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Abstract

Unsupervised learning of linguistic structure
is a difficult problem. A common approach
is to define a generative model and max-
imize the probability of the hidden struc-
ture given the observed data. Typically,
this is done using maximum-likelihood es-
timation (MLE) of the model parameters.
We show using part-of-speech tagging that
a fully Bayesian approach can greatly im-
prove performance. Rather than estimating
a single set of parameters, the Bayesian ap-
proach integrates over all possible parame-
ter values. This difference ensures that the
learned structure will have high probability
over arange of possible parameters, and per-
mits the use of priors favoring the sparse
distributions that are typical of natural lan-
guage. Our model has the structure of a
standard trigram HMM, yet its accuracy is
closer to that of a state-of-the-art discrimi-
native model (Smith and Eisner, 2005), up
to 14 percentage points better than MLE. We
find improvements both when training from
data alone, and using a tagging dictionary.
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Eisner, 2005). Nearly all of these approaches have
one aspect in common: the goal of learning is to
identify the set of model parameters that maximizes
some objective function. Values for the hidden vari-
ables in the model are then chosen based on the
learned parameterization. Here, we propose a dif-
ferent approach based on Bayesian statistical prin-
ciples: rather than searching for an optimal set of
parameter values, we seek to directly maximize the
probability of the hidden variables given the ob-
served data, integrating over all possible parame-
ter values. Using part-of-speech (POS) tagging as
an example application, we show that the Bayesian
approach provides large performance improvements
over maximume-likelihood estimation (MLE) for the
same model structure. Two factors can explain the
improvement. First, integrating over parameter val-
ues leads to greater robustness in the choice of tag
sequence, since it must have high probability over
a range of parameters. Second, integration permits
the use of priors favoring sparse distributions, which
are typical of natural language. These kinds of pri-
ors can lead to degenerate solutions if the parameters
are estimated directly.

Before describing our approach in more detalil,
we briefly review previous work on unsupervised
POS tagging. Perhaps the most well-known is that

Unsupervised learning of linguistic structure is a dif°f Merialdo (1994), who used MLE to train a tri-
ficult problem. Recently, several new model-basefram hidden Markov model (HMM). More recent
approaches have improved performance on a vaMork has shown that improvements can be made
ety of tasks (Klein and Manning, 2002; Smith andPY modifying the basic HMM structure (Banko and
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Moore, 2004), using better smoothing techniques or
added constraints (Wang and Schuurmans, 2005), or
using a discriminative model rather than an HMM
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(Smith and Eisner, 2005). Non-model-based a2 A Bayesian HMM
proaches have also been proposed (Brill (1995); see —
also discussion in Banko and Moore (2004)). All o?'l Motivation
this work is really POSlisambiguation: learning is In model-based approaches to unsupervised lan-
strongly constrained by a dictionary listing the al-guage learning, the problem is formulated in terms
lowable tags for each word in the text. Smith an®f identifying latent structure from data. We de-
Eisner (2005) also present results using a dilutedne @ model with parametefs some observed vari-
dictionary, where infrequent words may have angblesw (the linguistic input), and some latent vari-
tag. Haghighi and Klein (2006) use a small list ofablest (the hidden structure). The goal is to as-
labeled prototypes and no dictionary. sign appropriate values to the latent variables. Stan-
A different tradition treats the identification of dard approaches do so by selecting values for the
syntactic classes as a knowledge-free clusterinjodel parameters, and then choosing the most prob-
problem.  Distributional clustering and dimen-able variable assignment based on those parame-
sionality reduction techniques are typically applieders. For example, maximum-likelihood estimation
when linguistically meaningful classes are desireMLE) seeks parametefssuch that
(Schutze, 1995; Clark, 2000; Finch et al., 1995); R
probabilistic models have been used to find classes 0= arggnaXP (w]0), (1)
that can improve smoothing and reduce perplexity
(Brown et al., 1992; Saul and Pereira, 1997). Unforwhere P(w|0) = >, P(w,t|¢). Sometimes, a
tunately, due to a lack of standard and informativé&@on-uniform prior distribution ove# is introduced,
evaluation techniques, it is difficult to compare thén which casé) is themaximum a posteriori (MAP)
effectiveness of different clustering methods. solution foro:
In this paper, we hope to unify the problems of .
POS disambiguation and syntactic clustering by pre- 0= arg nax P(w|0)P(6). (2)
senting results for conditions ranging from a full tag
dictionary to no dictionary at all. We introduce theThe values of the latent variables are then taken to
use of a new information-theoretic criteriovaria- D€ those that maximiz® (t|w, ).
tion of information (Meila, 2002), which can be used  In contrast, the Bayesian approach we advocate in
to compare a gold standard clustering to the C|u§hiS paper seeks to identify a distribution over latent
tering induced from a tagger’s output, regardless ofariables directly, without ever fixing particular val-
the cluster labels. We also evaluate using tag at€s for the model parameters. The distribution over
curacy when possible. Our system outperforms datent variables given the observed data is obtained
HMM trained with MLE on both metrics in all cir- PY integrating over all possible values tf
cumstances tested, often by a wide margin. Its ac-
curacy in some cases is close to that of Smith and  P(t|w) = /P(tlw,ﬂ)P(le)dO. (3)
Eisner's (2005) discriminative model. Our results
show that the Bayesian approach is particularly usdhis distribution can be used in various ways, in-
ful when learning is less constrained, either becaus#uding choosing the MAP assignment to the latent
less evidence is available (corpus size is small) arariables, or estimating expected values for them.
because the dictionary contains less information.  To see why integrating over possible parameter
In the following section, we discuss the motiva-values can be useful when inducing latent structure,
tion for a Bayesian approach and present our modebnsider the following example. We are given a
and search procedure. Section 3 gives results illusein, which may be biased & 1) or fair (t = 0),
trating how the parameters of the prior affect reeach with probability .5. Lef be the probability of
sults, and Section 4 describes how to infer a gooldeads. If the coin is biased, we assume a uniform
choice of parameters from unlabeled data. Sectiondistribution over, otherwisef = .5. We observe
presents results for a range of corpus sizes and digr, the outcomes of0 coin flips, and we wish to de-
tionary information, and Section 6 concludes. termine whether the coin is biased (i.e. the value of
745



t). Assume that we have a uniform prior 6nwith @
p(0) = 1forall 8 € [0,1]. First, we apply the stan-
dard methodology of finding the MAP estimate for
# and then selecting the value bthat maximizes ‘ : -
P(tlw,d). In this case, an elementary calculatior 0 01 02 03 04 05 06 07 08 08 1
shows that the MAP estimate fs= ny /10, where ® 1
ny is the number of heads iw (likewise, ny is
the number of tails). Consequenty(t|w, §) favors
t = 1 for any sequence that does not contain exact .
five heads, and assigns equal probabilityt te- 1 0
andt = 0 for any sequence that does contain exactly
five heads — a counterintuitive result. In contrastFigure 1: The Bayesian approach to estimating the
using some standard results in Bayesian analysis wWelue of a latent variable, from observed datay,
can show that applying Equation 3 yields chooses a value afrobust to uncertainty i. (a)

Posterior distribution o givenw. (b) Probability

Pl = 1fw) = 1/ <1 N '11!' > (4) thatt =1givenw andf as a function of.
TLH.TLT.210

W = HHTHTTHHTH
— — — W= HHTHHHTHHH -

P(B[w)

‘ ‘ ‘
—— w = HHTHTTHHTH -
— — — W =HHTHHHTHHH - \

1|w,8)

0.5

P(t

which is significantly less than .5 when; = 5, and preferred; and whe@ < 1, high probability is as-
only favorst = 1 for sequences wheney > 8 or  Signed to sparse multinomials, where one or more
ng < 2. This intuitively sensible prediction results Parameters are at or near 0.

from the fact that the Bayesian approach is sensitive Typically, linguistic structures are characterized
to the robustness of a choice oft to the value oy, by sparse distributions (e.g., POS tags are followed
as illustrated in Figure 1. Even though a sequend#ith high probability by only a few other tags, and
with ny = 6 yields a MAP estimate of = 0.6 have highly skewed output distributions). Conse-
(Figure 1 (a)),P(t = 1|w,0) is only greater than guently, it makes sense to use a Dirichlet prior with
0.5 for a small range of aroundé (Figure 1 (b)), B < 1. However, as noted by Johnson et al. (2007),
meaning that the choice 6f= 1 is not very robust to this choice ofg leads to difficulties with MAP esti-

variation ind. In contrast, a sequence with; = 8 mation. For a sequence of draws= (1, ...,z5)
favorst = 1 for a wide range of) aroundé_ By from a multinomial distributionf with observed
integrating ovep, Equation 3 takes into account theCOUNtS~y, ..., ng, & symmetric DirichIet@J)rﬁprlior
consequences of possible variatiordin over § yields the MAP estimat®, = 7.

Another advantage of integrating ovéris that When§ > 1, standard MLE techniques such as
it permits the use of linguistically appropriate pri-EM can be used to find the MAP estimate simply
ors. In many linguistic models, including HMMs, by adding “pseudocounts” of sizé— 1 to each of

the distributions over variables are multinomial. Foth€ expected counts;, at each iteration. However,
a multinomial with parameter = (6;,...,0x), a Whenj3 < 1, the values of) that set one or more

natural choice of prior is th& -dimensional Dirich- ©f the 6, equal to 0 can have infinitely high poste-
let distribution, which is conjugate to the multino-fior probability, meaning that MAP estimation can
miall For simplicity, we initially assume that all yield degenerate solutions. If, instead of estimating

K parameters (a|so known ayperpararneters) of 9, we integrate over all pOSSible ValueS, we no |0nger
the Dirichlet distribution are equal t@, i.e. the €encounter such difficulties. Instead, the probability

Dirichlet is symmetric. The value of3 determines that outcomer; takes valuek given previous out-

which parameterg will have high probability: when €omesx_; = (z1,...,xi-1) is
6 =1, all parameter values are equally likely; when
B > 1, multinomials that are closer to uniform are  P(k|x_;,8) = /P(k‘llg)P(@IX—z,ﬁ) do
LA prior is conjugate to a distribution if the posterior has the B ng + 5 5
same form as the prior. i1+ Kp3 ()
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whereny, is the number of times occurred inx_;. 2.3 Inference

See MacKay and Peto (1995) for a derivation. 14 perform inference in our model, we use Gibbs

sampling (Geman and Geman, 1984), a stochastic
procedure that produces samples from the posterior
Our model has the structure of a standard trigra'ﬁistributionP(t\w,a,ﬁ) x P(w|t, 3)P(t|a). We
HMM, with the addition of symmetric Dirichlet pri- jnitialize the tags at random, then iteratively resam-
ors over the transition and output distributions:  pje each tag according to its conditional distribution
) (1) given the current values of all other tags. Exchange-
tiltion =t tig =17 ~ Mult(m") ability allows us to treat the current counts of the
wilt; = t,w® ~ Mult(w®) other tag trigrams and outputs as “previous” obser-
T(t’tl)‘OA ~ Dirichlet() vations. The only _complication is that resampling
) N a tag changes the identity _of_three trlgram_s at once,
w®| ~ Dirichlet(3)  and we must account for this in computing its condi-

tional distribution. The sampling distribution foy
wheret; andw; are theith tag and word. We assumeiq given in Figure 2.

that sentence boundaries are marked with a distin- |, gayesian statistical inference, multiple samples
guished tag. For a model with possible tags, each
of the transition distributions(*) hasT compo-
nents, and each of the output distributian® has
W, components, wher&/; is the number of word

2.2 Model Definition

from the posterior are often used in order to obtain
statistics such as the expected values of model vari-
ables. For POS tagging, estimates based on multi-
= ) ple samples might be useful if we were interested in,
types that are permissible outputs for tagVe will - ¢4 example, the probability that two words have the
user andw to refer to the entire transition and out-¢;me tag. However, computing such probabilities
put parameter sets. This model assumes that the os gl pairs of words does not necessarily lead to
prior over state transitions is the same for all hisz consistent clustering, and the result would be diffi-
tories, and the prior over output distributions is the, it to evaluate. Using a single sample makes stan-
same for all states. We relax the latter assumption ifi5rq evaluation methods possible, but yields sub-

Section 4. ] ) ) optimal results because the value for each tag is sam-
Under this model, Equation 5 gives us pled from a distribution, and some tags will be as-
e v+ signed low-probability values. Our solution is to
P(ti|t—;,a) = (-2 ti-1,ti) (6) treat the Gibbs sampler as a stochastic search pro-
Utizytia) T cedure with the goal of identifying the MAP tag se-
P(wilti, t_i w_;, B) = :(tiywi) +5 (7) Quence. This can be done u_sing te_mpering (ar_meal—
) + WupB ing), where a temperature gfis equivalent to rais-

ing the probabilities in the sampling distribution to
wheren, ¢, ,.t) andng, ., are the number of e nower off. As ¢ approaches 0, even a single

occurrences of the trigrant;—s, ti-1,%;) and the  gampje will provide a good MAP estimate.

tag-word pair(¢;, w;) in thei — 1 previously gener-

ated tags and words. Note that, by integrating o8 Fixed Hyperparameter Experiments

the parameters and w, we induce dependencies

between the variables in the model. The probabif-1 Method

ity of generating a particular trigram tag sequenc®ur initial experiments follow in the tradition begun

(likewise, output) depends on the number of timeby Merialdo (1994), using a tag dictionary to con-

that sequence (output) has been generated prestrain the possible parts of speech allowed for each

ously. Importantly, trigrams (and outputs) remairword. (This also fixedV;, the number of possible

exchangeable: the probability of a set of trigrams words for tagt.) The dictionary was constructed by

(outputs) is the same regardless of the order in whidrsting, for each word, all tags found for that word in

it was generated. The property of exchangeability ighe entire WSJ treebank. For the experiments in this

crucial to the inference algorithm we describe nextsection, we used a 24,000-word subset of the tree-
747



Ntw) T B Nt ntirt) T Nty it TLtice =ticn =t =tip1) + @
ne + Wi, Nty o) T L . Nty T Lt =tic1 = 1) + Ta

Nt tiirtive) TL(time =t = tiva, ticg = tig1) + I(tic1 =t = tip1 = tiy2) +
' Nt + L(tica = tisticy = tig1) + I(ticg =t = ti) + T

P(ti’t_i,w,a,ﬂ) X

Figure 2: Conditional distribution faf;. Here,t_; refers to the current values of all tags excepttfod(.)
is a function that takes on the value 1 when its argument é&dnd O otherwise, and all counts are with
respect to the tag trigrams and tag-word pairgtin;, w_;).

i 0 Value Value of 3

bank as our unlabeled training corpus. 54.5_/0 of the ofa | 001 003 oL 03 1 3 10
tokens in this corpus have at least two possible tags; 501 7850 857 861 860 862 865 866
with the average number of tags per token being 2.3. .003 | 855 855 858 86.6 86.7 86.786.8

: 01|853 855 856 859 864 864 86.2
We varied the values of the hyperparameterand . 859 858 861 862 866 868 864
(£ and evaluated overall tagging accuracy. Forcom- 1 |g52 850 852 851 849 855 84.9
parison with our Bayesian HMM (BHMM) in this 31844 844 846 844 845 857 853
and following sections, we also present results from 1.0} 83l 830 832 833 835 87 839
the Viterbi decoding of an HMM trained using MLE
by running EM to convergence (MLHMM). Where
direct comparison is possible, we list the scores r Result q 5 the 24k
ported by Smith and Eisner (2005) for their condiﬂ' esulls are averaged over 5 runs on the cor-

tional random field model trained using contrastive 1> ;N'th full tag|d|ct|t(;]nary;5 Standard deviations in
estimation (CRF/CES. most cases are less than .5.

For all experiments, we ran our Gibbs sampling

algorithm for 20,000 iterations over the entire datgy of the transition distributions, are stronger than
set._ The algorithm was initialized with a random tagna effects of3, which determines the probability
assignment and a temperature of 2, and the empef e output distributions. The optimal value of
ature was gradually decreased to .08. Since our ingo3 for  reflects the fact that the true transition
ference procedure is stochastic, our reported resulfgapility matrix for this corpus is indeed sparse.
are an average over 5 independent runs. As o grows larger, the model prefers more uniform
Results from our model for a range of hyperpatransition probabilities, which causes it to perform
rameters are presented in Table 1. With the begjorse. Although the true output distributions tend to
choice of hyperparameters: (= .003,3 = 1), we  pe sparse as well, the level of sparseness depends on
achieve average tagging accuracy of 86.8%. Thie tag (consider function words vs. content words
far surpasses the MLHMM performance of 74.5%jp, particular). Therefore, a value ¢f that accu-
and is closer to the 90.1% accuracy of CRF/CE opptely reflects the most probable output distributions
the same data set using oracle parameter selecti@gs some tags may be a poor choice for other tags.
The effects ofa, which determines the probabil- This |eads to the smaller effect of and suggests

that performance might be improved by selecting a

2Results of CRF/CE depend on the set of features used a ; ;
the contrast neighborhood. In all cases, we list the bes’escolaﬁlﬁeremﬂ for each tag, as we do in the next section.
reported for any contrast neighborhood using trigram (it n A final point worth noting is that even when

spelling) features. To ensure proper comparison, all carpo 5 - L : :

used in our experiments consist of the same randomizedfsets® = g =1l(e, thpf Dirichlet priors exert no influ-
sentences used by Smith and Eisner. Note that training sn s@&nce) the BHMM still performs much better than the
of contiguous sentences from the beginning of the treebank ¢ MLHMM. This result underscores the importance
sistently improves our results, often by 1-2 percentagetpar . . .

more. MLHMM scores show less difference between randomof integrating over model parameters: the BHMM
ized and contiguous corpora. identifies a sequence of tags that have high proba-
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bility over a range of parameter values, rather than Corpus size
choosing tags based on the single best set of para- Accuracy | 12k 24k 48k 96k
meters. The improved results of the BHMM demon- random | 64.8 64.6 64.6 64.6
strate that selecting a sequence that is robust to vari-  MLHMM | 71.3 745 76.7 78.3
ations in the parameters leads to better performance. ~ CRF/CE | 86.2 88.6 88.4 89.4
BHMM1 | 85.8 85.2 83.6 85.0
4 Hyperparameter Inference BHMM2 | 858 84.4 857 858
o< v 2 .6 2

In our initial experiments, we experimented with dif-
ferent fixed values of the hyperparameters and rel_- ble 2 P ; q q |
ported results based on their optimal values. Ho lable 2 Percentage of words tagged correctly

ever, choosing hyperparameters in this way is time? the various models on different sized corpora.

consuming at best and impossible at worst, if thergHM_MclR?:?gEBHMMZ use hyper?argmeger u:jfer-
is no gold standard available. Luckily, the Bayesiar?nce’ uses parameter selection based on an

approach allows us to automatically select value hlabeled development set. Standard deviatiens (

for the hyperparameters by treating them as addi®" the BHMM results fell below those shown for

tional variables in the model. We augment the modéﬁaCh corpus size.
with priors over the hyperparameters (here, we as-

sume an improper uniform prior), and use a sinpyer 5 random tag assignments). Hyperparameter
gle Metropolis-Hastings update (Gilks et al., 1996)nference leads to slightly lower scores than are ob-
to resample the value of each hyperparameter aftgfined by oracle hyperparameter selection, but both
each iteration of the Gibbs sampler. Informally, ta,ersjons of BHMM are still far superior to MLHMM
update the value of hyperparameterwe sample a for all corpus sizes. Not surprisingly, the advantages
proposed new value’ from a normal distribution  of BHMM are most pronounced on the smallest cor-
with 4 = o ando = .1a. The probability of ac- pys: the effects of parameter integration and sensible
cepting the new value depends on the ratio betwegjiiors are stronger when less evidence is available
P(t|w,a) andP(t|w, ') and aterm correcting for from the input. In the limit as corpus size goes to in-

the asymmetric proposal distribution. finity, the BHMM and MLHMM will make identical
Performing inference on the hyperparameters apyedictions.

lows us to relax the assumption that every tag has
the same prior on its output distribution. In the ex5.2 Varying dictionary knowledge

periments reported in the following section, we use?l ised | gL iti tal bl
two different versions of our model. The first ver- ' UNSUPENVISEd €aming, itis not always reasonable

sion (BHMM1) uses a single value gffor all word to assume that a large tag dictionary is available. To

classes (as above); the second version (BHMM (?termltr.]e the effects of retdu;:ed or qbserj[t dllctlo_na(rjy
uses a separat® for each tag class. information, we ran a set of experiments inspire

by those of Smith and Eisner (2005). First, we col-
5 Inferred Hyperparameter Experiments lapsed the set of 45 treebank tags onto a smaller set
_ . of 17 (the same set used by Smith and Eisner). We
5.1 Varying corpus size created a full tag dictionary for this set of tags from
In this set of experiments, we used the full tag dictiothe entire treebank, and also created several reduced
nary (as above), but performed inference on the hylictionaries. Each reduced dictionary contains the
perparameters. Following Smith and Eisner (2005Jag information only for words that appear at least
we trained on four different corpora, consisting ofl times in the training corpus (the 24k corpus, for
the first 12k, 24k, 48k, and 96k words of the WSJhese experiments). All other words are fully am-
corpus. For all corpora, the percentage of ambigiguous between all 17 classes. We ran tests with
ous tokens is 54%-55% and the average number df= 1,2, 3,5, 10, andoo (i.e., knowledge-free syn-
tags per token is 2.3. Table 2 shows results fdactic clustering).
the various models and a random baseline (averagedwith standard accuracy measures, it is difficult to
749



Value ofd

Accuracy 1 ) 3 5 10 o respect to the true tags than does MLHMM, and

random 696 567 5.0 452 386 BHMM2 performs the bestin all circumstances. The
MLHMM 832 70.6 655 59.0 5009 confusion matrices in Figure 3 provide a more intu-
CRFICE 90.4 77.0 717 " : - :
BHMML 860 164 710 643 580 itive picture of the very different sorts of clusterings
BHMM2 873 796 650 592 497 produced by MLHMM and BHMM2 when no tag
o< 2 8 6 3 14 dictionary is available. Similar differences hold to a
Rdom 265306 438 175 513729 lesser degree when a partial dictionary is provided.

MLHMM 113 251 300 341 389 650 With MLHMM, different tokens of the same word
BHMM1 1.09 244 282 319 347 430 type are usually assigned to the same cluster, but
SH<MM2 1:83 1.'538 Z_S’j 2.613? 2.6977 L.L1074 types are assigned to clusters mqre or less at ran-
Corpus stats dom, and all clusters have approximately the same
%ambig. | 49.0 613 663 709 758 100 number of types (542 on average, with a standard
tagsitoken | 19 44 55 68 83 17 yayiation of 174). The clusters found by BHMM2

) tend to be more coherent and more variable in size:
Table 3: Percentage of words tagged correctly and 1he 5 runs of BHMM?2. the average number of
variation of information between clusterings in- ’

. es per cluster ranged from 436 to 465 (i.e., to-
duced by th_e aSS|gr_1ed gnd goId_ s_tandaro_l tags'as {59 s of the same word are spread over fewer clus-
amount of mf_orr_natlon in the dictionary is varled.ters than in MLHMM), with a standard deviation
Standard dewanongﬂj for the BHMM results fell between 460 and 674. Determiners, prepositions,
below t_hose shown in each column. The percentagg, possessive marker, and various kinds of punc-
of ambiguous tokens and average number of tags per...

. tuation are mostly clustered coherently. Nouns are
token for each value af is also shown. spread over a few clusters, partly due to a distinction
found between common and proper nouns. Like-
evaluate the quality of a syntactic clustering whemvise, modal verbs and the copula are mostly sep-
no dictionary is used, since cluster names are intearated from other verbs. Errors are often sensible:
changeable. We therefore introduce another evaluadjectives and nouns are frequently confused, as are
tion measure for these experiments, a distance meterbs and adverbs.
ric on clusterings known agriation of information The kinds of results produced by BHMM1 and
(Meila, 2002). The variation of information (VI) be- BHMM2 are more similar to each other than to
tween two clusteringg’ (the gold standard) an@’ the results of MLHMM, but the differences are still
(the found clustering) of a set of data points is a surinformative. Recall that BHMML1 learns a single
of the amount of information lost in moving frodi  value for 3 that is used for all output distribu-
to C’, and the amount that must be gained. It is detions, while BHMM?2 learns separate hyperparame-
fined in terms of entropyl and mutual information ters for each cluster. This leads to different treat-
I.VI(C,C"Y=H(C)+H(C")—2I(C,C"). Even ments of difficult-to-classify low-frequency items.
when accuracy can be measured, VI may be more ilm BHMM1, these items tend to be spread evenly
formative: two different tag assignments may havemong all clusters, so that all clusters have simi-
the same accuracy but different VI with respect tdarly sparse output distributions. In BHMM2, the
the gold standard if therrorsin one assignment are system creates one or two clusters consisting en-
less consistent than those in the other. tirely of very infrequent items, where the priors on

Table 3 gives the results for this set of experithese clusters strongly prefer uniform outputs, and
ments. One or both versions of BHMM outperformall other clusters prefer extremely sparse outputs
MLHMM in terms of tag accuracy for all values of (and are more coherent than in BHMM1). This
d, although the differences are not as great as in eaxplains the difference in VI between the two sys-
lier experiments. The differences in VI are moregems, as well as the higher accuracy of BHMM1
striking, particularly as the amount of dictionary in-for ¢ > 3: the single3 discourages placing low-
formation is reduced. When ambiguity is greatedfrequency items in their own cluster, so they are
both versions of BHMM show less confusion withmore likely to be clustered with items that have sim-
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(a) BHMM2 (b) MLHMM
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Figure 3: Confusion matrices for the dictionary-free auistgs found by (a) BHMM2 and (b) MLHMM.

ilar transition probabilities. The problem of junk A. Clark. 2000. Inducing syntactic categories by contezt di
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