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Abstract beling from incorrect labellings. However, the com-

plexity of quadratic programming for the large mar-
gin approach prevented it from being used in large
scale NLP tasks.

Collins (2002) proposed a Perceptron like learn-
ing algorithm to solve sequence classification in the
traditional left-to-right order. This solution does not
suffer from the label bias problem. Compared to the
undirected methods, the Perceptron like algorithm
is faster in training. In this paper, we will improve
upon Collins’ algorithm by introducing a bidirec-
tional searching strategy, so as to effectively utilize
more context information at little extra cost.

When a bidirectional strategy is used, the main
problem is how to select the order of inference. Tsu-
ruoka and Tsujii (2005) proposed thasiest-firsap-
Many NLP tasks can be modeled as a sequence clpsach which greatly reduced the computation com-
sification problem, such as POS tagging, chunkinglexity of inference while maintaining the accuracy
and incremental parsing. A traditional method ton labeling. However, the easiest-first approach only
solve this problem is to decompose the whole taskerves as a heuristic rule. The order of inference is
into a set of individual tasks for each token in the imot incorporated into the training of the MaxEnt clas-
put sequence, and solve these small tasks in a fixatier for individual labeling.
order, usually from left to right. In this way, the out- Here, we will propose a novel learning frame-
put of the previous small tasks can be used as therk, namelyguided learningto integrate classifi-
input of the later tasks. HMM and MaxEnt Markowation of individual tokens and inference order selec-
Model are examples of this method. tion into a single learning task. We proposed a Per-

Lafferty et al. (2001) showed that this approacbeptron like learning algorithm (Collins and Roark,
suffered from the so calledbel bias problen{Bot- 2004; Daung Ill and Marcu, 2005) for guided learn-
tou, 1991). They proposed Conditional Randoing. We apply this algorithm to POS tagging, a clas-
Fields (CRF) as a general solution for sequence clase sequence learning problem. Our system reports
sification. CRF models a sequence as an undirectea error rate of 2.67% on the standard PTB test set,
graph, which means that all the individual tasks aeerelative 3.3% error reduction of the previous best
solved simultaneously. Taskar et al. (2003) improvesystem (Toutanova et al., 2003) by using fewer fea-
the CRF method by employing the large margitures. By using deterministic search, it obtains an
method to separate the gold standard sequencedeor rate of 2.73%, a 5.9% relative error reduction

760

Proceedings of the 45th Annual Meeting of the Association of Computational Linguistics, pages 760-767,
Prague, Czech Republic, June 2007. (©2007 Association for Computational Linguistics

In this paper, we propose guided learning,
a new learning framework for bidirectional
sequence classification. The tasks of learn-
ing the order of inference and training the
local classifier are dynamically incorporated
into a single Perceptron like learning algo-
rithm. We apply this novel learning algo-
rithm to POS tagging. It obtains an error rate
of 2.67% on the standard PTB test set, which
represents 3.3% relative error reduction over
the previous best result on the same data set,
while using fewer features.

1 Introduction



over the previous best deterministic algorithm (Tsu- At the second step, assume the most favorable ac-
ruoka and Tsujii, 2005). tion is the assignment of label JJiboeresting in

The new POS tagger is similar to (Toutanova ¢te context of NN fomook . Then we maintain the
al., 2003; Tsuruoka and Tsuijii, 2005) in the wayop two hypotheses for spaok interesting as
that we employ context features. We use a bidshown below. The second most favorable label for
rectional search strategy (Woods, 1976; Satta aintkresting is still JJ, but in the context of VB for
Stock, 1994), and our algorithm is based on Percemok .
tron learning (Collins, 2002). A unique contribution

of our work is on the integration of individual clas- sg_'_'_'_'_'_'ﬁ

sification and inference order selection, which amyatha found that book interesting

learned simultaneously. wi w2z w3 wA w5
(Step 2)

2 Guided Learning for Bidirectional

Labeling Then, suppose we are most confident for assigning

labels VBD and VBN tdound , in that order. We get

We first present an example of POS tagging to shdwo separated tagged spans as shown below.
the idea of bidirectional labeling. Then we present

) . . . VBD NN------3J
the inference algorithm and the learning algorithm. VBN VB-eeu1]
Agatha found that book interesting
2.1 An Example of POS tagging wl w2 w3 w4 w5
(Step 3)

Suppose that we have an input sentence

Agatha found that book interesting In the next step, suppose we are most confident for
wi w2 w3  ws w5 assigning label DT tjat  under the context of VBD

(Step 0) on the left and NN-JJ on the right side, as shown

If we scan from left to right, we may find it below (second most favorable action, not discussed

difficult to resolve the ambiguity of the label forN€re: is also displayed). After tagging, two sep-

that , which could be either DT (determiner), o@'at€d Spans merge into one, starting fitoand to

IN (preposition or subordinating conjunction) in thd"€resting
Penn Treebank. However, if we resolve the labels for VBD---DT---NN------3J
book andinteresting , it would be relatively easy to VBD---IN---NN------JJ
figure out the correct label famat . Agatha found that book interesting
- . . wil w2 w3 w4 wh
Now, we show how bidirectional inference works (Step 4)
on this sample. Suppose we use beam search with
width of 2, and we use a window of (-2, 2) for con- For the last step, we assign label NNPatatha ,
text features. which could be an out-of-vocabulary word, under the
For the first step, we enumerate hypotheses foontext of VBD-DT on the right.
each word. For examplégund could have a label NP VB oD T NNoeeeos1
VBN or VBD_. Suppose that at this point the most_ NNP—-VBD - {N---NNoem3J
favorable action, out of the candidate hypotheses,Agatha found that book interesting
the assignment of NN toook , according to the con- W1~ w2 (S"t": 5)W4 w5
text features defined on words. Then, we resolve the P

label for book first. We maintain the top two hy-  1hig simple example has shown the advantage of
potheses as shown below. Here, the second most{ggnting a flexible search strategy. However, it is
vorable label fobook is VB. still unclear how we maintain the hypotheses, how

NN we keep candidates and accepted labels and spans,
vB and how we employ dynamic programming. We will
Agatha found that book interesting h . in the f | definiti fth
wil W2 w3 wa W5 _answert ese q_uestl_onsmt e formal de inition of the
(Step 1) inference algorithm in the next section.
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2.2 Inference Algorithm Algorithm 1 Inference Algorithm

Terminology: Let the input sequence beR€duire: tokensequencer ---wy;
wiws - - w,. For each tokens;, we are expected R€AUIre: beam widths;
to assign a label;, € T, with T the label set. Require: weight vectorw;

A subsequence; - - - w; is called aspan and is 1: In!t!al!ze P, the set of accepteq spans;
denoted]i, j]. Each sparp considered by the al- 2: Initialize (), the queue of candidate spans;
gorithm is associated with one or mdrgpotheses 3: repeat ,
that is, sequences ovar having the same length as % SPaP < argmax,eq Ulp.5.T.A);

p. Part of the label sequence of each hypothesis ig UpdateP W'.th p ,;

used as a context for labeling tokens outside the spaf?i L_deateQ with p" andP;

p. For example, if a tri-gram model is adopted, we'’ until (Q = 0)
use the two labels on the left boundary and the two

labels on the right boundary of the hypothesis for I"?A'/hereU is the score of an action.
beling outside tokens. The left two labels are call
theleft interface, and the right two labels are calle
the right interface. Left and right interfaces have
only one label in case of spans of length one.

A pair s = (Liep, Irigne) With a left and a right
interface is called atate We partition the hypothe-
ses associated with sparinto sets compatible with U(h.A) = w - f(h.A), )
the same state. In practice, for spawe use a ma-

trix M, indexed by states, so thaf,(s), s = (lir, wheref(h.A) is the feature vector of actioh.A,
ILvignt), is the set of all hypotheses associated withwhich depends oh. Sy, andh.Sg.

In other words,
gﬂe score of an hypothesis is the sum of the score
of the most recent actioh. A and the scores of the
top hypotheses of the context states. The score of
an actionh. A is computed through a linear function
whose weight vector i/, as

that are compatible witlh.;; and /g . Algorithm : Algorithm 1 is the inference algorithm.
For a spam and a state, we denote the associatedye are given the input sequence and two parame-
top hypothesis as ters, beam widttB to determine the number of states
maintained for each span, and weight vestoused
s.T = argmax V (h), to compute the score of an action.
heM,(s)

We first initialize the seP of accepted spans with

whereV is the score of a hypothesis (defined in (1€ €MPty set. Then we initialize the quegeof

below). Similarly, we denote the top state foas  candidate spans with span ] for each tokenw;,
and for eacht € T assigned tav; we set

p.S = argmax V(s.T). .
s: Mp(s)#0 ) M[i,i]((t>t)) = {Z - t}?

Therefore, for each spgn we have a top hypothe-wherei — t represents the hypothesis consisting of
sisp.S.T, whose score is the highest among all the single action which assigns lalteb w;. This pro-
hypotheses for span vides the set of starting hypotheses.

Hypotheses are started and grown by means ofAs for the exampleAgatha found that book
labeling actions. For each hypothesisassociated interesting  in the previous subsection, we have
with a spanp we maintain its most recent labeling ® P =0
actionh.A, involving some token withip, as well o Q = {[1,1],[2,2],[3,3], [4,4],[5,5]}
as the states.S; andh.Sg that have been used asSuppose NN and VB are the two possible POS tags
context by such an action, if any. Note tiaf; and for w4 book. We have
h.Sg refer to spans that are subsequences. dive ° M[474](NN, NN) = {h441 = 4 — NN}
recursively compute the score bfas o My (VB,VB) = {ha2 =4 — VB}

The most recent action of hypothedig,; is to as-
V(h) =V (h.SL.T)+V(h.Sg.T)+ U(h.A), (1) sign NN tow,. According to Equation (2), the score
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of this actionU (h441.A) depends on the features deHere (NN,NN)5 — JJ represents the hypothesis
fined on the local context of action. For example, coming from the action of assigning JJ4@ under
the left context state of (NN,NN)VB,VB)5 — JJ
has a similar meanind.

We first compute the hypotheses resulting from all

ossible POS tag assignmentsdig under all possi-

—1
wherew™ represents the left word. It should b(gle state combinations of the neighboring spang]

noted that, for all the features depending on the . . .
. ) . . and[4,5]. Suppose the highest score action consists
neighboring tags, the value is always 0, since those .
; . L7 0N the assignment of DT under the left context state
tags are still unknown in the step of initialization

i ; ; VBD, VBD) and the right context state (NN-JJ, NN-
Since this operation does not depend on solved ta ﬁ) We obtain hypothesiss, — (VBD.VBD)3 —
we haveV (hyq1) = U(ha11.A), according to Equa- ~' yp 51 = ,

tion (1) DT(NN-JJ, NN-JJ with

| C'll'he core off the algo(rjithm repeated(ljy selec;tjs acap(p,;,) = V((VBD,VBD).T)+

idate span frond), and uses it to update and @), ) i

until a span covering the whole sequence is added to VINN-JINN-JJ.T) + U (h51.4)
P andQ becomes empty. This is explained in detail = Vihao1) + V(has1) + w - £(ha51.4)

be'lftw' hst ; th , h Here, features for actiohos;.4 may depend on
h t;ac Step, Wehremor\]/e .ro@ € spfa.rp Such the left tag VBD and right tags NN-JJ, which have
that t gactlon (npt ypof[ esis) scqre ofits top YJeen solved before. More details of the feature func-
pothesisyp’.S.T, is the highest. This represents th

. . flons are given in Section 4.2. For example, we can
labeling action for the next move that we are most

confident about. Now we need to upddteand Rave features like
with the selected spapl. We addp’ to P, and re-
move from P the spans included ig’, if any. Let
S be the set of removed spans. We remove fi@m
each span which takes one of the spans§ &s con-
text, and replace it with a new candidate span taki

1 ift=NNAw"! = that
0 otherwise

fr001(haa1.A) = {

1 ift=DTAtT?=0]
0 otherwise

f2002(hos1.A) = {

We maintain the top two states with the highest
pothesis scores, if the beam width is set to two.

p’ (and another accepted span) as context. We alw. § have

maintainB different states for each span. ® Mps(VBD-DT,NN-J) - = {hos1 =
Back to the previous example, after Step 3 is com- (VBD,VBD)3 — DT(NN-JJ,NN-JJ)

pleted, ws found , w4 book and ws interesting ° M[275](VBD'IN’ NN-JJ) = {has2 =

have been tagged and we have _(\_/BD’VBD)S — IN(NN-JJ,NN-JJ}
o P={[2,2],[4,5]} Similarly, we compute the top hypotheses apd
o Q=1{[1,2],2,5] states for spaifl, 2]. Suppose now the hypothesis

There are two candidate spansgneach with its as- W/t the highesaction score ishas;. Then we up-

sociated hypotheses and most recent actions. M(gllaet_eP by adding2, 5] and removing2, 2] and[4, 5],
specifically, we can either solve, based on the con-WhICh are covered bz, 5]. We also update) by re-

text hypotheses fof2, 2], resulting in sparl, 2], or MOVing[2, 5] and[L, 2],? and add new candidate span
else solvew; based on the context hypotheses iff -] resulting in

[2,2] and[4, 5], resulting in sparf2, 5]. * = {[2,5]}
The top two states for spd, 2] are L—‘HL S}
o Mp o (VBD, VBD) = {hg2; =2 — VBD} LIt should be noted that, in these cases, each state con-
. M[2 2] (VBN, VBN) = {ha22 = 2 — VBN} tains only one hypothesis. However, if the span is longer than
h t two states for s 5] are 4 words, there may exist multiple hypotheses for the same
and the optwo s p{%h } state. For example, hypotheses DT-NN-VBD-DT-JJ and DT-
e My 5(NN-JJ, NN-JJ NN-VBN-DT-JJ have the same left interface DT-NN and right
= {h451 = (NN,NN)5 N JJ} interface DT-JJ.

2span(1, 2] depends on2, 2] and[2, 2] has been removed
® M[4,5] (VB"]‘]’ VB"J‘) from P. So it is no longer a valid candidate given the accepted
= {h452 = (VB,VB)5 — JJ} spans inP.
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The algorithm is especially designed in such a wadgorithm 2 Guided Learning Algorithm
that, at each step, some new span is addell @ Require: training sequence pai{$X,,Y;)} 1< <g;
else some spans already presenfirare extended Require: beam widthB and iterationd’;
by some token(s). Furthermore, no pair of overlap41: w « 0;
ping spans is ever found i, and the number of 2: for (i «— 1;4 < I; i++) do
pairs of overlapping spans that may be foundjirs ~ 3:  for (r «— 1;r < R; r++) do

always bounded by a constant. This means that the Load sequencg, and gold labeling..
algorithm performs at most iterations, and its run- s: Initialize P, the set of accepted spans
ning time is therefore(B2n), that is, linear in the &: Initialize @, the queue of candidate spans;
length of the input sequence. 7 repeat
_ _ 8: p' « argmax,cq U(p.S.T.A);

2.3 Learning Algorithm 9: if (p/.S.T = p'.G) then
In this section, we proposguided learning a Per- 10: UpdateP with p';
ceptron like algorithm, to learn the weight vector 11 Updateq) with p" and P;
as shown in Algorithm 2. We usé.G to represent 12: else
the gold standard hypothesis on spén 13: promote(w,f(p'.G.A));

For each input sequencé, and the gold standard 14 demote(w, £(p/.5.T.A));
sequence of labeling;., we first initialize P andQ 1% Re-generat€) with w and P;
as in the inference algorithm. Then we select th¥: end if
span for the next move as in Algorithm 1.4£5.7, 17 until (Q = 0)

the top hypothesis of the selected spanis com- 18 end for
patible with the gold standard, we upddteand 19: €nd for
as in Algorithm 1. Otherwise, we update the weight

vector in the Perceptron style, by promoting the fe@-Towever, we do not automatically adopt the gold

tures of the gold standard action, and demoting tg\ngard action on this span. Instead, in the next
features of the action of th_e top hypothesis. The:ﬁep, the top hypothesis of another span might be se-
we re-generate the quedewith P and the updated |ected based on the score of action, which means that

weight vectorw. Specifically, we first remove all thejt phecomes the most favorable action according to the
elements i, and then generate hypotheses for gllyqated weights.

the possible spans based on the context spais in - Aq 5 second aspect, if the action score of a gold
Hypothesis scores and action scores are calculatggdngard hypothesis is higher than that of any oth-
with the updated weight vectov. ers, this hypothesis and the corresponding span are

A special aspect of Algorithm 2 is that we mainyyaranteed to be selected at line 8 of Algorithm 2.
tain two scores: the score of the action represents tfige reason for this is that the scores of the context
confidence for the next move, and the score of ”Ffi/potheses of a gold standard hypothesis must be
hypothesis represents the overall quality of a partigh |ess than those of other hypotheses of the same
result. The selection for the next action directly despan. This could be shown recursively with respect
pends on the score of the action, but not on the scqgeEquation 1, because the context hypotheses of a
of the hypothesis. On the other hand, the score of thg|d standard hypothesis are also compatible with
hypothesis is used to maintain top partial results fgxe gold standard.
each span. Furthermore, if we take

We briefly describe the soundness of the Guided
Learning Algorithm in terms of two aspects. First, (xi = f(p".G.A) — f(p'.S.T.A),y; = +1)
in Algorithm 2 weight update is activated whenever .
there exists an incorrect statethe action score of 25 2 positive sample, and
whose top hypothesisT'is higher than that of any (. — £(;/ S.7.4) — £(/.G.A), y; = 1)
state in each span. We demote this action and pro-
mote the gold standard action on the same spas. a negative sample, the weight updates at lines 13

764




and 14 are a stochastic approximation of gradient de- ~ [_Data Set] Sections| Sentenceg Tokens ]|

inimi e Training 0-18 38,219 | 912,344
scent that minimizes the squared errors of the mis Develop 65T 527 —T3L7EE

classified samples (Widrow and Hoff, 1960). What Test 2204 5462 | 129,654
is special with our learning algorithm is the strategy
used to select samples for training.

N In general, f[hlsanlovel _Iearnlr:jg fr_arfnework I'?SI bet'he mechanism of bidirectional search with an on-
TWeen supervised ‘earning and reinforcement feaigl, learning algorithm has not been investigated be-
ing. Guided learning is more difficult than supez}e In (Dauné Il and Marcu, 2005), as well

Table 1: Data set splits

vised learning, because we do not know the order other similar works (Collins, 2002; Collins and

inference. The order is learned automatically, a bark, 2004; Shen and Joshi, 2005), only left-to-
partial output is in turn used to train the local clas-

sifier. Therefore, the order of inference and the Icgl-ght search was employed. Our guided learning al-

| classificati q icallV tedin th orithm provides more flexibility in search with an
cal classiiication are dynamicaily incorporated in utomatically learned order. In addition, our treat-
learning phase.

ment of the score of action and the score of hypoth-

Gu_ided learning is not as _hard as reinforcemeggis is unique (see discussion in Section 2.3).
learning. At each local step in learning, we always Furthermore, compared to the above works, our

know the undesirable labeling actions according to

> gquided learning algorithm is more aggressive on
the gold standard, although we do not know Whlcﬂearning In ((?ollir?s and Roark 20039 Shen and
is the most desirable. In this approach, we can e ' ’ ’

. . . ?]%Shl, 2005), a search stops if there is no hypothe-
ily collect the automatically generated negative sam- . : :
. ; . Sis compatible with the gold standard in the queue
ples, and use them in learning. These negative sam- . !
) LD of candidates. In (Daualll and Marcu, 2005), the

ples are exactly those we will face during inference :
. . Search is resumed after some gold standard compat-

with the current weight vector. . . _
ible hypotheses are inserted into a queue for future

in our experiments, we have Used Averaged Pef ansion, and the weights are updated correspond-
ceptron (Collins, 2002; Freund and Schapire, 199§§<p ’ 9 p p

) ) , ly. H , th [ hat th -
and Perceptron with margin (Krauth andéekard, gy. HOwever t_ere 'S no guarantee that t. € up
: dated weights assign a higher score to those inserted
1987) to improve performance.

gold standard compatible hypotheses. In our algo-
3 Related Works rithm, the gpld standard compatible hypotheses are
used for weight update only. As a result, after each
Tsuruoka and Tsujii (2005) proposed a bidirectiongkentence is processed, the weight vector can usually
POS tagger, in which the order of inference is hasuccessfully predict the gold standard parse. There-
dled with the easiest-first heuristic. Gémez and fore our learning algorithm iaggressiveon weight
Marquez (2004) combined the results of a left-taspdate.
right scan and a right-to-left scan. In our model, the As far as this aspect is concerned, our algorithm
order of inference is dynamically incorporated intgs similar to the MIRA algorithm in (Crammer and
the training of the local classifier. Singer, 2003). In MIRA, one always knows the cor-
Toutanova et al. (2003) reported a POS tagge#ct hypothesis. In our case, we do not know the
based on cyclic dependency network. In their workorrect order of operations. So we use our form of
the order of inference is fixed as from left to right. Inveight update to implement aggressive learning.
this approach, large beam width is required to main-
tain the ambiguous hypotheses. In our approach, #e Experiments on POS Tagging
can handle tokens that we are most confident about
first, so that our system does not need a large beafn:
As shown in Section 4.2, even deterministic infeie apply our guided learning algorithm to POS tag-
ence shows rather good results. ging. We carry out experiments on the standard
Our guided learning can be modeled as a seardata set of the Penn Treebank (PTB) (Marcus et al.,
algorithm with Perceptron like learning (Daéntll  1994). Following (Ratnaparkhi, 1996; Collins, 2002;
and Marcu, 2005). However, as far as we knowputanova et al., 2003; Tsuruoka and Tsujii, 2005),
765
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[ Feature Set§ Templates [ Error% |

A Ratnaparkhi’s 3.05

B A+ Tto, t1], [to, t—1, 1], [to, t1, t2] 2.92

C B + [to,t-2], [to, 2], [to, t—2, wo], [to, t—1, wo], [to, t1,wo], | 2.84
[to, t27 ’LUO], [t07 t—Q, t—17 ’LUO], [t07 t—17 tlv UJO], [to, t17 t27 U)O]

D C+ [to,wfl,w()], [to,wl,wo} 2.78

E D + [to, X = prefix or suffix ofw,],4 < [X] <9 2.72

Table 2: Experiments on trdevelopmendata with beam width of 3
we cut the PTB into the training, development and [ Search] Aggressive?] Beam=1] Beam=3|

test sets as shown in Table 1. We use tools provided | o% | Y& ELE
by CoNLL-20052 to extract POS tags from tharg Bi-Dir Yes 584 577
files of PTB. So the data set is the same as previous | Bi-Dir No does not converge

work. We use the development set to select featuresTable 3: Experiments on thdevelopmendata
and estimate the number of iterations in training. In

our experiments, we enumerate all the POS tags for ] ) )
each word instead of using a dictionary as in (Ratngearch methods, learning strategies, and beam width.

parkhi, 1996), since the size of the tag set is tractapfle use feature set E for this set of experiments. Ta-
and our learning algorithm is efficient enough. ble 3 shows the error rates on the development data

set with both left-to-right (L-to-R) and bidirectional
4.2 Results (Bi-Dir) search methods. We also tested both aggres-

. . sive learning and non-aggressive learning strategies
Effect of Features We first run the experiments toWith beam width of 1 and 3.

evaluate the effect of features. We use templates Ot with non-aggressive leamning on bidirec-
define featu_r es. For this set of experiments, we $nal search, the error rate does not converge to a
the beam widthB = 3 as a balance between spee?

nd ) Th ided learning alaorithm | omparable number. This is due to the fact that the
andaccuracy. 'he guided fearning algoriinm Ustalgy 5 ., space is too large in bidirectional search, if
converges on the development data set in 4-8 ite

. - We do not use aggressive learning to constrain the
tions over the training data.

Table 2 sh h he devel samples for learning.
able 2 shows the error rate on the deve OlomentWith aggressive learning, the bidirectional ap-

setwith dlffere_nt features. W? first use th.e same fe roach always shows advantages over left-to-right
ture set used in (Ratnaparkhi, 1996), which includ Sarch. However. the gap is not large. This is

a set of pr_eflx, suffix a_nd lexical features, as we ue to the fact that the accuracy of POS tagging
as some bi-gram and tri-gram context features. F(? “very high. As a result, we can always keep the

lowing (Collins, 2002), we do not distinguish raregold-standard tags in the beam even with left-to-right

words. On set A, Ratnaparkhi’s feature set, our sy aarch in training

tem reports an error rate of 3.05% on the develop- . .1 also explain why the performance of left-

ment data set. to-right search with non-aggressive learning is close

W'th set B, we |r_\clude a feyv feature template:[:b bidirectional search if the beam is large enough.
which are symmetric to those in Ratnaparkhi’s sqlowever with beam width = 1 non-aggressive

but are only available with bidirectional search. Wiﬂlbarning over left-to-right search performs much

set C, we add more bi-gram and tri-gram featuregy, <o ‘hecause in this case it is more likely that the
With set D, we include bi-lexical features. With Se&old—standard tag is not in the beam

E, we use prefixes and suffixes of length up_t_p 9, as NThis set of experiments show that guided learn-
(Toutanova et al., 2003; Tsuruoka and Tsujii, 2005|)ng is more preferable for tasks with higher ambi-

We obtain 2.72% of error rate. We will use this fea@uities In our recent work (Shen and Joshi, 2007)
ture set on our final experlments on th'e testdata. |, o pave applied a variant of this algorithm to depen-
Effect of Search and_ Learning Strategies For the dency parsing, and showed significant improvement
second set of experiments, we evaluate the effect of,, left-to-right non-aggressive learning strategy.
*http://www.lsi.upc.es/"sriconll/soft.html, package srlconllpompar!son: Table 4 shows the comparison with
1.1.tgz. the previous works on the PTB test sections.
p
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System | Beam [ Error% | References

(Ratnaparkhi, 1996) 5 3.37 . , .
(Tsuruoka and Tsujii, 2005) 1 590 L. Bottou. 1991. Une approche thorique de l'apprentissage
(Collins, 2002) - 589 connexionniste: Appl!catlgrvs la reconnaissance de la pa-
Guided Learning, feature B 3 585 role. Ph.D. thesis, Univergtde Paris XI.

(Tsuruoka and Tsujii, 2005) | all 2.85 M. Collins and B. Roark. 2004. Incremental parsing with the
(Gimenez and Mirquez, 2004) - 2.84 perceptron algorithm. 1ACL-2004
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