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Abstract

We study the impact of syntactic and shallow
semantic information in automatic classifi-
cation of questions and answers and answer
re-ranking. We define (a) new tree struc-
tures based on shallow semantics encoded
in Predicate Argument Structures (PASS)
and (b) new kernel functions to exploit the
representational power of such structures
with Support Vector Machines. Our ex-
periments suggest that syntactic information
helps tasks such as question/answer classifi-
cation and that shallow semantics gives re-
markable contribution when a reliable set of
PASs can be extracted, e.g. from answers.
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from them. A further answer re-ranking phase is op-
tionally applied. Here, too, the syntactic structure
of a sentence appears to provide more useful infor-
mation than a bag of words (Chen et al., 2006), al-
though the correct way to exploit it is still an open
problem.

An effective way to integrate syntactic structures
in machine learning algorithms is the use of tree ker-
nel (TK) functions (Collins and Duffy, 2002), which
have been successfully applied to question classifi-
cation (Zhang and Lee, 2003; Moschitti, 2006) and
other tasks, e.g. relation extraction (Zelenko et al.,
2003; Moschitti, 2006). In more complex tasks such
as computing the relatedness between questions and
answers in answer re-ranking, to our knowledge no
study uses kernel functions to encode syntactic in-
formation. Moreover, the study of shallow semantic
information such as predicate argument structures

Question answering (QA) is as a form of informa-annotated in the PropBank (PB) project (Kingsbury
tion retrieval where one or more answers are rednd Palmer, 2002w ci s. upenn. edu/ ~ace) is a
turned to a question in natural language in the forrRromising research direction. We argue that seman-
of sentences or phrases. The typical QA system dic structures can be used to characterize the relation
chitecture consists of three phases: question prB&tween a question and a candidate answer.
cessing, document retrieval and answer extraction In this paper, we extensively study new structural
(Kwok et al., 2001).

representations, encoding parse trees, bag-of-words,

Question processing is often centered on questidtOS tags and predicate argument structures (PASs)

classification, which selects one bfexpected an- for question classification and answer re-ranking.
swer classes. Most accurate models apply SupéNe define new tree representations for both simple
vised machine learning techniques, e.g. SNow (Lland nested PASs, i.e. PASs whose arguments are
and Roth, 2005), where questions are encoded wugther predicates (Section 2). Moreover, we define
ing various lexical, syntactic and semantic feature§ilew kernel functions to exploit PASs, which we au-
The retrieval and answer extraction phases consistfi@matically derive with our SRL system (Moschitti
retrieving relevant documents (Collins-Thompson egt al., 2005) (Section 3).

al., 2004) and selecting candidate answer passagesOur experiments using SVMs and the above ker-
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nels and data (Section 4) shows the following: (a) /PAi\

our approach reaches state-of-the-art accuracy on roI7 ARGL  ARGZ ARGN-TMP

|
question classification. (b) PB predicative structures define antigens molecules originally

are not effective for question classification but show PAS

promising results for answer classification on a cor- rel M AR'Glm ARGM-LOC
pus of answers to TREC'QA 2001 description ques- deslcribe reseellrchers antilgens molelcules boldy

tions. We created such dataset by using YourQA
(Quarteroni and Manandhar, 2006), our basic Weligure 1. Compact predicate argument structures of
based QA systetn (c) The answer classifier in- two different sentences.
creases the ranking accuracy of our QA system by
about 25%.
Our results show that PAS and syntactic parsint he body].

- Bor this purpose, we can represent the above anno-

are promising methods to address tasks affected PX

. . .. lated sentences using the tree structures described in
data sparseness like question/answer categorlzatlclmﬂgure 1. In this compact representation, hereafter

Predicate-Argument Structures (PAS), arguments
are replaced with their most important word — often
Traditionally, information retrieval techniques arereferred to as the semantic head. This reduces
based on théag-of-words(BOW) approach aug- data sparseness with respect to a typical BOW
mented by language modeling (Allan et al., 2002)cepresentation.
When the task requires the use of more complex se- However, sentences rarely contain a single pred-
mantics, the above approaches are often inadequddate; it happens more generally that propositions
to perform fine-level textual analysis. contain one or more subordinate clauses. For

An improvement on BOW is given by the use ofinstance let us consider a slight modification of the
syntactic parse trees, e.g. for question classificatidirst sentence: “Antigens were originally defined
(Zhang and Lee, 2003), but these, too are inadequade non-self moleculewhich bound specifically to
when dealing with definitional answers expressed bgntibodie$.” Here, the main predicate is “defined”,
long and articulated sentences or even paragraptisllowed by a subordinate predicate “bound”. Our
On the contrary, shallow semantic representation§RL system outputs the followirtgvo annotations:
bearing a more “compact” information, could pre{1)[ arc: Antigens] were [ arcm_Tmp
vent the sparseness of deep structural approaches gi nal I y] [ .. defined] [ arce as non-self
and the weakness of BOW models. mol ecul es whi ch bound specifically to

Initiatives such as PropBank (PB) (Kingsburyanti bodi es].
and Palmer, 2002) have made possible the design (@) Anti gens were originally defined as
accurate automatic Semantic Role Labeling (SRU).arc1 non-sel f nol ecul es] [ r—a1 which] [,
systems (Carreras and Marquez, 2005). Attemptingpund] [ arca—mnr specifically] [arge tO
an application of SRL to QA hence seems naturahnti bodi es] .
as pinpointing the answer to a question relies on giving the PASs in Figure 2.(a) resp. 2.(b).

2 Encoding Shallow Semantic Structures

deep understanding of the semantics of both. As visible in Figure 2.(a), when an argument node
Let us consider the PB annotation:[ .rc:  corresponds to an entire subordinate clause, we label
Antigens] were [ am—rmp originally] [, its leaf with PAS, e.g. the leaf of ARG2. Such PAS
defined] [ arc2 as non-self nolecul es]. node is actually the root of the subordinate clause

Such annotation can be used to design a shallaw Figure 2.(b). Taken as standalone, such PASs do
semantic representation that can be matched againgt express the whole meaning of the sentence; it
other semantically similar sentences, e.g.rco is more accurate to define a single structure encod-
Researchers] [, describe] [arc:1 antigens] ing the dependency between the two predicates as in

[ Arc2 as foreign nolecul es] [ arcm—roc inN -
- 2This is an actual answer to "What are antibodies?” from
Demo at:ht t p: // cs. yor k. ac. uk/ ai g/ aqua. our question answering system, YourQA.
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PAS PAS PAS

7/ N\ D N 7 N
rel ARG1 ARG2 AM-TMP rel ARGl R-ARG1 AM-ADV ARG2 rel ARG1 ARG2 AM-TMP
| | | | | | |
define antigens PAS originally bound molecules which specifically antibodies define antigens_ PAS__ originally
/// ~
(a) (b) rel” ARGl R-ARG1 AM-ADV  ARG2

bound molecules which specifically antibodies

Figure 2: Two PASs composing a PASN ©

Figure 2.(c). We refer to nested PASs as PASNs. rooted in theP AS node, Collins and Duffy’s kernel

It is worth to note that semantically equivalentwould compute no match.
sentences syntactically expressed in different ways In the next section we describe a new kernel de-
share the same PB arguments and the same PAB¢ed from the above tree kernel, able to evaluate the
whereas semantically different sentences result imeaningful substructures for PAS trees. Moreover,
different PASs. For example, the sentence: “Antias a single PAS may not be sufficient for text rep-
gens were originally defined amntibodieswhich resentation, we propose a new kernel that combines
bound specifically tanon-self moleculés uses the the contributions of different PASs.
same words as (2) but has different meaning. Its Pg

.1 Tree kernels

annotation:

(3) Anti gens were originally defined Given two treeslt and Ty, let { f1, f2,..} = F be
as [ arc1 antibodies] [r-a1 which] [.e the set of substructures (fragments) ahth) be
bound] [ arcam—mnr specifically] [arg: to equal to 1 if f; is rooted at node:, O otherwise.
non-sel f nol ecul es], Collins and Duffy’s kernel is defined as

clearly differs from (2), as ARG2 is nowon-
self molecules consequently, the PASs are also TK(Ty,Ty) = ZmeNT1 aneNT2 A(ni,n2), (1)
different. h dth q where N, and Np, are the sets of nodes
Once we have assumed that parse trees an PﬁﬁsTl and Ty, respectively andA(ni,ns) =
can improve on the simple BOW representation, Wg:m I Ii( The latter is equal to the number
face the problem of representing tree structures ify=1 () 1i(n2). > €d
. ) . . . of common fragments rooted in nodesandns. A
learning machines. Section 3 introduces a viable ap-

proach based on tree kernels. can _be computed as fOHC.)WS: . .
(1) if the productions (i.e. the nodes with their

direct children) atn; and no are different then
A(nl, 712) =0;

As mentioned above, encoding syntactic/semanti@) if the productions at, andn are the same, and
information represented by means of tree structurds @ndn only have leaf children (i.e. they are pre-
in the learning algorithm is problematic. A first so-terminal symbols) thetk (ny, ny) = 1;

lution is to use all its possible substructures as fe43) if the productions at, andn; are the same, and
tures. Given the combinatorial explosion of considz1 @ndny are not pre-terminals thef (ny,ny) =
ering subparts, the resulting feature space is USU&H;Lilnl)(l—l-A(C‘g‘M,C%2)), wherenc(n,) is the num-
very large. A tree kernel (TK) function which com- ber of children ofn; and¢’, is the j-th child of n.

putes the number of common subtrees between two Such tree kernel can be normalized andfactor
syntactic parse trees has been given in (Collins armn be added to reduce the weight of large structures
Duffy, 2002). Unfortunately, such subtrees are sulrefer to (Collins and Duffy, 2002) for a complete
ject to the constraint that their nodes are taken wittlescription). The critical aspect of steps (1), (2) and
all or none of the children they have in the original(3) is that the productions of two evaluated nodes
tree. This makes the TK function not well suited forhave to be identical to allow the match of further de-
the PAS trees defined above. For instance, althougleendants. This means that common substructures
the two PASs of Figure 1 share most of the subtreasmnnot be composed by a node with only some of its
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PAS PAS PAS

N\ 7/ N~ "/ N\~
SLOT SLOT SLOT SLOT SLOT SLOT SLOT SLOT SLOT SLOT SLOT SLOT
| | | | | | |
rel ARGl ARG2 ARGM-TMP rel ARG1 null null rel null  ARG2 null
| | | | | | |

define antigens PAS originally define antigens define PAS
I | I I |

* * * * *

(@) (b) (©

Figure 3: A PAS with some of its fragments.

children as an effective PAS representation wouldhow that SSTK is effective in counting the number
require. We solve this problem by designing thef relations shared by two PASs, we propose the fol-
Shallow Semantic Tree Kernel (SSTK) which allowdowing:

to match portions of a PAS. Proposition 1 The newA function applied to the

3.2 The Shallow Semantic Tree Kerel (SSTK) modified PAS counts the number of all possible
ary relations derivable from a set d&f arguments,
i.e. Y8, (%) relations of arity from 1 tdk (the pred-
icgtte being considered as a special argument).

The SSTK is based on two ideas: first, we chang
the PAS, as shown in Figure 3.(a) by addiagOT
nodes. These accommodate argument labels in
specific order, i.e. we provide a fixed number oProof We observe that a kernel applied to a tree and
slots, possibly filled withnull arguments, that en- itself computes all its substructures, thus if we eval-
code all possible predicate arguments. For simpliaiate SSTK between a PAS and itself we must obtain
ity, the figure shows a structure of just 4 argumentshe number of generatedary relations. We prove
but more can be added to accommodate the malgy induction the above claim.
imum number of arguments a predicate can hav&or the base casge = 0): we use a PAS with no
Leaf nodes are filled with the wildcard character arguments, i.e. all its slots are filled with null la-
but they may alternatively accommodate additiondbels. Letr be the PAS root; since is not a pre-
information. terminal, step 3 is selected addis recursively ap-
The slot nodes are used in such a way that thglied to allr’s children, i.e. the slot nodes. For the
adopted TK function can generate fragments conatter, step 0 assignA(ci,cl) = 0. As a result,
taining one or more children like for example thos%(r’ r) = H?i(f)(l +0) — 1 = 0 and the base case
shown in frames (b) and (c) of Figure 3. As preholds.

viously pointed out, if the arguments were directlyror the general caseis the root of a PAS witf + 1

attached to the root node, the kernel function would ne(r) P
o : arguments. A = [y (1 + A(e, ) — 1
only generate the structure with all children (or the g (r,7) =1 (1 + Alep, 7))

structure with no children, i.e. empty). =Tl (1A, o) x (L+A (e, ef 1))~ 1. For
Second, as the original tree kernel would generafé@rguments, we assume by induction gL, (1+
many matches with slots filled with the null label,A(cl,¢l)) —1=3%, (%), i.e. the number of-ary
we have set a new step O: relations. Moreover(l + A(cFT1, cF+1)) = 2, thus
Alr,r) = Y8 (F) x 2 =28 x 2= okl = Yok

. . . . ;
©) II;gél(iosrnZZII) 'Z? pre—t()arm|3al node and its child ("+1), i.e. all the relations until arity + 1 O
) ni,n2)=Vu,

TK functions can be applied to sentence parse
trees, therefore their usefulness for text processing
_ ne(ng) L applications, e.g. question classification, is evident.

@) Alniyme) =T (14 Aleny, en,)) = 1 On the contrary, the SSTK applied to one PAS ex-
The above changes generate a nAwwhich, tracted from a text fragment may not be meaningful
when substituted (in place of the original) in Eq.  since its representation needs to take into account all
1, gives the new Shallow Semantic Tree Kernel. Tthe PASs that it contains. We address such problem
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by defining a kernel omultiple PASs. system which achieves a 76% F1-measure (Mos-
Let P, and P be the sets of PASs extracted fromchitti et al., 2005).
the text fragment andt’. We define: As benchmark data, we use the question train-
, ing and test set available at:2r. cs. ui uc. edu/
Kai (B, Pr) = Z Z SSTK(p.p), () ~cogconp/ Dat a/ Q& QC/ , where the test set are the
peRpEly 500 TREC 2001 test questions (Voorhees, 2001).
While during the experiments (Sect. 4) the| | We refer to this split as UIUC. The performance of
kernel is used to handle predicate argument strughe multi-classifier and the individual binary classi-
tures, TK (Eg. 1) is used to process parse trees afidrs is measured with accuracy resp. Fl-measure.
the linear kernel to handle POS and BOW featuresTo collect statistically significant information, we

. run 10-fold cross validation on the 6,000 questions.
4 Experiments

The purpose of our experiments is to study the im{ Features | Accuracy (UIUC) | Accuracy (c.v.)]
pact of the new representations introduced earlier foy E(T)W 88"6‘ gj-%i-g
QA tasks. In particular, we focus on question clas- pag 342 43.001.9
sification and answer re-ranking for Web-based QA pPos 26.4 32.4£2.1
systems. PT+BOW 91.8 86.14+1.1
. e PT+BOW+POS 91.8 84.7+1.5
In the question classification task, we extend pret pas+sow 90.0 82 1+1.3
vious studies, e.g. (Zhang and Lee, 2003; Moschitti| PAS+BOW+POS 88.8 81.0£1.5

2006), by testing a set of previously designed ker-

nels and their combination with our new Shallow SeTable 1: Accuracy of the question classifier with dif-
mantic Tree Kernel. In the answer re-ranking taskerent feature combinations

we approach the problem of detecting description

answers, among the most complex in the literatu

I . . .
) uestion classification results Table 1 shows the
(Cui et al., 2005; Kazawa et al., 2001). 6

. ccuracy of different question representations on the
The representations that we adopt are: bag-o

JIUC split (Column 1) and the average accuraey
words (BOW), bag-of-POS tags (POS), parse tret e corresponding confidence limit (at 90% signifi-

(PT), predicate argument structure (PAS) and neste

¢ance) on the cross validation splits (Column 2).(i)
PAS (PASN). BOW and POS are processed b5|Lhe TK on PT and the linear kernel on BOW pro-

means of a linear kernel, PT is processed with TKduce a very high result, i.e. about 90.5%. This is

PAStagdt: ASN are p()jrcllcess?d_bytf S;GMV\II.e r']rtn_ﬁ)_l ligher than the best outcome derived in (Zhang and
mented the proposed kermels in the R Y 2003), i.e. 90%, obtained with a kernel combin-

softwgre .ava”"’?b'e ai - nl p.info. uniromaz. ' t/ . ing BOW and PT on the same data. Combined with
rmschu_ttu/ whmh_ encodes tree kernel functions mPT, BOW reaches 91.8%, very close to the 92.5%
SVM-light (Joachims, 1999). accuracy reached in (Li and Roth, 2005) using com-
4.1 Question classification plex semantic information from external resources.

As a first experiment, we focus on question C|aSSl(-ii) Th_e PAS feature provides no improvem_ent. This
fication, for which benchmarks and baseline result'sS mainly _because at Iea_st half of t_he triunmg” and
are available (Zhang and Lee, 2003: Li and Rothtest guestions only contain the predicate “to be”, for

\ang ! i’ o Which a PAS cannot be derived by a PB-based shal-
2005). We design a question multi-classifier b

. . . )fow semantic parser.
combiningn binary SVMS according to the ONE- ... o .
vs-ALL scheme, where the final output class is th iii) The 10-fold cross-validation experiments con-

. . .. firm the trends observed in the UIUC split. The
one associated with the most probable prediction. . . N .
best model (according to statistical significance) is

The PASs were automatically derived by our SRI‘PT+B OW, achieving an 86.1% average accufacy

3We adopted the default regularization parameter (i.e.,the
average ofl/||Z||) and tried a few cost-factor values to adjust  “This value is lower than the UIUC split one as the UIUC
the rate between Precision and Recall on the development setest set is not consistent with the training set (it contaires
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4.2 Answer classification

Question classification does not allow to fully e»
ploit the PAS potential since questions tend to |
short and with few verbal predicates (i.e. the on
ones that our SRL system can extract). A diffe
ent scenario is answer classification, i.e. decidi
if a passage/sentence correctly answers a quest

Fl-measure

Here, the semantics to be generated by the cla &0 | /" s ooy !
fier are not constrained to a small taxonomy and ¢ e+s {1 Tqeniaen  aameacTeon [T
swer length may make the PT-based represental  esot - =22 *

1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0
too sparse. Cost-Factor

We learn answer cIaSS|f|cat|op with a binary SVMFigure 4: Impact of the BOW and PT features on
which determines if an answer is correct for the tar-

. . answer classification
get question: here, the classification instances are

(question, answerpairs. Each pair component can ., ‘ ‘
be encoded with PT, BOW, PAS and PASN repre- .| ~_ . . .
sentations (processed by previous kernels).

As test data, we collected the 138 TREC 2001 test,, . |
questions labeled as “description” and for each, weg, , I’
obtained a list of answer paragraphs extracted from, .
Web documents using YourQA. Each paragraph seré-“_o R
tence was manually evaluated based on whether it__ |
contained an answer to the corresponding question,_ |
Moreover, to simplify the classification problem, we _
isolated for each paragraph the sentence which ob-, L ‘
tained the maximal judgment (in case morethanone 15 20 25 30 35 40 45 50 55 60 65 70

Cost-Factor
sentence in the paragraph had the same judgment, o

we chose the first one). We collected a corpus cofin9ure 5: Impact of the PAS and PASN features
taining 1309 sentences, 416 of which — labeled «y1€0mbined with the BOW and PT features on answer

77777777777777777777777777

‘
‘
S |
68.0 [T a TN oSN AT R Rt SR
A ! !
:

—— Q(BOW)+A(BOW)

- Q(BOW)+A(PT,BOW)

—e— Q(BOW)+A(BOW,PT,PAS)

—&— Q(BOW)+A(BOW,PT,PASN)

—=- Q(BOW)+A(BOW,PAS)
—%- Q(BOW)+A(BOW,PASN)

_ answered the question either concisely or witflassification
noise; the rest — labeled “-1"- were either irrele-

vant to the question or contained hints relating to thes2o
question but could not be judged as valid answers  s:s

Answer classification results To test the impact

of our models on answer classification, we ran 5-fo|<§ %05
cross-validation, with the constraint that two pairg % |
(q,a1) and (g, ay) associated with the same ques- .5
tion ¢ could not be split between training and test- 4, |
ing. Hence, each reported value is the average over g,
different outcomes. The standard deviations rangedm_0

- 15 20 25 3.0 35 40 45 50 55 6.0 65 7.0
TREC 2001 questions) and includes a larger percentage of eas Cost-Factor

ily classified question types, e.g. the numeric (22.6%) aad d __ .

scription classes (27.6%) whose percentage in training.#9a ~ Figure 6: Comparison between PAS and PASN

resp. 16.2%. when used as standalone features for the answer on
. . . “w : i . g .

For mstange, given the question What are |_nverteb|(ai;es.anSWer classification

the sentence “At least 99% of all animal species are inverte-

brates, comprising ...” was labeled “-1" , while “Invertebes

are animals without backbones.” was labeled “+1”.
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approximately between 2.5 and 5. The experimenfsrms better than PAS. This suggests that the depen-
were organized as follows: dencies between the nested PASs are in some way
First, we examined the contributions of BOW andcaptured by the PT information. Indeed, it should
PT representations as they proved very important fdre noted that we join predicates only in case one is
guestion classification. Figure 4 reports the plot aubordinate to the other, thus considering only a re-
the F1-measure of answer classifiers trained with adtricted set of all possible predicate dependencies.
combinations of the above models according to difHowever, the improvement over PAS confirms that
ferent values of the cost-factor parameter, adjustingASN is the right direction to encode shallow se-
the rate between Precision and Recall. We see harantics from different sentence predicates.
that the most accurate classifiers are the ones using _
both the answer's BOW and PT feature and either gzs@eléne 39.223‘59 33.1; 5 g;g“zigsgge
the question’s PT or BOW feature (i.e. Q(BOW) + | ga@5 | 39.72:3.44 | 34.22:3.63 | 36.76£3.56
A(PT,BOW) resp. Q(PT) + A(PT,BOW) combina- | Gg@all | 31.58:0.58 100 48.02£0.67
tions). When PT is used for the answer the sim- QA@all | 31.58t0.58 100 48.02£0.67
ple BOW model is outperformed by 2 to 3 points. =g 48.9%?3_77 56_2%3_18 8?6123%
Hence, we infer that both the answer’s PT and BOW

features are very useful in the classification taskrzple 2: Baseline classifiers accuracy and MRR of

_Howeve_r, PT does not seem to provide_additionapourQA (QA), Google (Gg) and the best re-ranker
information to BOW when used for question repre-

sentation. This can be explained by considering that
answer classification (restricted to description que3 Answer re-ranking

tions) does not require question type classificatioftpe output of the answer classifier can be used to
relations. In this scenario, the question’s syntactigsm . Starting from the top answer, each instance can
structure does not seem to provide much more infofse classified based on its correctness with respect

mation than BOW. to the question. If it is classified as correct its rank
Secondly, we evaluated the impact of the newlys ynchanged; otherwise it is pushed down, until a
defined PAS and PASN features combined with thgyyer ranked incorrect answer is found.
best performing previous model, i.e. Q(BOW) + g ysed the answer classifier with the highest F1-
A(PT,BOW). Figure 5 illustrates the F1-measurgneasure on the development set according to differ-
plots again according to the cost-factor paramgn; cost-factor valu€s We applied such model to
eter. We observe here that model Q(BOWjhe Google ranks and to the ranks of our Web-based
+ A(PT,BOW,PAS) greatly outperforms modelga system, i.e. YourQA. The latter uses Web docu-
Q(BOW) + A(PT,BOW), proving that the PAS fea- ments corresponding to the top 20 Google results for
ture is very useful for answer classification, i.eine question. Then, each sentence in each document
the improvement is about 2 to 3 points while thes compared to the question via a blend of similar-
difference with the BOW model, i.e. Q(BOW) ity metrics used in the answer extraction phase to
+ A(BOW), exceeds 3 points. The Q(BOW) +ggjact the most relevant sentence. A passage of up

A(PT,BOW,PASN) model is not more effective thany, 750 pytes is then created around the sentence and
Q(BOW) + A(PT,BOW,PAS). This suggests eitheletyrned as an answer.

that PAS is more effective than PASN or that when Tape 2 illustrates the results of the answer classi-

the PT information is added, the PASN contributioq:iers derived by exploiting Google (Gg) and YourQA
fades out. (QA) ranks: the topV ranked results are considered

To further investigate the previous issue, we fing correct definitions and the remaining ones as in-
nally compared the contribution of the PAS an
PASN when combined with the question’s BOW ®However, by observing the curves in Fig. 5, the selected
. . arameters appear as pessimistic estimates for the besi mod
feature alone, i.e. no PT is used. The results, r nprovement: the one for BOW is the absolute maximum, but
ported in Figure 6, show that this time PASN peran average one is selected for the best model.
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correct for different values aN. We showN =5 mantics can be encoded by PASN. Forms of general-
and the maximunV (all), i.e. all the available an- ization for predicates and arguments within PASNs
swers. Each measure is the average of the Precisidike LSA clusters, WordNet synsets and FrameNet
Recall and F1-measure from cross validation. Th@oles and frames) information also appear as a
F1-measure of Google and YourQA are greatly oupromising research area.
performed by our answer classifier.
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