
Proceedings of the 45th Annual Meeting of the Association of Computational Linguistics, pages 704–711,
Prague, Czech Republic, June 2007. c©2007 Association for Computational Linguistics

Forest-to-String Statistical Translation Rules

Yang Liu , Yun Huang , Qun Liu and Shouxun Lin
Key Laboratory of Intelligent Information Processing

Institute of Computing Technology
Chinese Academy of Sciences

P.O. Box 2704, Beijing 100080, China
{yliu,huangyun,liuqun,sxlin}@ict.ac.cn

Abstract

In this paper, we propose forest-to-string
rules to enhance the expressive power of
tree-to-string translation models. A forest-
to-string rule is capable of capturing non-
syntactic phrase pairs by describing the cor-
respondence between multiple parse trees
and one string. To integrate these rules
into tree-to-string translation models, auxil-
iary rules are introduced to provide a gen-
eralization level. Experimental results show
that, on the NIST 2005 Chinese-English test
set, the tree-to-string model augmented with
forest-to-string rules achieves a relative im-
provement of 4.3% in terms of BLEU score
over the original model which allows tree-
to-string rules only.

1 Introduction

The past two years have witnessed the rapid de-
velopment of linguistically syntax-based translation
models (Quirk et al., 2005; Galley et al., 2006;
Marcu et al., 2006; Liu et al., 2006), which induce
tree-to-string translation rules from parallel texts
with linguistic annotations. They demonstrated very
promising results when compared with the state of
the art phrase-based system (Och and Ney, 2004)
in the NIST 2006 machine translation evaluation 1.
While Galley et al. (2006) and Marcu et al. (2006)
put emphasis on target language analysis, Quirk et
al. (2005) and Liu et al. (2006) show benefits from
modeling the syntax of source language.

1See http://www.nist.gov/speech/tests/mt/

One major problem with linguistically syntax-
based models, however, is that tree-to-string rules
fail to syntactify non-syntactic phrase pairs because
they require a syntax tree fragment over the phrase
to be syntactified. Here, we distinguish between syn-
tactic and non-syntactic phrase pairs. By “syntactic”
we mean that the phrase pair is subsumed by some
syntax tree fragment. The phrase pairs without trees
over them are non-syntactic. Marcu et al. (2006)
report that approximately 28% of bilingual phrases
are non-syntactic on their English-Chinese corpus.

We believe that it is important to make available
to syntax-based models all the bilingual phrases that
are typically available to phrase-based models. On
one hand, phrases have been proven to be a simple
and powerful mechanism for machine translation.
They excel at capturing translations of short idioms,
providing local re-ordering decisions, and incorpo-
rating context information straightforwardly. Chi-
ang (2005) shows significant improvement by keep-
ing the strengths of phrases while incorporating syn-
tax into statistical translation. On the other hand,
the performance of linguistically syntax-based mod-
els can be hindered by making use of only syntac-
tic phrase pairs. Studies reveal that linguistically
syntax-based models are sensitive to syntactic anal-
ysis (Quirk and Corston-Oliver, 2006), which is still
not reliable enough to handle real-world texts due to
limited size and domain of training data.

Various solutions are proposed to tackle the prob-
lem. Galley et al. (2004) handle non-constituent
phrasal translation by traversing the tree upwards
until reaches a node that subsumes the phrase.
Marcu et al. (2006) argue that this choice is inap-

704

propriate because large applicability contexts are re-
quired.

For a non-syntactic phrase pair, Marcu et al.
(2006) create a xRS rule headed by a pseudo, non-
syntactic nonterminal symbol that subsumes the
phrase and corresponding multi-headed syntactic
structure; and one sibling xRS rule that explains how
the non-syntactic nonterminal symbol can be com-
bined with other genuine nonterminals so as to ob-
tain genuine parse trees. The name of the pseudo
nonterminal is designed to reflect how the corre-
sponding rule can be fully realized. However, they
neglect alignment consistency when creating sibling
rules. In addition, it is hard for the naming mecha-
nism to deal with more complex phenomena.

Liu et al. (2006) treat bilingual phrases as lexi-
calized TATs (Tree-to-string Alignment Template).
A bilingual phrase can be used in decoding if the
source phrase is subsumed by the input parse tree.
Although this solution does help, only syntactic
bilingual phrases are available to the TAT-based
model. Moreover, it is problematic to combine
the translation probabilities of bilingual phrases and
TATs, which are estimated independently.

In this paper, we propose forest-to-string rules
which describe the correspondence between multi-
ple parse trees and a string. They can not only cap-
ture non-syntactic phrase pairs but also have the ca-
pability of generalization. To integrate these rules
into tree-to-string translation models, auxiliary rules
are introduced to provide a generalization level. As
there is no pseudo node or naming mechanism, the
integration of forest-to-string rules is flexible, rely-
ing only on their root nodes. The forest-to-string and
auxiliary rules enable tree-to-string models to derive
in a more general way, while the strengths of con-
ventional tree-to-string rules still remain.

2 Forest-to-String Translation Rules

We define a tree-to-string rule r as a triple 〈T̃ , S̃, Ã〉,
which describes the alignment Ã between a source
parse tree T̃ = T (fJ ′

1) and a target string S̃ = eI′
1 .

A source string fJ ′
1 , which is the sequence of leaf

nodes of T (fJ ′
1), consists of both terminals (source

words) and nonterminals (phrasal categories). A tar-
get string eI′

1 is also composed of both terminals
(target words) and nonterminals (placeholders). An

IP

NP

NN

��

VP

SB

�

VP

NP

NN

��

VV

��

PU

�

The gunman was killed by police .

Figure 1: An English sentence aligned with a Chi-
nese parse tree.

alignment Ã is defined as a subset of the Cartesian
product of source and target symbol positions:

Ã ⊆ {(j, i) : j = 1, . . . , J ′; i = 1, . . . , I ′}

A derivation θ = r1 ◦ r2 ◦ . . . ◦ rn is a left-
most composition of translation rules that explains
how a source parse tree T = T (fJ

1), a target sen-
tence S = eI

1, and the word alignment A are syn-
chronously generated. For example, Table 1 demon-
strates a derivation composed of only tree-to-string
rules for the 〈T, S,A〉 tuple in Figure 1 2.

As we mentioned before, tree-to-string rules can
not syntactify phrase pairs that are not subsumed
by any syntax tree fragments. For example, for the
phrase pair 〈“���”, “The gunman was”〉 in Fig-
ure 1, it is impossible to extract an equivalent tree-
to-string rule that subsumes the same phrase pair
because valid tree-to-string rules can not be multi-
headed.

To address this problem, we propose forest-to-
string rules3 to subsume the non-syntactic phrase
pairs. A forest-to-string rule r 4 is a triple 〈F̃ , S̃, Ã〉,
which describes the alignment Ã between K source
parse trees F̃ = T̃K

1 and a target string S̃. The
source string fJ ′

1 is therefore the sequence of leaf
nodes of F̃ .

Auxiliary rules are introduced to integrate forest-
to-string rules into tree-to-string translation models.
An auxiliary rule is a special unlexicalized tree-to-
string rule that allows multiple source nonterminals

2We use “X” to denote a nonterminal in the target string. If
there are more than one nonterminals, they are indexed.

3The term “forest” refers to an ordered and finite set of trees.
4We still use “r” to represent a forest-to-string rule to reduce

notational overhead.

705

No. Rule
(1) (IP (NP) (VP) (PU)) X1 X2 X3 1:1 2:2 3:3
(2) (NP (NN��)) The gunman 1:1 1:2
(3) (VP (SB�) (VP (NP (NN)) (VV��))) was killed by X 1:1 2:4 3:2
(4) (NN��) police 1:1
(5) (PU�) . 1:1

Table 1: A derivation composed of only tree-to-string rules for Figure 1.

No. Rule
(1) (IP (NP) (VP (SB) (VP)) (PU)) X1 X2 1:1 2:1 3:2 4:2
(2) (NP (NN��)) (SB�) The gunman was 1:1 1:2 2:3
(3) (VP (NP) (VV��)) (PU�) killed by X . 1:3 2:1 3:4
(4) (NP (NN��)) police 1:1

Table 2: A derivation composed of tree-to-string, forest-to-string, and auxiliary rules for Figure 1.

to correspond to one target nonterminal, suggesting
that the forest-to-string rules that are rooted at such
source nonterminals can be integrated.

For example, Table 2 shows a derivation com-
posed of tree-to-string, forest-to-string, and auxil-
iary rules for the 〈T, S,A〉 tuple in Figure 1. r1 is
an auxiliary rule, r2 and r3 are forest-to-string rules,
and r4 is a conventional tree-to-string rule.

Following Marcu et al. (2006), we define the
probability of a tuple 〈T, S,A〉 as the sum over all
derivations θi ∈ Θ that are consistent with the tuple,
c(Θ) = 〈T, S,A〉. The probability of each deriva-
tion θi is given by the product of the probabilities of
all the rules p(rj) in the derivation.

Pr(T, S,A) =
∑

θi∈Θ,c(Θ)=〈T,S,A〉

∏

rj∈θi

p(rj) (1)

3 Training

We obtain tree-to-string and forest-to-string rules
from word-aligned, source side parsed bilingual cor-
pus. The extraction algorithm is shown in Figure 2.
Note that T ′ denotes either a tree or a forest.

For each span, the 〈tree/forest, string, alignment〉
triples are identified first. If a triple is consistent with
the alignment, the skeleton of the triple is computed
then. A skeleton s is a rule satisfying the following:

1. s ∈ R(t), s is induced from t.

2. node(T (s)) ≥ 2, the tree/forest of s contains
two or more nodes.

3. ∀r ∈ R(t) ∧ node(T (r)) ≥ 2, T (s) ⊆ T (r),
the tree/forest of s is the subgraph of that of any
r containing two or more nodes.

1: Input: a source tree T = T (fJ
1), a target string

S = eI
1, and word alignment A between them

2: R := ∅
3: for u := 0 to J − 1 do
4: for v := 1 to J − u do
5: identify the triple set T corresponding to

span (v, v + u)
6: for each triple t = 〈T ′, S′, A′〉 ∈ T do
7: if 〈T ′, S′〉 is not consistent with A then
8: continue
9: end if

10: if u = 0 ∧ node(T ′) = 1 then
11: add t to R
12: add 〈root(T ′), “X”, 1:1〉 to R
13: else
14: compute the skeleton s of the triple t
15: register rules that are built on s using rules

extracted from the sub-triples of t:
R := R∪ build(s,R)

16: end if
17: end for
18: end for
19: end for
20: Output: rule set R

Figure 2: Rule extraction algorithm.

Given the skeleton and rules extracted from the
sub-triples, the rules for the triple can be acquired.

For example, the algorithm identifies the follow-
ing triple for span (1, 2) in Figure 1:
〈(NP (NN��)) (SB�),“The gunman was”, 1:1 1:2 2:3〉

The skeleton of the triple is:
〈(NP) (SB),“X1 X2”, 1:1 2:2〉

As the algorithm proceeds bottom-up, five rules
have already been extracted from the sub-triples,
rooted at “NP” and “SB” respectively:

〈(NP),“X”, 1:1〉
〈(NP (NN)),“X”, 1:1〉

〈(NP (NN��)),“The gunman”, 1:1 1:2〉
706

〈(SB),“X”, 1:1〉
〈(SB�),“was”, 1:1〉

Hence, we can obtain new rules by replacing the
source and target symbols of the skeleton with corre-
sponding rules and also by modifying the alignment
information. For the above triple, the combination
of the five rules produces 2× 3 = 6 new rules:

〈(NP) (SB),“X1 X2”, 1:1 2:2〉
〈(NP) (SB�),“X was”, 1:1 2:2〉

〈(NP (NN)) (SB),“X1 X2”, 1:1 2:2〉
〈(NP (NN)) (SB�),“X was”, 1:1 2:2〉

〈(NP (NN��)) (SB),“The gunman X”, 1:1 1:2〉
〈(NP (NN��)) (SB�),“The gunman was”, 1:1 1:2 2:3〉

Since we need only to check the alignment con-
sistency, in principle all phrase pairs can be captured
by tree-to-string and forest-to-string rules. To lower
the complexity for both training and decoding, we
impose four restrictions:

1. Both the first and the last symbols in the target
string must be aligned to some source symbols.

2. The height of a tree or forest is no greater than
h.

3. The number of direct descendants of a node is
no greater than c.

4. The number of leaf nodes is no greater than l.

Although possible, it is infeasible to learn aux-
iliary rules from training data. To extract an auxil-
iary rule which integrates at least one forest-to-string
rule, one need traverse the parse tree upwards until
one reaches a node that subsumes the entire forest
without violating the alignment consistency. This
usually results in very complex auxiliary rules, es-
pecially on real-world training data, making both
training and decoding very slow. As a result, we
construct auxiliary rules in decoding instead.

4 Decoding

Given a source parse tree T (fJ
1), our decoder finds

the target yield of the single best derivation that has
source yield of T (fJ

1):

Ŝ = argmax
S,A

Pr(T, S,A)

= argmax
S,A

∑

θi∈Θ,c(Θ)=〈T,S,A〉

∏

rj∈θi

p(rj)

1: Input: a source parse tree T = T (fJ
1)

2: for u := 0 to J − 1 do
3: for v := 1 to J − u do
4: for each T ′ spanning from v to v + u do
5: if T ′ is a tree then
6: for each usable tree-to-string rule r do
7: for each derivation θ inferred from r

and derivations in matrix do
8: add θ to matrix[v, v + u, root(T ′)]
9: end for

10: end for
11: search subcell divisions D[v, v + u]
12: for each subcell division d ∈ D[v, v + u] do
13: if d contains at least one forest cell then
14: construct auxiliary rule ra

15: for each derivation θ inferred from ra

and derivations in matrix do
16: add θ to matrix[v, v + u, root(T ′)]
17: end for
18: end if
19: end for
20: else
21: for each usable forest-to-string rule r do
22: for each derivation θ inferred from r

and derivations in matrix do
23: add θ to matrix[v, v + u, “”]
24: end for
25: end for
26: search subcell divisions D[v, v + u]
27: end if
28: end for
29: end for
30: end for
31: find the best derivation θ̂ in matrix[1, J, root(T)] and

get the best translation Ŝ = e(θ̂)

32: Output: a target string Ŝ

Figure 3: Decoding algorithm.

≈ argmax
S,A,θ

∏

rj∈θ,c(θ)=〈T,S,A〉
p(rj) (2)

Figure 3 demonstrates the decoding algorithm.
It organizes the derivations into an array matrix
whose cells matrix[j1, j2,X] are sets of derivations.
[j1, j2,X] represents a tree/forest rooted at X span-
ning from j1 to j2. We use the empty string “” to
denote the pseudo root of a forest.

Next, we will explain how to infer derivations for
a tree/forest provided a usable rule. If T (r) = T′,
there is only one derivation which contains only the
rule r. This usually happens for leaf nodes. If
T (r) ⊂ T ′, the rule r resorts to derivations from
subcells to infer new derivations. Suppose that the
decoder is to translate the source tree in Figure 1
and finds a usable rule for [1, 5, “IP”]:

〈(IP (NP) (VP) (PU)),“X1 X2 X3”, 1:1 2:2 3:3〉

707

Subcell Division Auxiliary Rule
[1, 1][2, 2][3, 5] (IP (NP) (VP (SB) (VP)) (PU)) X1 X2 X3 1:1 2:2 3:3 4:3
[1, 2][3, 4][5, 5] (IP (NP) (VP (SB) (VP)) (PU)) X1 X2 X3 1:1 2:1 3:2 4:3

[1, 3][4, 5] (IP (NP) (VP (SB) (VP (NP) (VV))) (PU)) X1 X2 1:1 2:1 3:1 4:2 5:2
[1, 1][2, 5] (IP (NP) (VP) (PU)) X1 X2 1:1 2:2 3:2

Table 3: Subcell divisions and corresponding auxiliary rules for the source tree in Figure 1

Since the decoding algorithm proceeds in a
bottom-up fashion, the uncovered portions have al-
ready been translated.

For [1, 1, “NP”], suppose that we can find a
derivation in matrix:

〈(NP (NN��)),“The gunman”, 1:1 1:2〉

For [2, 4, “VP”], we find a derivation in matrix:
〈(VP (SB�) (VP (NP (NN)) (VV��))),

“was killed by X”, 1:1 2:4 3:2〉
〈(NN��),“police”, 1:1〉

For [5, 5, “PU”], we find a derivation in matrix:
〈(PU�),“.”, 1:1〉

Henceforth, we get a derivation for [1, 5, “IP”],
shown in Table 1.

A translation rule r is said to be usable to an input
tree/forest T ′ if and only if:

1. T (r) ⊆ T ′, the tree/forest of r is the subgraph
of T ′.

2. root(T (r)) = root(T ′), the root sequence of
T (r) is identical to that of T ′.

For example, the following rules are usable to the
tree “(NP (NR��) (NN��))”:

〈(NP (NR) (NN)),“X1 X2”, 1:2 2:1〉
〈(NP (NR��) (NN)),“China X”, 1:1 2:2〉

〈(NP (NR��) (NN��)),“China economy”, 1:1 2:2〉

Similarly, the forest-to-string rule
〈((NP (NR) (NN)) (VP)),“X1 X2 X3”, 1:2 2:1 3:3〉

is usable to the forest
(NP (NR��) (NN��)) (VP (VV��)(NN��))

As we mentioned before, auxiliary rules are spe-
cial unlexicalized tree-to-string rules that are built in
decoding rather than learnt from real-world data. To
get an auxiliary rule for a cell, we need first identify
its subcell division.

A cell sequence c1, c2, . . . , cn is referred to as a
subcell division of a cell c if and only if:

1. c1.begin = c.begin

1: Input: a cell [j1, j2], the derivation array matrix,
the subcell division array D

2: if j1 = j2 then
3: p̂ := 0
4: for each derivation θ in matrix[j1, j2, ·] do
5: p̂ := max(p(θ), p̂)
6: end for
7: add {[j1, j2]} : p̂ to D[j1, j2]
8: else
9: if [j1, j2] is a forest cell then

10: p̂ := 0
11: for each derivation θ in matrix[j1, j2, ·] do
12: p̂ := max(p(θ), p̂)
13: end for
14: add {[j1, j2]} : p̂ to D[j1, j2]
15: end if
16: for j := j1 to j2 − 1 do
17: for each division d1 ∈ D[j1, j] do
18: for each division d2 ∈ D[j + 1, j2] do
19: create a new division: d := d1 ⊕ d2

20: add d to D[j1, j2]
21: end for
22: end for
23: end for
24: end if
25: Output: subcell divisions D[j1, j2]

Figure 4: Subcell division search algorithm.

2. cn.end = c.end

3. cj .end + 1 = cj+1.begin, 1 ≤ j < n

Given a subcell division, it is easy to construct the
auxiliary rule for a cell. For each subcell, one need
transverse the parse tree upwards until one reaches
nodes that subsume it. All descendants of these
nodes are dropped. The target string consists of only
nonterminals, the number of which is identical to
that of subcells. To limit the search space, we as-
sume that the alignment between the source tree and
the target string is monotone.

Table 3 shows some subcell divisions and corre-
sponding auxiliary rules constructed for the source
tree in Figure 1. For simplicity, we ignore the root
node label.

There are 2n−1 subcell divisions for a cell which
has a length of n. We need only consider the sub-

708

cell divisions which contain at least one forest cell
because tree-to-string rules have already explored
those contain only tree cells.

The actual search algorithm for subcell divisions
is shown in Figure 4. We use matrix[j1, j2, ·] to de-
note all trees or forests spanning from j1 to j2. The
subcell divisions and their associated probabilities
are stored in an array D. We define an operator ⊕
between two divisions: their cell sequences are con-
catenated and the probabilities are accumulated.

As sometimes there are no usable rules available,
we introduce default rules to ensure that we can al-
ways get a translation for any input parse tree. A de-
fault rule is a tree-to-string rule 5, built in two ways:

1. If the input tree contains only one node, the
target string of the default rule is equal to the
source string.

2. If the height of the input tree is greater than
one, the tree of the default rule contains only
the root node and its direct descendants of the
input tree, the string contains only nontermi-
nals, and the alignment is monotone.

To speed up the decoder, we limit the search space
by reducing the number of rules used for each cell.
There are two ways to limit the rule table size: by
a fixed limit a of how many rules are retrieved for
each cell, and by a probability threshold α that spec-
ify that the rule probability has to be above some
value. Also, instead of keeping the full list of deriva-
tions for a cell, we store a top-scoring subset of the
derivations. This can also be done by a fixed limit
b or a threshold β. The subcell division array D, in
which divisions containing forest cells have priority
over those composed of only tree cells, is pruned by
keeping only a-best divisions.

Following Och and Ney (2002), we base our
model on log-linear framework and adopt the seven
feature functions described in (Liu et al., 2006). It
is very important to balance the preference between
conventional tree-to-string rules and the newly-
introduced forest-to-string and auxiliary rules. As
the probabilities of auxiliary rules are not learnt
from training data, we add a feature that sums up the

5There are no default rules for forests because only tree-to-
string rules are essential to tree-to-string translation models.

node count of auxiliary rules of a derivation to pe-
nalize the use of forest-to-string and auxiliary rules.

5 Experiments

In this section, we report on experiments with
Chinese-to-English translation. The training corpus
consists of 31, 149 sentence pairs with 843, 256 Chi-
nese words and 949, 583 English words. For the
language model, we used SRI Language Modeling
Toolkit (Stolcke, 2002) to train a trigram model with
modified Kneser-Ney smoothing (Chen and Good-
man, 1998) on the 31, 149 English sentences. We
selected 571 short sentences from the 2002 NIST
MT Evaluation test set as our development corpus,
and used the 2005 NIST MT Evaluation test set as
our test corpus. Our evaluation metric is BLEU-4
(Papineni et al., 2002), as calculated by the script
mteval-v11b.pl with its default setting except that
we used case-sensitive matching of n-grams. To
perform minimum error rate training (Och, 2003)
to tune the feature weights to maximize the sys-
tem’s BLEU score on development set, we used the
script optimizeV5IBMBLEU.m (Venugopal and Vo-
gel, 2005).

We ran GIZA++ (Och and Ney, 2000) on the
training corpus in both directions using its default
setting, and then applied the refinement rule “diag-
and” described in (Koehn et al., 2003) to obtain a
single many-to-many word alignment for each sen-
tence pair. Next, we employed a Chinese parser
written by Deyi Xiong (Xiong et al., 2005) to parse
all the 31, 149 Chinese sentences. The parser was
trained on articles 1-270 of Penn Chinese Treebank
version 1.0 and achieved 79.4% in terms of F1 mea-
sure.

Given the word-aligned, source side parsed bilin-
gual corpus, we obtained bilingual phrases using the
training toolkits publicly released by Philipp Koehn
with its default setting. Then, we applied extrac-
tion algorithm described in Figure 2 to extract both
tree-to-string and forest-to-string rules by restricting
h = 3, c = 5, and l = 7. All the rules, including
bilingual phrases, tree-to-string rules, and forest-to-
string rules, are filtered for the development and test
sets.

According to different levels of lexicalization, we
divide translation rules into three categories:

709

Rule L P U Total

BP 251, 173 0 0 251, 173
TR 56, 983 41, 027 3, 529 101, 539
FR 16, 609 254, 346 25, 051 296, 006

Table 4: Number of rules used in experiments (BP:
bilingual phrase, TR: tree-to-string rule, FR: forest-
to-string rule; L: lexicalized, P: partial lexicalized,
U: unlexicalized).

System Rule Set BLEU4

Pharaoh BP 0.2182 ± 0.0089

BP 0.2059 ± 0.0083
TR 0.2302 ± 0.0089

Lynx
TR + BP 0.2346 ± 0.0088

TR + FR + AR 0.2402 ± 0.0087

Table 5: Comparison of Pharaoh and Lynx with dif-
ferent rule sets.

1. lexicalized: all symbols in both the source and
target strings are terminals

2. unlexicalized: all symbols in both the source
and target strings are nonterminals

3. partial lexicalized: otherwise

Table 4 shows the statistics of rules used in our ex-
periments. We find that even though forest-to-string
rules are introduced the total number (i.e. 73, 592)
of lexicalized tree-to-string and forest-to-string rules
is still far less than that (i.e. 251, 173) of bilingual
phrases. This difference results from the restriction
we impose in training that both the first and last sym-
bols in the target string must be aligned to some
source symbols. For the forest-to-string rules, par-
tial lexicalized ones are in the majority.

We compared our system Lynx against a freely
available phrase-based decoder Pharaoh (Koehn et
al., 2003). For Pharaoh, we set a = 20, α = 0,
b = 100, β = 10−5, and distortion limit dl = 4. For
Lynx, we set a = 20, α = 0, b = 100, and β = 0.
Two postprocessing procedures ran to improve the
outputs of both systems: OOVs removal and recapi-
talization.

Table 5 shows results on test set using Pharaoh
and Lynx with different rule sets. Note that Lynx
is capable of using only bilingual phrases plus de-

Forest-to-String Rule Set BLEU4

None 0.2225 ± 0.0085

L 0.2297 ± 0.0081
P 0.2279 ± 0.0083
U 0.2270 ± 0.0087

L + P + U 0.2312 ± 0.0082

Table 6: Effect of lexicalized, partial lexicalized,
and unlexicalized forest-to-string rules.

fault rules to perform monotone search. The 95%
confidence intervals were computed using Zhang’s
significance tester (Zhang et al., 2004). We mod-
ified it to conform to NIST’s current definition of
the BLEU brevity penalty. We find that Lynx out-
performs Pharaoh significantly. The integration of
forest-to-string rules achieves an absolute improve-
ment of 1.0% (4.3% relative) over using tree-to-
string rules only. This difference is statistically sig-
nificant (p < 0.01). It also achieves better result
than treating bilingual phrases as lexicalized tree-to-
string rules. To produce the best result of 0.2402,
Lynx made use of 26, 082 tree-to-string rules, 9, 219
default rules, 5, 432 forest-to-string rules, and 2, 919
auxiliary rules. This suggests that tree-to-string
rules still play a central role, although the integra-
tion of forest-to-string and auxiliary rules is really
beneficial.

Table 6 demonstrates the effect of forest-to-string
rules with different lexicalization levels. We set
a = 3, α = 0, b = 10, and β = 0. The second row
“None” shows the result of using only tree-to-string
rules. “L” denotes using tree-to-string rules and lex-
icalized forest-to-string rules. Similarly, “L+P+U”
denotes using tree-to-string rules and all forest-to-
string rules. We find that lexicalized forest-to-string
rules are more useful.

6 Conclusion

In this paper, we introduce forest-to-string rules to
capture non-syntactic phrase pairs that are usually
unaccessible to traditional tree-to-string translation
models. With the help of auxiliary rules, forest-to-
string rules can be integrated into tree-to-string mod-
els to offer more general derivations. Experiment re-
sults show that the tree-to-string model augmented
with forest-to-string rules significantly outperforms

710

the original model which allows tree-to-string rules
only.

Our current rule extraction algorithm attaches the
unaligned target words to the nearest ascendants that
subsume them. This constraint hampers the expres-
sive power of our model. We will try a more general
way as suggested in (Galley et al., 2006), making
no a priori assumption about assignment and using
EM training to learn the probability distribution. We
will also conduct experiments on large scale training
data to further examine our design philosophy.

Acknowledgement

This work was supported by National Natural Sci-
ence Foundation of China, Contract No. 60603095
and 60573188.

References

Stanley F. Chen and Joshua Goodman. 1998. An empir-
ical study of smoothing techniques for language mod-
eling. Technical report, Harvard University Center for
Research in Computing Technology.

David Chiang. 2005. A hierarchical phrase-based model
for statistical machine translation. In Proceedings
of ACL 2005, pages 263–270, Ann Arbor, Michigan,
June.

Michel Galley, Mark Hopkins, Kevin Knight, and Daniel
Marcu. 2004. What’s in a translation rule? In
Proceedings of HLT/NAACL 2004, pages 273–280,
Boston, Massachusetts, USA, May.

Michel Galley, Jonathan Graehl, Kevin Knight, Daniel
Marcu, Steve DeNeefe, Wei Wang, and Ignacio
Thayer. 2006. Scalable inference and training of
context-rich syntactic translation models. In Proceed-
ings of COLING/ACL 2006, pages 961–968, Sydney,
Australia, July.

Philipp Koehn, Franz Joseph Och, and Daniel Marcu.
2003. Statistical phrase-based translation. In Proceed-
ings of HLT/NAACL 2003, pages 127–133, Edmonton,
Canada, May.

Yang Liu, Qun Liu, and Shouxun Lin. 2006. Tree-to-
string alignment template for statistical machine trans-
lation. In Proceedings of COLING/ACL 2006, pages
609–616, Sydney, Australia, July.

Daniel Marcu, Wei Wang, Abdessamad Echihabi, and
Kevin Knight. 2006. Spmt: Statistical machine trans-
lation with syntactified target language phrases. In
Proceedings of EMNLP 2006, pages 44–52, Sydney,
Australia, July.

Franz J. Och and Hermann Ney. 2000. Improved statis-
tical alignment models. In Proceedings of ACL 2000,
pages 440–447.

Franz J. Och and Hermann Ney. 2002. Discriminative
training and maximum entropy models for statistical
machine translation. In Proceedings of ACL 2002,
pages 295–302.

Franz J. Och and Hermann Ney. 2004. The alignment
template approach to statistical machine translation.
Computational Linguistics, 30(4):417–449.

Franz J. Och. 2003. Minimum error rate training in sta-
tistical machine translation. In Proceedings of ACL
2003, pages 160–167.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic eval-
uation of machine translation. In Proceedings of ACL
2002, pages 311–318, Philadephia, USA, July.

Chris Quirk and Simon Corston-Oliver. 2006. The im-
pact of parse quality on syntactically-informed statis-
tical machine translation. In Proceedings of EMNLP
2006, pages 62–69, Sydney, Australia, July.

Chris Quirk, Arul Menezes, and Colin Cherry. 2005. De-
pendency treelet translation: Syntactically informed
phrasal SMT. In Proceedings of ACL 2005, pages
271–279, Ann Arbor, Michigan, June.

Andreas Stolcke. 2002. Srilm - an extensible lan-
guage modeling toolkit. In Proceedings of Interna-
tional Conference on Spoken Language Processing,
volume 30, pages 901–904.

Ashish Venugopal and Stephan Vogel. 2005. Consid-
erations in maximum mutual information and mini-
mum classification error training for statistical ma-
chine translation. In Proceedings of the Tenth Confer-
ence of the European Association for Machine Trans-
lation, pages 271–279.

Deyi Xiong, Shuanglong Li, Qun Liu, and Shouxun Lin.
2005. Parsing the penn chinese treebank with seman-
tic knowledge. In Proceedings of IJCNLP 2005, pages
70–81.

Ying Zhang, Stephan Vogel, and Alex Waibel. 2004. In-
terpreting bleu/nist scores how much improvement do
we need to have a better system? In Proceedings
of Fourth International Conference on Language Re-
sources and Evaluation, pages 2051–2054.

711

