}@microsoft.com

&Brown University, Providence, RI 02912, mj@cs.brown.edu

Abstract

This paper presents a comparative study of

five parameter estimation algorithms on four

NLP tasks. Three of the five algorithms are

well-known in the computational linguistics

community: Maximum Entropy (ME) estima-

tion with L2 regularization, the Averaged

Perceptron (AP), and Boosting. We also in-

vestigate ME estimation with L1 regularization

using a novel optimization algorithm, and

BLasso, which is a version of Boosting with

Lasso (L1) regularization. We first investigate

all of our estimators on two re-ranking tasks: a

parse selection task and a language model

(LM) adaptation task. Then we apply the best

of these estimators to two additional tasks

involving conditional sequence models: a

Conditional Markov Model (CMM) for part of

speech tagging and a Conditional Random

Field (CRF) for Chinese word segmentation.

Our experiments show that across tasks, three

of the estimators — ME estimation with L1 or

L2 regularization, and AP — are in a near sta-

tistical tie for first place.

1 Introduction

Parameter estimation is fundamental to many sta-

tistical approaches to NLP. Because of the

high-dimensional nature of natural language, it is

often easy to generate an extremely large number of

features. The challenge of parameter estimation is

to find a combination of the typically noisy, re-

dundant features that accurately predicts the target

output variable and avoids overfitting. Intuitively,

this can be achieved either by selecting a small

number of highly-effective features and ignoring

the others, or by averaging over a large number of

weakly informative features. The first intuition

motivates feature selection methods such as

Boosting and BLasso (e.g., Collins 2000; Zhao and

Yu, 2004), which usually work best when many

features are completely irrelevant. L1 or Lasso

regularization of linear models, introduced by

Tibshirani (1996), embeds feature selection into

regularization so that both an assessment of the

reliability of a feature and the decision about

whether to remove it are done in the same frame-

work, and has generated a large amount of interest

in the NLP community recently (e.g., Goodman

2003; Riezler and Vasserman 2004). If on the other

hand most features are noisy but at least weakly

correlated with the target, it may be reasonable to

attempt to reduce noise by averaging over all of the

features. ME estimators with L2 regularization,

which have been widely used in NLP tasks (e.g.,

Chen and Rosenfeld 2000; Charniak and Johnson

2005; Johnson et al. 1999), tend to produce models

that have this property. In addition, the perceptron

algorithm and its variants, e.g., the voted or aver-

aged perceptron, is becoming increasingly popular

due to their competitive performance, simplicity in

implementation and low computational cost in

training (e.g., Collins 2002).

While recent studies claim advantages for L1

regularization, this study is the first of which we are

aware to systematically compare it to a range of

estimators on a diverse set of NLP tasks. Gao et al.

(2006) showed that BLasso, due to its explicit use of

L1 regularization, outperformed Boosting in the LM

adaptation task. Ng (2004) showed that for logistic

regression, L1 regularization outperforms L2 regu-

larization on artificial datasets which contain many

completely irrelevant features. Goodman (2003)

showed that in two out of three tasks, an ME esti-

mator with a one-sided Laplacian prior (i.e., L1

regularization with the constraint that all feature

weights are positive) outperformed a comparable

estimator using a Gaussian prior (i.e., L2 regulari-

zation). Riezler and Vasserman (2004) showed that

an L1-regularized ME estimator outperformed an

L2-regularized estimator for ranking the parses of a

stochastic unification-based grammar.

824

While these individual estimators are well de-

scribed in the literature, little is known about the

relative performance of these methods because the

published results are generally not directly compa-

rable. For example, in the parse re-ranking task,

one cannot tell whether the L2- regularized ME

approach used by Charniak and Johnson (2005)

significantly outperforms the Boosting method by

Collins (2000) because different feature sets and

n-best parses were used in the evaluations of these

methods.

This paper conducts a much-needed comparative

study of these five parameter estimation algorithms

on four NLP tasks: ME estimation with L1 and L2

regularization, the Averaged Perceptron (AP),

Boosting, and BLasso, a version of Boosting with

Lasso (L1) regularization. We first investigate all of

our estimators on two re-ranking tasks: a parse

selection task and a language model adaptation task.

Then we apply the best of these estimators to two

additional tasks involving conditional sequence

models: a CMM for POS tagging and a CRF for

Chinese word segmentation. Our results show that

ME estimation with L2 regularization achieves the

best performing estimators in all of the tasks, and

AP achieves almost as well and requires much less

training time. L1 (Lasso) regularization also per-

forms well and leads to sparser models.

2 Estimators

All the four NLP tasks studied in this paper are

based on linear models (Collins 2000) which re-

quire learning a mapping from inputs 𝑥 ∈ 𝑋 to

outputs 𝑦 ∈ 𝑌. We are given:

 Training samples (𝑥𝑖 ,𝑦𝑖) for 𝑖 = 1…𝑁,

 A procedure 𝑮𝑬𝑵 to generate a set of candi-

dates 𝑮𝑬𝑵(𝑥) for an input x,

 A feature mapping Φ:𝑋 × 𝑌 ↦ ℝ𝐷 to map

each (𝑥,𝑦) to a vector of feature values, and

 A parameter vector 𝒘 ∈ ℝ𝐷 , which assigns a

real-valued weight to each feature.

For all models except the CMM sequence model for

POS tagging, the components 𝑮𝑬𝑵, Φ and 𝒘 di-

rectly define a mapping from an input 𝑥 to an output

𝐹(𝑥) as follows:

𝐹 𝑥 = arg max𝑦∈𝑮𝑬𝑵 𝑋 Φ 𝑥,𝑦 ⋅ 𝒘. (1)

In the CMM sequence classifier, locally normalized

linear models to predict the tag of each word token

are chained together to arrive at a probability esti-

mate for the entire tag sequence, resulting in a

slightly different decision rule.

Linear models, though simple, can capture very

complex dependencies because the features can be

arbitrary functions of the input/output pair. For

example, we can define a feature to be the log con-

ditional probability of the output as estimated by

some other model, which may in turn depend on

arbitrarily complex interactions of „basic‟ features.

In practice, with an appropriate feature set, linear

models achieve very good empirical results on

various NLP tasks. The focus of this paper however

is not on feature definition (which requires domain

knowledge and varies from task to task), but on

parameter estimation (which is generic across

tasks). We assume we are given fixed feature

templates from which a large number of features are

generated. The task of the estimator is to use the

training samples to choose a parameter vector 𝒘,

such that the mapping 𝐹(𝑥) is capable of correctly

classifying unseen examples. We will describe the

five estimators in our study individually.

2.1 ME estimation with L2 regularization

Like many linear models, the ME estimator chooses

𝒘 to minimize the sum of the empirical loss on the

training set and a regularization term:

𝒘 = arg min𝒘 𝐿 𝒘 + 𝑅 𝒘 . (2)

In this case, the loss term L(w) is the negative con-

ditional log-likelihood of the training data,

 𝐿 𝒘 = − log𝑃 𝑦𝑖 𝑥𝑖)
𝑛
𝑖=1 , where

𝑃 𝑦 𝑥) =
exp Φ 𝑥,𝑦 ⋅ 𝒘

 exp(Φ 𝑥,𝑦 ′ ⋅ 𝒘)𝑦 ′∈𝐺𝐸𝑁 𝑥

and the regularizer term 𝑅 𝒘 = 𝛼 𝑤𝑗
2

𝑗 is the

weighted squared L2 norm of the parameters. Here,

 is a parameter that controls the amount of regu-

larization, optimized on held-out data.

This is one of the most popular estimators,

largely due to its appealing computational proper-

ties: both 𝐿 𝒘 and 𝑅(𝒘) are convex and differen-

tiable, so gradient-based numerical algorithms can

be used to find the global minimum efficiently.

In our experiments, we used the limited memory

quasi-Newton algorithm (or L-BFGS, Nocedal and

Wright 1999) to find the optimal 𝒘 because this

method has been shown to be substantially faster

than other methods such as Generalized Iterative

Scaling (Malouf 2002).

825

Because for some sentences there are multiple

best parses (i.e., parses with the same F-Score), we

used the variant of ME estimator described in

Riezler et al. (2002), where 𝐿 𝒘 is defined as the

likelihood of the best parses 𝑦 ∈ 𝑌(𝑥) relative to

the n-best parser output 𝑮𝑬𝑵 𝑥 , (i.e., 𝑌 𝑥 ⊑
𝑮𝑬𝑵(𝑥)): 𝐿 𝒘 = − log 𝑃(𝑦𝑖 |𝑥𝑖)𝑦𝑖∈𝑌(𝑥𝑖)

𝑛
𝑖=1 .

We applied this variant in our experiments of

parse re-ranking and LM adaptation, and found that

on both tasks it leads to a significant improvement

in performance for the L2-regularied ME estimator

but not for the L1-regularied ME estimator.

2.2 ME estimation with L1 regularization

This estimator also minimizes the negative condi-

tional log-likelihood, but uses an L1 (or Lasso)

penalty. That is, 𝑅(𝒘) in Equation (2) is defined

according to 𝑅 𝒘 = 𝛼 𝑤𝑗 𝑗 . L1 regularization

typically leads to sparse solutions in which many

feature weights are exactly zero, so it is a natural

candidate when feature selection is desirable. By

contrast, L2 regularization produces solutions in

which most weights are small but non-zero.

Optimizing the L1-regularized objective function

is challenging because its gradient is discontinuous

whenever some parameter equals zero. Kazama and

Tsujii (2003) described an estimation method that

constructs an equivalent constrained optimization

problem with twice the number of variables.

However, we found that this method is impracti-

cally slow for large-scale NLP tasks. In this work

we use the orthant-wise limited-memory qua-

si-Newton algorithm (OWL-QN), which is a mod-

ification of L-BFGS that allows it to effectively

handle the discontinuity of the gradient (Andrew

and Gao 2007). We provide here a high-level de-

scription of the algorithm.

A quasi-Newton method such as L-BFGS uses

first order information at each iterate to build an

approximation to the Hessian matrix, 𝑯, thus mod-

eling the local curvature of the function. At each

step, a search direction is chosen by minimizing a

quadratic approximation to the function:

𝑄 𝑥 =
1

2
 𝑥 − 𝑥0

′𝑯 𝑥 − 𝑥0 + 𝑔0
′ (𝑥 − 𝑥0)

where 𝑥0 is the current iterate, and 𝑔0 is the func-

tion gradient at 𝑥0 . If 𝑯 is positive definite, the

minimizing value of 𝑥 can be computed analytically

according to: 𝑥∗ = 𝑥0 −𝑯−1𝑔0.

L-BFGS maintains vectors of the change in gradient

𝑔𝑘 − 𝑔𝑘−1 from the most recent iterations, and uses

them to construct an estimate of the inverse Hessian

𝑯−𝟏. Furthermore, it does so in such a way that

𝑯−1𝑔0 can be computed without expanding out the

full matrix, which is typically unmanageably large.

The computation requires a number of operations

linear in the number of variables.

OWL-QN is based on the observation that when

restricted to a single orthant, the L1 regularizer is

differentiable, and is in fact a linear function of 𝒘.

Thus, so long as each coordinate of any two con-

secutive search points does not pass through zero,

𝑅(𝒘) does not contribute at all to the curvature of

the function on the segment joining them. There-

fore, we can use L-BFGS to approximate the Hes-

sian of 𝐿 𝒘 alone, and use it to build an approxi-

mation to the full regularized objective that is valid

on a given orthant. To ensure that the next point is in

the valid region, we project each point during the

line search back onto the chosen orthant.1 At each

iteration, we choose the orthant containing the

current point and into which the direction giving the

greatest local rate of function decrease points.

This algorithm, although only a simple modifi-

cation of L-BFGS, works quite well in practice. It

typically reaches convergence in even fewer itera-

tions than standard L-BFGS takes on the analogous

L2-regularized objective (which translates to less

training time, since the time per iteration is only

negligibly higher, and total time is dominated by

function evaluations). We describe OWL-QN more

fully in (Andrew and Gao 2007). We also show that

it is significantly faster than Kazama and Tsujii‟s

algorithm for L1 regularization and prove that it is

guaranteed converge to a parameter vector that

globally optimizes the L1-regularized objective.

2.3 Boosting

The Boosting algorithm we used is based on Collins

(2000). It optimizes the pairwise exponential loss

(ExpLoss) function (rather than the logarithmic loss

optimized by ME). Given a training sample

(𝑥𝑖 ,𝑦𝑖), for each possible output 𝑦𝑗 ∈ 𝑮𝑬𝑵(𝑥𝑖), we

1 This projection just entails zeroing-out any coordinates

that change sign. Note that it is possible for a variable to

change sign in two iterations, by moving from a negative

value to zero, and on a the next iteration moving from

zero to a positive value.

826

define the margin of the pair (𝑦𝑖 ,𝑦𝑗) with respect to

𝒘 as 𝑀 𝑦𝑖 ,𝑦𝑗 = Φ 𝑥𝑖 ,𝑦𝑖 ⋅ 𝒘 − Φ 𝑥𝑖 ,𝑦𝑗 ⋅ 𝒘.

Then ExpLoss is defined as

ExpLoss 𝒘 = exp −M yi , yj

𝑦𝑗∈𝑮𝑬𝑵 𝑥𝑖 𝑖

 (3)

Figure 1 summarizes the Boosting algorithm we

used. It is an incremental feature selection proce-

dure. After initialization, Steps 2 and 3 are repeated

T times; at each iteration, a feature is chosen and its

weight is updated as follows.

First, we define Upd(𝒘,𝑘, 𝛿) as an updated

model, with the same parameter values as 𝑤 with

the exception of 𝑤𝑘 , which is incremented by 𝛿:

Upd 𝒘, 𝑘, 𝛿 = (𝑤1 ,… ,𝑤𝑘 + 𝛿,… ,𝑤𝐷)

Then, Steps 2 and 3 in Figure 1 can be rewritten as

Equations (4) and (5), respectively.

 𝑘∗, 𝛿∗ = arg min
𝑘 ,𝛿

ExpLoss(Upd 𝒘, 𝑘, 𝛿) (4)

𝒘𝑡 = Upd(𝒘𝑡−1, 𝑘∗, 𝛿∗) (5)

Because Boosting can overfit we update the weight

of 𝑓𝑘∗ by a small fixed step size , as in Equation (6),

following the FSLR algorithm (Hastie et al. 2001).

𝒘𝑡 = Upd(𝒘𝑡−1, 𝑘∗, 𝜖 × sign 𝛿∗) (6)

By taking such small steps, Boosting imposes a

kind of implicit regularization, and can closely

approximate the effect of L1 regularization in a local

sense (Hastie et al. 2001). Empirically, smaller

values of 𝜖 lead to smaller numbers of test errors.

2.4 Boosted Lasso

The Boosted Lasso (BLasso) algorithm was origi-

nally proposed in Zhao and Yu (2004), and was

adapted for language modeling by Gao et al. (2006).

BLasso can be viewed as a version of Boosting with

L1 regularization. It optimizes an L1-regularized

ExpLoss function:

LassoLoss 𝒘 = ExpLoss(𝒘) + 𝑅(𝒘) (7)

where 𝑅 𝒘 = 𝛼 𝑤𝑗 𝑗 .

BLasso also uses an incremental feature selec-

tion procedure to learn parameter vector 𝒘, just as

Boosting does. Due to the explicit use of the regu-

larization term 𝑅(𝒘), however, there are two major

differences from Boosting.

At each iteration, BLasso takes either a forward

step or a backward step. Similar to Boosting, at

each forward step, a feature is selected and its

weight is updated according to Eq. (8) and (9).

 𝑘∗, 𝛿∗ = 𝑎𝑟𝑔 𝑚𝑖𝑛
𝑘 ,𝛿=±𝜖

ExpLoss(Upd 𝒘, 𝑘, 𝛿) (8)

𝒘𝑡 = Upd(𝒘𝑡−1, 𝑘∗, 𝜖 × sign 𝛿∗) (9)

There is a small but important difference between

Equations (8) and (4). In Boosting, as shown in

Equation (4), a feature is selected by its impact on

reducing the loss with its optimal update 𝛿∗ . By

contrast, in BLasso, as shown in Equation (8),

rather than optimizing over 𝛿 for each feature, the

loss is calculated with an update of either +𝜖 or −𝜖,

i.e., grid search is used for feature weight estima-

tion. We found in our experiments that this mod-

ification brings a consistent improvement.

The backward step is unique to BLasso. At each

iteration, a feature is selected and the absolute value

of its weight is reduced by 𝜖 if and only if it leads to

a decrease of the LassoLoss, as shown in Equations

(10) and (11), where  is a tolerance parameter.

𝑘∗ = arg min
𝑘 :𝑤𝑘≠0

ExpLoss(Upd(𝒘, 𝑘,−𝜖sign 𝑤𝑘) (10)

𝒘𝑡 = Upd(𝒘𝑡−1 , 𝑘∗,sign(𝑤𝑘∗) × 𝜖) (11)

if LassoLoss 𝒘𝑡−1,𝛼𝑡−1 − LassoLoss 𝒘𝑡 ,𝛼𝑡 > 𝜃

Figure 2 summarizes the BLasso algorithm we

used. After initialization, Steps 4 and 5 are repeated

T times; at each iteration, a feature is chosen and its

weight is updated either backward or forward by a

fixed amount 𝜖. Notice that the value of 𝛼 is adap-

tively chosen according to the reduction of ExpLoss

during training. The algorithm starts with a large

initial 𝛼, and then at each forward step the value of

𝛼 decreases until ExpLoss stops decreasing. This is

intuitively desirable: it is expected that most highly

effective features are selected in early stages of

training, so the reduction of ExpLoss at each step in

early stages are more substantial than in later stages.

These early steps coincide with the Boosting steps

most of the time. In other words, the effect of

backward steps is more visible at later stages. It can

be proved that for a finite number of features and

𝜃 =0, the BLasso algorithm shown in Figure 2

converges to the Lasso solution when 𝜖 → 0. See

Gao et al. (2006) for implementation details, and

Zhao and Yu (2004) for a theoretical justification

for BLasso.

1 Set w0 = argminw0ExpLoss(w); and wd = 0 for d=1…D

2 Select a feature fk* which has largest estimated
impact on reducing ExpLoss of Equation (3)

3 Update λk*  λk* + δ*, and return to Step 2

Figure 1: The boosting algorithm

827

2.5 Averaged Perceptron

The perceptron algorithm can be viewed as a form

of incremental training procedure (e.g., using sto-

chastic approximation) that optimizes a minimum

square error (MSE) loss function (Mitchell, 1997).

As shown in Figure 3, it starts with an initial pa-

rameter setting and updates it for each training

example. In our experiments, we used the Averaged

Perceptron algorithm of Freund and Schapire

(1999), a variation that has been shown to be more

effective than the standard algorithm (Collins

2002). Let 𝒘𝑡,𝑖 be the parameter vector after the 𝑖th

training sample has been processed in pass 𝑡 over

the training data. The average parameters are de-

fined as𝒘 =
𝟏

𝑻𝑵
 𝒘𝒕,𝒊

𝒊𝒕 where T is the number of

epochs, and N is the number of training samples.

3 Evaluations

From the four tasks we consider, parsing and lan-

guage model adaptation are both examples of

re-ranking. In these tasks, we assume that we have

been given a list of candidates 𝑮𝑬𝑵(𝑥) for each

training or test sample 𝑥,𝑦 , generated using a

baseline model. Then, a linear model of the form in

Equation (1) is used to discriminatively re-rank the

candidate list using additional features which may

or may not be included in the baseline model. Since

the mapping from 𝑥 to 𝑦 by the linear model may

make use of arbitrary global features of the output

and is performed “all at once”, we call such a linear

model a global model.

In the other two tasks (i.e., Chinese word seg-

mentation and POS tagging), there is no explicit

enumeration of 𝑮𝑬𝑵(𝑥). The mapping from 𝑥 to 𝑦

is determined by a sequence model which aggre-

gates the decisions of local linear models via a

dynamic program. In the CMM, the local linear

models are trained independently, while in the CRF

model, the local models are trained jointly. We call

these two linear models local models because they

dynamically combine the output of models that use

only local features.

While it is straightforward to apply the five es-

timators to global models in the re-ranking

framework, the application of some estimators to

the local models is problematic. Boosting and

BLasso are too computationally expensive to be

applied to CRF training and we compared the other

three better performing estimation methods for this

model. The CMM is a probabilistic sequence model

and the log-loss used by ME estimation is most

natural for it; thus we limit the comparison to the

two kinds of ME models for CMMs. Note that our

goal is not to compare locally trained models to

globally trained ones; for a study which focuses on

this issue, see (Punyakanok et al. 2005).

In each task we compared the performance of

different estimators using task-specific measures.

We used the Wilcoxon signed rank test to test the

statistical significance of the difference among the

competing estimators. We also report other results

such as number of non-zero features after estima-

tion, number of training iterations, and computation

time (in minutes of elapsed time on an XEON
TM

 MP

3.6GHz machine).

3.1 Parse re-ranking

We follow the experimental paradigm of parse

re-ranking outlined in Charniak and Johnson

(2005), and fed the features extracted by their pro-

gram to the five rerankers we developed. Each uses

a linear model trained using one of the five esti-

mators. These rerankers attempt to select the best

parse 𝑦 for a sentence 𝑥 from the 50-best list of

possible parses 𝑮𝑬𝑵 𝑥 for the sentence. The li-

near model combines the log probability calculated

by the Charniak (2000) parser as a feature with

1,219,272 additional features. We trained the fea-

1 Initialize w0: set w0 = argminw0ExpLoss(w), and wd = 0
for d=1…D.

2 Take a forward step according to Eq. (8) and (9), and
the updated model is denoted by w1

3 Initialize  = (ExpLoss(w0)-ExpLoss(w1))/
4 Take a backward step if and only if it leads to a de-

crease of LassoLoss according to Eq. (10) and (11),

where  = 0; otherwise
5 Take a forward step according to Eq. (8) and (9);

update  = min(, (ExpLoss(wt-1)-ExpLoss(wt))/);
and return to Step 4.

Figure 2: The BLasso algorithm

1 Set w0 = 1 and wd = 0 for d=1…D
2 For t = 1…T (T = the total number of iterations)
3 For each training sample (xi, yi), i = 1…N
4

𝑧𝑖 = arg max
𝑧∈𝐺𝐸𝑁 𝑥_𝑖

Φ 𝑥𝑖 , 𝑧 ⋅ 𝑤

Choose the best candidate zi from GEN(xi) using
the current model w,

5 w = w + η((xi, yi) – (xi, zi)), where η is the size of
learning step, optimized on held-out data.

Figure 3: The perceptron algorithm

828

ture weights w on Sections 2-19 of the Penn Tree-

bank, adjusted the regularizer constant 𝛼 to max-

imize the F-Score on Sections 20-21 of the Tree-

bank, and evaluated the rerankers on Section 22.

The results are presented in Tables 12 and 2, where

Baseline results were obtained using the parser by

Charniak (2000).

The ME estimation with L2 regularization out-

performs all of the other estimators significantly

except for the AP, which performs almost as well

and requires an order of magnitude less time in

training. Boosting and BLasso are feature selection

methods in nature, so they achieve the sparsest

models, but at the cost of slightly lower perfor-

mance and much longer training time. The

L1-regularized ME estimator also produces a rela-

tively sparse solution whereas the Averaged Per-

ceptron and the L2-regularized ME estimator assign

almost all features a non-zero weight.

3.2 Language model adaptation

Our experiments with LM adaptation are based on

the work described in Gao et al. (2006). The va-

riously trained language models were evaluated

according to their impact on Japanese text input

accuracy, where input phonetic symbols 𝑥 are

mapped into a word string 𝑦. Performance of the

application is measured in terms of character error

2
 The result of ME/L2 is better than that reported in

Andrew and Gao (2007) due to the use of the variant of

L2-regularized ME estimator, as described in Section 2.1.

 CER # features time (min) #train iter

Baseline 10.24%
MAP 7.98%
ME/L2 6.99% 295,337 27 665
ME/L1 7.01% 53,342 25 864
AP 7.23% 167,591 6 56
Boost 7.54% 32,994 175 71,000
BLasso 7.20% 33,126 238 250,000

Table 3. Performance summary of estimators

(lower is better) on language model adaptation

 ME/L2 ME/L1 AP Boost BLasso

ME/L2 ~ >> >> >>
ME/L1 ~ >> >> >>
AP << << >> ~
Boost << << << <<
BLasso << << ~ >>

Table 4. Statistical significance test results.

rate (CER), which is the number of characters

wrongly converted from 𝑥 divided by the number of

characters in the correct transcript.

Again we evaluated five linear rerankers, one for

each estimator. These rerankers attempt to select the

best conversions 𝑦 for an input phonetic string 𝑥

from a 100-best list 𝑮𝑬𝑵(𝑥)of possible conver-

sions proposed by a baseline system. The linear

model combines the log probability under a trigram

language model as base feature and additional

865,190 word uni/bi-gram features. These

uni/bi-gram features were already included in the

trigram model which was trained on a background

domain corpus (Nikkei Newspaper). But in the

linear model their feature weights were trained

discriminatively on an adaptation domain corpus

(Encarta Encyclopedia). Thus, this forms a cross

domain adaptation paradigm. This also implies that

the portion of redundant features in this task could

be much larger than that in the parse re-ranking

task, especially because the background domain is

reasonably similar to the adaptation domain.

We divided the Encarta corpus into three sets

that do not overlap. A 72K-sentences set was used

as training data, a 5K-sentence set as development

data, and another 5K-sentence set as testing data.

The results are presented in Tables 3 and 4, where

Baseline is the word-based trigram model trained

on background domain corpus, and MAP (maxi-

mum a posteriori) is a traditional model adaptation

method, where the parameters of the background

model are adjusted so as to maximize the likelihood

of the adaptation data.

 F-Score # features time (min) # train iter

Baseline 0.8986
ME/L2 0.9176 1,211,026 62 129
ME/L1 0.9165 19,121 37 174
AP 0.9164 939,248 2 8
Boosting 0.9131 6,714 495 92,600
BLasso 0.9133 8,085 239 56,500

Table 1: Performance summary of estimators on

parsing re-ranking (ME/L2: ME with L2 regulari-

zation; ME/L1: ME with L1 regularization)

 ME/L2 ME/L1 AP Boost BLasso

ME/L2 >> ~ >> >>
ME/L1 << ~ > ~
AP ~ ~ >> >
Boost << < << ~
Blasso << ~ < ~

Table 2: Statistical significance test results (“>>”

or “<<” means P-value < 0.01; > or < means 0.01 <

P-value  0.05; “~” means P-value > 0.05)

829

The results are more or less similar to those in

the parsing task with one visible difference: L1

regularization achieved relatively better perfor-

mance in this task. For example, while in the

parsing task ME with L2 regularization significantly

outperforms ME with L1 regularization, their per-

formance difference is not significant in this task.

While in the parsing task the performance differ-

ence between BLasso and Boosting is not signifi-

cant, BLasso outperforms Boosting significantly in

this task. Considering that a much higher propor-

tion of the features are redundant in this task than

the parsing task, the results seem to corroborate the

observation that L1 regularization is robust to the

presence of many redundant features.

3.3 Chinese word segmentation

Our third task is Chinese word segmentation

(CWS). The goal of CWS is to determine the

boundaries between words in a section of Chinese

text. The model we used is the hybrid Mar-

kov/semi- Markov CRF described by Andrew

(2006), which was shown to have state-of-the-art

accuracy. We tested models trained with the various

estimation methods on the Microsoft Research Asia

corpus from the Second International Chinese Word

Segmentation, and we used the same train/test split

used in the competition. The model and experi-

mental setup is identical with that of Andrew (2006)

except for two differences. First, we extracted

features from both positive and negative training

examples, while Andrew (2006) uses only features

that occur in some positive training example.

Second, we used the last 4K sentences of the

training data to select the weight of the regularizers

and to determine when to stop perceptron training.

We compared three of the best performing es-

timation procedures on this task: ME with L2 regu-

larization, ME with L1 regularization, and the Av-

eraged Perceptron. In this case, ME refers to mi-

nimizing the negative log-probability of the correct

segmentation, which is globally normalized, while

the perceptron is trained using at each iteration the

exact maximum-scoring segmentation with the

current weights. We observed the same pattern as in

the other tasks: the three algorithms have nearly

identical performance, while L1 uses only 6% of the

features, and the Averaged Perceptron requires

significantly fewer training iterations. In this case,

L1 was also several times faster than L2. The results

are summarized in Table 5.3

We note that all three algorithms performed

slightly better than the model used by Andrew

(2006), which also used L2 regularization (96.84

F1). We believe the difference is due to the use of

features derived from negative training examples.

3.4 POS tagging

Finally we studied the impact of the regularization

methods on a Maximum Entropy conditional

Markov Model (MEMM, McCallum et al. 2000) for

POS tagging. MEMMs decompose the conditional

probability of a tag sequence given a word sequence

as follows:

𝑃 𝑡1 … 𝑡𝑛 𝑤1 …𝑤𝑛 = 𝑃(𝑡𝑖|𝑡𝑖−1 …𝑡𝑖−𝑘 ,𝑤1 …𝑤𝑛)

𝑛

𝑖=1

where the probability distributions for each tag

given its context are ME models. Following pre-

vious work (Ratnaparkhi, 1996), we assume that the

tag of a word is independent of the tags of all pre-

ceding words given the tags of the previous two

words (i.e., 𝑘=2 in the equation above). The local

models at each position include features of the

current word, the previous word, the next word, and

features of the previous two tags. In addition to

lexical identity of the words, we used features of

word suffixes, capitalization, and number/special

character signatures of the words.

We used the standard splits of the Penn Treebank

from the tagging literature (Toutanova et al. 2003)

for training, development and test sets. The training

set comprises Sections 0-18, the development set —

Sections 19-21, and the test set — Sections 22-24.

We compared training the ME models using L1 and

L2 regularization. For each of the two types of

regularization we selected the best value of the

regularization constant using grid search to optim-

ize the accuracy on the development set. We report

final accuracy measures on the test set in Table 6.

The results on this task confirm the trends we

have seen so far. There is almost no difference in

3 Only the L2 vs. AP comparison is significant at a 0.05

level according to the Wilcoxon signed rank test.

 Test F1 # features # train iter

ME/L2 0.9719 8,084,086 713
ME/L1 0.9713 317,146 201
AP 0.9703 1,965,719 162

Table 5. Performance summary of estimators on

CWS

830

accuracy of the two kinds of regularizations, and

indeed the differences were not statistically signif-

icant. Estimation with L1 regularization required

considerably less time than estimation with L2, and

resulted in a model which is more than ten times

smaller.

4 Conclusions

We compared five of the most competitive para-

meter estimation methods on four NLP tasks em-

ploying a variety of models, and the results were

remarkably consistent across tasks. Three of the

methods — ME estimation with L2 regularization,

ME estimation with L1 regularization, and the Av-

eraged Perceptron — were nearly indistinguishable

in terms of test set accuracy, with ME estimation

with L2 regularization perhaps enjoying a slight

lead. Meanwhile, ME estimation with L1 regulari-

zation achieves the same level of performance while

at the same time producing sparse models, and the

Averaged Perceptron provides an excellent com-

promise of high performance and fast training.

These results suggest that when deciding which

type of parameter estimation to use on these or

similar NLP tasks, one may choose any of these

three popular methods and expect to achieve com-

parable performance. The choice of which to im-

plement should come down to other considerations:

if model sparsity is desired, choose ME estimation

with L1 regularization (or feature selection methods

such as BLasso); if quick implementation and

training is necessary, use the Averaged Perceptron;

and ME estimation with L2 regularization may be

used if it is important to achieve the highest ob-

tainable level of performance.

References

Andrew, G. 2006. A hybrid Markov/semi-Markov condi-
tional random field for sequence segmentation. In EMNLP,
465-472.

Andrew, G. and Gao, J. 2007. Scalable training of
L1-regularized log-linear models. In ICML.

Charniak, E. 2000. A maximum-entropy-inspired parser. In
NAACL, 132-139.

Charniak, E. and Johnson, M. 2005. Coarse-to-fine n-best
parsing and MaxEnt discriminative re-ranking. In ACL.
173-180.

Chen, S.F., and Rosenfeld, R. 2000. A survey of smoothing
techniques for ME models. IEEE Trans. On Speech and Audio
Processing, 8(2): 37-50.

Collins, M. 2000. Discriminative re-ranking for natural
language parsing. In ICML, 175-182.

Collins, M. 2002. Discriminative training methods for hid-
den Markov models: Theory and experiments with per-
ceptron algorithms. In EMNLP, 1-8.

Freund, Y, R. Iyer, R. E. Schapire, and Y. Singer. 1998. An
efficient boosting algorithm for combining preferences. In
ICML’98.

Freund, Y. and Schapire, R. E. 1999. Large margin classifica-
tion using the perceptron algorithm. In Machine Learning,
37(3): 277-296.

Hastie, T., R. Tibshirani and J. Friedman. 2001. The elements of
statistical learning. Springer-Verlag, New York.

Gao, J., Suzuki, H., and Yu, B. 2006. Approximation lasso
methods for language modeling. In ACL.

Goodman, J. 2004. Exponential priors for maximum entropy
models. In NAACL.

Johnson, M., Geman, S., Canon, S., Chi, Z., and Riezler, S.
1999. Estimators for stochastic “Unification-based”
grammars. In ACL.

Kazama, J. and Tsujii, J. 2003. Evaluation and extension of
maximum entropy models with inequality constraints. In
EMNLP.

Malouf, R. 2002. A comparison of algorithms for maximum
entropy parameter estimation. In HLT.

McCallum A, D. Freitag and F. Pereira. 2000. Maximum
entropy markov models for information extraction and
segmentation. In ICML.

Mitchell, T. M. 1997. Machine learning. The McGraw-Hill
Companies, Inc.

Ng, A. Y. 2004. Feature selection, L1 vs. L2 regularization,
and rotational invariance. In ICML.

Nocedal, J., and Wright, S. J. 1999. Numerical Optimization.
Springer, New York.

Punyakanok, V., D. Roth, W. Yih, and D. Zimak. 2005.
Learning and inference over constrained output. In IJCAI.

Ratnaparkhi, A. 1996. A maximum entropy part-of-speech
tagger. In EMNLP.

Riezler, S., and Vasserman, A. 2004. Incremental feature
selection and L1 regularization for relax maximum entro-
py modeling. In EMNLP.

Riezler, S., King, T. H., Kaplan, R. M., Crouch, R., Maxwell, J.,
and Johnson, M. 2002. Parsing the wall street journal using
a lexical-functional grammar and discriminative estima-
tion techniques. In ACL. 271-278.

Tibshirani, R. 1996. Regression shrinkage and selection via
the lasso. J. R. Statist. Soc. B, 58(1): 267-288.

Toutanova, K., Klein, D., Manning, C. D., and Singer, Y.
2003. Feature-rich Part-of-Speech tagging with a cyclic
dependency network. In HLT-NAACL, 252-259.

Zhao, P. and B. Yu. 2004. Boosted lasso. Tech Report, Statistics
Department, U. C. Berkeley.

 Accuracy (%) # features # train iter

MEMM/L2 96.39 926,350 467
MEMM/L1 96.41 84,070 85

Table 6. Performance summary of estimators on

POS tagging

831

