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Abstract 

This paper addresses the issue of text nor-
malization, an important yet often over-
looked problem in natural language proc-
essing. By text normalization, we mean 
converting ‘informally inputted’ text into 
the canonical form, by eliminating ‘noises’ 
in the text and detecting paragraph and sen-
tence boundaries in the text. Previously, 
text normalization issues were often under-
taken in an ad-hoc fashion or studied sepa-
rately. This paper first gives a formaliza-
tion of the entire problem. It then proposes 
a unified tagging approach to perform the 
task using Conditional Random Fields 
(CRF). The paper shows that with the in-
troduction of a small set of tags, most of 
the text normalization tasks can be per-
formed within the approach. The accuracy 
of the proposed method is high, because 
the subtasks of normalization are interde-
pendent and should be performed together. 
Experimental results on email data cleaning 
show that the proposed method signifi-
cantly outperforms the approach of using 
cascaded models and that of employing in-
dependent models. 

1 Introduction 

More and more ‘informally inputted’ text data be-
comes available to natural language processing, 

such as raw text data in emails, newsgroups, fo-
rums, and blogs. Consequently, how to effectively 
process the data and make it suitable for natural 
language processing becomes a challenging issue. 
This is because informally inputted text data is 
usually very noisy and is not properly segmented. 
For example, it may contain extra line breaks, extra 
spaces, and extra punctuation marks; and it may 
contain words badly cased. Moreover, the bounda-
ries between paragraphs and the boundaries be-
tween sentences are not clear. 

We have examined 5,000 randomly collected 
emails and found that 98.4% of the emails contain 
noises (based on the definition in Section 5.1). 

In order to perform high quality natural lan-
guage processing, it is necessary to perform ‘nor-
malization’ on informally inputted data first, spe-
cifically, to remove extra line breaks, segment the 
text into paragraphs, add missing spaces and miss-
ing punctuation marks, eliminate extra spaces and 
extra punctuation marks, delete unnecessary tokens, 
correct misused punctuation marks, restore badly 
cased words, correct misspelled words, and iden-
tify sentence boundaries. 

Traditionally, text normalization is viewed as an 
engineering issue and is conducted in a more or 
less ad-hoc manner. For example, it is done by us-
ing rules or machine learning models at different 
levels. In natural language processing, several is-
sues of text normalization were studied, but were 
only done separately. 

This paper aims to conduct a thorough investiga-
tion on the issue. First, it gives a formalization of 
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the problem; specifically, it defines the subtasks of 
the problem. Next, it proposes a unified approach 
to the whole task on the basis of tagging. Specifi-
cally, it takes the problem as that of assigning tags 
to the input texts, with a tag representing deletion, 
preservation, or replacement of a token. As the 
tagging model, it employs Conditional Random 
Fields (CRF). The unified model can achieve better 
performances in text normalization, because the 
subtasks of text normalization are often interde-
pendent. Furthermore, there is no need to define 
specialized models and features to conduct differ-
ent types of cleaning; all the cleaning processes 
have been formalized and conducted as assign-
ments of the three types of tags. 

Experimental results indicate that our method 
significantly outperforms the methods using cas-
caded models or independent models on normali-
zation. Our experiments also indicate that with the 
use of the tags defined, we can conduct most of the 
text normalization in the unified framework. 

Our contributions in this paper include: (a) for-
malization of the text normalization problem, (b) 
proposal of a unified tagging approach, and (c) 
empirical verification of the effectiveness of the 
proposed approach. 

The rest of the paper is organized as follows. In 
Section 2, we introduce related work. In Section 3, 
we formalize the text normalization problem. In 
Section 4, we explain our approach to the problem 
and in Section 5 we give the experimental results. 
We conclude the paper in Section 6. 

2 Related Work 

Text normalization is usually viewed as an 
engineering issue and is addressed in an ad-hoc 
manner. Much of the previous work focuses on 
processing texts in clean form, not texts in 
informal form. Also, prior work mostly focuses on 
processing one type or a small number of types of 
errors, whereas this paper deals with many 
different types of errors. 

Clark (2003) has investigated the problem of 
preprocessing noisy texts for natural language 
processing. He proposes identifying token bounda-
ries and sentence boundaries, restoring cases of 
words, and correcting misspelled words by using a 
source channel model. 

Minkov et al. (2005) have investigated the prob-
lem of named entity recognition in informally in-

putted texts. They propose improving the perform-
ance of personal name recognition in emails using 
two machine-learning based methods: Conditional 
Random Fields and Perceptron for learning HMMs. 
See also (Carvalho and Cohen, 2004). 

Tang et al. (2005) propose a cascaded approach 
for email data cleaning by employing Support Vec-
tor Machines and rules. Their method can detect 
email headers, signatures, program codes, and ex-
tra line breaks in emails. See also (Wong et al., 
2007). 

Palmer and Hearst (1997) propose using a Neu-
ral Network model to determine whether a period 
in a sentence is the ending mark of the sentence, an 
abbreviation, or both. See also (Mikheev, 2000; 
Mikheev, 2002). 

Lita et al. (2003) propose employing a language 
modeling approach to address the case restoration 
problem. They define four classes for word casing: 
all letters in lower case, first letter in uppercase, all 
letters in upper case, and mixed case, and formal-
ize the problem as assigning class labels to words 
in natural language texts. Mikheev (2002) proposes 
using not only local information but also global 
information in a document in case restoration. 

Spelling error correction can be formalized as a 
classification problem. Golding and Roth (1996) 
propose using the Winnow algorithm to address 
the issue. The problem can also be formalized as 
that of data conversion using the source channel 
model. The source model can be built as an n-gram 
language model and the channel model can be con-
structed with confusing words measured by edit 
distance. Brill and Moore, Church and Gale, and 
Mayes et al. have developed different techniques 
for confusing words calculation (Brill and Moore, 
2000; Church and Gale, 1991; Mays et al., 1991). 

Sproat et al. (1999) have investigated normaliza-
tion of non-standard words in texts, including 
numbers, abbreviations, dates, currency amounts, 
and acronyms. They propose a taxonomy of non-
standard words and apply n-gram language models, 
decision trees, and weighted finite-state transduc-
ers to the normalization. 

3 Text Normalization 

In this paper we define text normalization at three 
levels: paragraph, sentence, and word level. The 
subtasks at each level are listed in Table 1. For ex-
ample, at the paragraph level, there are two sub-
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tasks: extra line-break deletion and paragraph 
boundary detection. Similarly, there are six (three) 
subtasks at the sentence (word) level, as shown in 
Table 1. Unnecessary token deletion refers to dele-
tion of tokens like ‘-----’ and ‘====’, which are 
not needed in natural language processing. Note 
that most of the subtasks conduct ‘cleaning’ of 
noises, except paragraph boundary detection and 
sentence boundary detection. 

Level Task Percentages 
of Noises

Extra line break deletion 49.53 Paragraph 
Paragraph boundary detection  

Extra space deletion 15.58 
Extra punctuation mark deletion 0.71 

Missing space insertion 1.55 
Missing punctuation mark insertion 3.85 

Misused punctuation mark correction 0.64 

Sentence 

Sentence boundary detection  
Case restoration 15.04 

Unnecessary token deletion 9.69 Word 
Misspelled word correction 3.41 

Table 1. Text Normalization Subtasks 

As a result of text normalization, a text is seg-
mented into paragraphs; each paragraph is seg-
mented into sentences with clear boundaries; and 
each word is converted into the canonical form. 
After normalization, most of the natural language 
processing tasks can be performed, for example, 
part-of-speech tagging and parsing. 

We have manually cleaned up some email data 
(cf., Section 5) and found that nearly all the noises 
can be eliminated by performing the subtasks de-
fined above. Table 1 gives the statistics. 

1.  i’m thinking about buying a pocket 
2.  pc    device for my wife this christmas,. 
3.  the worry that i have is that she won’t 
4.  be able to sync it to her outlook express  
5.  contacts… 

Figure 1. An example of informal text 
I’m thinking about buying a Pocket PC device for my 
wife this Christmas.// The worry that I have is that 
she won’t be able to sync it to her Outlook Express 
contacts.// 

Figure 2. Normalized text 

Figure 1 shows an example of informally input-
ted text data. It includes many typical noises. From 
line 1 to line 4, there are four extra line breaks at 
the end of each line. In line 2, there is an extra 

comma after the word ‘Christmas’. The first word 
in each sentence and the proper nouns (e.g., 
‘Pocket PC’ and ‘Outlook Express’) should be 
capitalized. The extra spaces between the words 
‘PC’ and ‘device’ should be removed. At the end 
of line 2, the line break should be removed and a 
space is needed after the period. The text should be 
segmented into two sentences. 

Figure 2 shows an ideal output of text normali-
zation on the input text in Figure 1. All the noises 
in Figure 1 have been cleaned and paragraph and 
sentence endings have been identified. 

We must note that dependencies (sometimes 
even strong dependencies) exist between different 
types of noises. For example, word case restoration 
needs help from sentence boundary detection, and 
vice versa. An ideal normalization method should 
consider processing all the tasks together. 

4 A Unified Tagging Approach 

4.1 Process 

In this paper, we formalize text normalization as a 
tagging problem and employ a unified approach to 
perform the task (no matter whether the processing 
is at paragraph level, sentence level, or word level). 

There are two steps in the method: preprocess-
ing and tagging. In preprocessing, (A) we separate 
the text into paragraphs (i.e., sequences of tokens), 
(B) we determine tokens in the paragraphs, and (C) 
we assign possible tags to each token. The tokens 
form the basic units and the paragraphs form the 
sequences of units in the tagging problem. In tag-
ging, given a sequence of units, we determine the 
most likely corresponding sequence of tags by us-
ing a trained tagging model. In this paper, as the 
tagging model, we make use of CRF. 

Next we describe the steps (A)-(C) in detail and 
explain why our method can accomplish many of 
the normalization subtasks in Table 1. 

(A). We separate the text into paragraphs by tak-
ing two or more consecutive line breaks as the end-
ings of paragraphs. 

(B). We identify tokens by using heuristics. 
There are five types of tokens: ‘standard word’, 
‘non-standard word’, punctuation mark, space, and 
line break. Standard words are words in natural 
language. Non-standard words include several 
general ‘special words’ (Sproat et al., 1999), email 
address, IP address, URL, date, number, money, 
percentage, unnecessary tokens (e.g., ‘===‘ and 
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‘###’), etc. We identify non-standard words by 
using regular expressions. Punctuation marks in-
clude period, question mark, and exclamation mark. 
Words and punctuation marks are separated into 
different tokens if they are joined together. Natural 
spaces and line breaks are also regarded as tokens. 

(C). We assign tags to each token based on the 
type of the token. Table 2 summarizes the types of 
tags defined. 

Token Type Tag Description 
PRV Preserve line break 
RPA Replace line break by space Line break 
DEL Delete line break 
PRV Preserve space Space 
DEL Delete space 

PSB Preserve punctuation mark and view it 
as sentence ending 

PRV Preserve punctuation mark without 
viewing it as sentence ending 

Punctuation 
mark 

DEL Delete punctuation mark 
AUC Make all characters in uppercase 
ALC Make all characters in lowercase 
FUC Make the first character in uppercase

Word 

AMC Make characters in mixed case 
PRV Preserve the special token Special token 
DEL Delete the special token 

Table 2. Types of tags 

 
Figure 3. An example of tagging 

Figure 3 shows an example of the tagging proc-
ess. (The symbol ‘’ indicates a space). In the fig-
ure, a white circle denotes a token and a gray circle 
denotes a tag. Each token can be assigned several 
possible tags. 

Using the tags, we can perform most of the text 
normalization processing (conducting seven types 
of subtasks defined in Table 1 and cleaning 
90.55% of the noises). 

In this paper, we do not conduct three subtasks, 
although we could do them in principle. These in-
clude missing space insertion, missing punctuation 

mark insertion, and misspelled word correction. In 
our email data, it corresponds to 8.81% of the 
noises. Adding tags for insertions would increase 
the search space dramatically. We did not do that 
due to computation consideration. Misspelled word 
correction can be done in the same framework eas-
ily. We did not do that in this work, because the 
percentage of misspelling in the data is small. 

We do not conduct misused punctuation mark 
correction as well (e.g., correcting ‘.’ with ‘?’). It 
consists of 0.64% of the noises in the email data. 
To handle it, one might need to parse the sentences. 

4.2 CRF Model 

We employ Conditional Random Fields (CRF) as 
the tagging model. CRF is a conditional probability 
distribution of a sequence of tags given a sequence 
of tokens, represented as P(Y|X) , where X denotes 
the token sequence and Y the tag sequence 
(Lafferty et al., 2001). 

In tagging, the CRF model is used to find the 
sequence of tags Y* having the highest likelihood 
Y* = maxYP(Y|X), with an efficient algorithm (the 
Viterbi algorithm). 

In training, the CRF model is built with labeled 
data and by means of an iterative algorithm based 
on Maximum Likelihood Estimation. 

Transition Features 
yi-1=y’, yi=y 

yi-1=y’, yi=y, wi=w 
yi-1=y’, yi=y, ti=t 
State Features 

wi=w, yi=y 
wi-1=w, yi=y 
wi-2=w, yi=y 
wi-3=w, yi=y 
wi-4=w, yi=y 
wi+1=w, yi=y 
wi+2=w, yi=y 
wi+3=w, yi=y 
wi+4=w, yi=y 

wi-1=w’, wi=w, yi=y
wi+1=w’, wi=w, yi=y 

ti=t, yi=y 
ti-1=t, yi=y 
ti-2=t, yi=y 
ti-3=t, yi=y 
ti-4=t, yi=y 
ti+1=t, yi=y 
ti+2=t, yi=y 
ti+3=t, yi=y 
ti+4=t, yi=y 

ti-2=t’’, ti-1=t’, yi=y 
ti-1=t’, ti=t, yi=y 
ti=t, ti+1=t’, yi=y 

ti+1=t’, ti+2=t’’, yi=y 
ti-2=t’’, ti-1=t’, ti=t, yi=y 
ti-1=t’’, ti=t, ti+1=t’, yi=y 
ti=t, ti+1=t’, ti+2=t’’, yi=y 

Table 3. Features used in the unified CRF model 
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4.3 Features 

Two sets of features are defined in the CRF model: 
transition features and state features. Table 3 
shows the features used in the model. 

Suppose that at position i in token sequence x, wi 
is the token, ti the type of token (see Table 2), and 
yi the possible tag. Binary features are defined as 
described in Table 3. For example, the transition 
feature yi-1=y’, yi=y implies that if the current tag is 
y and the previous tag is y’, then the feature value 
is true; otherwise false. The state feature wi=w, 
yi=y implies that if the current token is w and the 
current label is y, then the feature value is true; 
otherwise false. In our experiments, an actual fea-
ture might be the word at position 5 is ‘PC’ and the 
current tag is AUC. In total, 4,168,723 features 
were used in our experiments. 

4.4 Baseline Methods 

We can consider two baseline methods based on 
previous work, namely cascaded and independent 
approaches. The independent approach performs 
text normalization with several passes on the text. 
All of the processes take the raw text as input and 
output the normalized/cleaned result independently. 
The cascaded approach also performs normaliza-
tion in several passes on the text. Each process car-
ries out cleaning/normalization from the output of 
the previous process. 

4.5 Advantages 

Our method offers some advantages. 
(1) As indicated, the text normalization tasks are 

interdependent. The cascaded approach or the in-
dependent approach cannot simultaneously per-
form the tasks. In contrast, our method can effec-
tively overcome the drawback by employing a uni-
fied framework and achieve more accurate per-
formances. 

(2) There are many specific types of errors one 
must correct in text normalization. As shown in 
Figure 1, there exist four types of errors with each 
type having several correction results. If one de-
fines a specialized model or rule to handle each of 
the cases, the number of needed models will be 
extremely large and thus the text normalization 
processing will be impractical. In contrast, our 
method naturally formalizes all the tasks as as-
signments of different types of tags and trains a 
unified model to tackle all the problems at once. 

5 Experimental Results 

5.1 Experiment Setting 

Data Sets 

We used email data in our experiments. We ran-
domly chose in total 5,000 posts (i.e., emails) from 
12 newsgroups. DC, Ontology, NLP, and ML are 
from newsgroups at Google (http://groups-
beta.google.com/groups). Jena is a newsgroup at Ya-
hoo (http://groups.yahoo.com/group/jena-dev). Weka 
is a newsgroup at Waikato University (https://list. 
scms.waikato.ac.nz). Protégé and OWL are from a 
project at Stanford University 
(http://protege.stanford.edu/). Mobility, WinServer, 
Windows, and PSS are email collections from a 
company. 

Five human annotators conducted normalization 
on the emails. A spec was created to guide the an-
notation process. All the errors in the emails were 
labeled and corrected. For disagreements in the 
annotation, we conducted “majority voting”.  For 
example, extra line breaks, extra spaces, and extra 
punctuation marks in the emails were labeled. Un-
necessary tokens were deleted. Missing spaces and 
missing punctuation marks were added and marked. 
Mistakenly cased words, misspelled words, and 
misused punctuation marks were corrected. Fur-
thermore, paragraph boundaries and sentence 
boundaries were also marked. The noises fell into 
the categories defined in Table 1. 

Table 4 shows the statistics in the data sets. 
From the table, we can see that a large number of 
noises (41,407) exist in the emails. We can also see 
that the major noise types are extra line breaks, 
extra spaces, casing errors, and unnecessary tokens. 

In the experiments, we conducted evaluations in 
terms of precision, recall, F1-measure, and accu-
racy (for definitions of the measures, see for ex-
ample (van Rijsbergen, 1979; Lita et al., 2003)). 

Implementation of Baseline Methods 

We used the cascaded approach and the independ-
ent approach as baselines. 

For the baseline methods, we defined several 
basic prediction subtasks: extra line break detec-
tion, extra space detection, extra punctuation mark 
detection, sentence boundary detection, unneces-
sary token detection, and case restoration. We 
compared the performances of our method with 
those of the baseline methods on the subtasks. 
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Data Set 
Number 

of 
Email 

Number 
of 

Noises 

Extra 
Line 

Break 

Extra 
Space 

Extra
 Punc.

Missing
Space

Missing
Punc.

Casing
Error

Spelling
Error

Misused 
Punc.

Unnece-
ssary 
Token 

Number of 
Paragraph 
Boundary 

Number of 
Sentence 

Boundary
DC 100 702 476 31 8 3 24 53 14 2 91 457 291 

Ontology 100 2,731 2,132 24 3 10 68 205 79 15 195 677 1,132 
NLP 60 861 623 12 1 3 23 135 13 2 49 244 296 
ML 40 980 868 17 0 2 13 12 7 0 61 240 589 
Jena 700 5,833 3,066 117 42 38 234 888 288 59 1,101 2,999 1,836 

Weka 200 1,721 886 44 0 30 37 295 77 13 339 699 602 
Protégé 700 3,306 1,770 127 48 151 136 552 116 9 397 1,645 1,035 
OWL 300 1,232 680 43 24 47 41 152 44 3 198 578 424 

Mobility 400 2,296 1,292 64 22 35 87 495 92 8 201 891 892 
WinServer 400 3,487 2,029 59 26 57 142 822 121 21 210 1,232 1,151 
Windows 1,000 9,293 3,416 3,056 60 116 348 1,309 291 67 630 3,581 2,742 

PSS 1,000 8,965 3,348 2,880 59 153 296 1,331 276 66 556 3,411 2,590 
Total 5,000 41,407 20,586 6,474 293 645 1,449 6,249 1,418 265 4,028 16,654 13,580 

Table 4. Statistics on data sets 

For the case restoration subtask (processing on 
token sequence), we employed the TrueCasing 
method (Lita et al., 2003). The method estimates a 
tri-gram language model using a large data corpus 
with correctly cased words and then makes use of 
the model in case restoration. We also employed 
Conditional Random Fields to perform case 
restoration, for comparison purposes. The CRF 
based casing method estimates a conditional 
probabilistic model using the same data and the 
same tags defined in TrueCasing. 

For unnecessary token deletion, we used rules as 
follows. If a token consists of non-ASCII charac-
ters or consecutive duplicate characters, such as 
‘===‘, then we identify it as an unnecessary token. 

For each of the other subtasks, we exploited the 
classification approach. For example, in extra line 
break detection, we made use of a classification 
model to identify whether or not a line break is a 
paragraph ending. We employed Support Vector 
Machines (SVM) as the classification model (Vap-
nik, 1998). In the classification model we utilized 
the same features as those in our unified model 
(see Table 3 for details). 

In the cascaded approach, the prediction tasks 
are performed in sequence, where the output of 
each task becomes the input of each immediately 
following task. The order of the prediction tasks is: 
(1) Extra line break detection: Is a line break a 
paragraph ending? It then separates the text into 
paragraphs using the remaining line breaks. (2) 
Extra space detection: Is a space an extra space? (3) 
Extra punctuation mark detection: Is a punctuation 
mark a noise? (4) Sentence boundary detection: Is 
a punctuation mark a sentence boundary? (5) Un-
necessary token deletion: Is a token an unnecessary 

token? (6) Case restoration. Each of steps (1) to (4) 
uses a classification model (SVM), step (5) uses 
rules, whereas step (6) uses either a language 
model (TrueCasing) or a CRF model (CRF). 

In the independent approach, we perform the 
prediction tasks independently. When there is a 
conflict between the outcomes of two classifiers, 
we adopt the result of the latter classifier, as de-
termined by the order of classifiers in the cascaded 
approach. 

To test how dependencies between different 
types of noises affect the performance of normali-
zation, we also conducted experiments using the 
unified model by removing the transition features. 

Implementation of Our Method 

In the implementation of our method, we used the 
tool CRF++, available at http://chasen.org/~taku 
/software/CRF++/. We made use of all the default 
settings of the tool in the experiments. 

5.2 Text Normalization Experiments 

Results 

We evaluated the performances of our method 
(Unified) and the baseline methods (Cascaded and 
Independent) on the 12 data sets. Table 5 shows 
the five-fold cross-validation results. Our method 
outperforms the two baseline methods. 

Table 6 shows the overall performances of text 
normalization by our method and the two baseline 
methods. We see that our method outperforms the 
two baseline methods. It can also be seen that the 
performance of the unified method decreases when 
removing the transition features (Unified w/o 
Transition Features). 
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We conducted sign tests for each subtask on the 
results, which indicate that all the improvements of 
Unified over Cascaded and Independent are statis-
tically significant (p << 0.01). 

Detection Task Prec. Rec. F1 Acc.
Independent 95.16 91.52 93.30 93.81

Cascaded 95.16 91.52 93.30 93.81Extra Line 
Break  Unified 93.87 93.63 93.75 94.53

Independent 91.85 94.64 93.22 99.87
Cascaded 94.54 94.56 94.55 99.89Extra Space 
Unified 95.17 93.98 94.57 99.90

Independent 88.63 82.69 85.56 99.66
Cascaded 87.17 85.37 86.26 99.66

Extra 
 Punctuation 

Mark Unified 90.94 84.84 87.78 99.71
Independent 98.46 99.62 99.04 98.36

Cascaded 98.55 99.20 98.87 98.08Sentence 
Boundary  Unified 98.76 99.61 99.18 98.61

Independent 72.51 100.0 84.06 84.27
Cascaded 72.51 100.0 84.06 84.27Unnecessary 

Token Unified 98.06 95.47 96.75 96.18
Independent 27.32 87.44 41.63 96.22Case  

Restoration 
(TrueCasing) Cascaded 28.04 88.21 42.55 96.35

Independent 84.96 62.79 72.21 99.01
Cascaded 85.85 63.99 73.33 99.07

Case  
Restoration 

(CRF) Unified 86.65 67.09 75.63 99.21

Table 5. Performances of text normalization (%) 
Text Normalization Prec. Rec. F1 Acc.

Independent (TrueCasing) 69.54 91.33 78.96 97.90
Independent (CRF) 85.05 92.52 88.63 98.91

Cascaded (TrueCasing) 70.29 92.07 79.72 97.88
Cascaded (CRF) 85.06 92.70 88.72 98.92

Unified w/o Transition 
Features 86.03 93.45 89.59 99.01

Unified 86.46 93.92 90.04 99.05

Table 6. Performances of text normalization (%) 

Discussions 

Our method outperforms the independent method 
and the cascaded method in all the subtasks, espe-
cially in the subtasks that have strong dependen-
cies with each other, for example, sentence bound-
ary detection, extra punctuation mark detection, 
and case restoration. 

The cascaded method suffered from ignorance 
of the dependencies between the subtasks. For ex-
ample, there were 3,314 cases in which sentence 
boundary detection needs to use the results of extra 
line break detection, extra punctuation mark detec-
tion, and case restoration. However, in the cas-
caded method, sentence boundary detection is con-
ducted after extra punctuation mark detection and 
before case restoration, and thus it cannot leverage 

the results of case restoration. Furthermore, errors 
of extra punctuation mark detection can lead to 
errors in sentence boundary detection. 

The independent method also cannot make use 
of dependencies across different subtasks, because 
it conducts all the subtasks from the raw input data. 
This is why for detection of extra space, extra 
punctuation mark, and casing error, the independ-
ent method cannot perform as well as our method. 

Our method benefits from the ability of model-
ing dependencies between subtasks. We see from 
Table 6 that by leveraging the dependencies, our 
method can outperform the method without using 
dependencies (Unified w/o Transition Features) by 
0.62% in terms of F1-measure. 

Here we use the example in Figure 1 to show the 
advantage of our method compared with the inde-
pendent and the cascaded methods. With normali-
zation by the independent method, we obtain: 

I’m thinking about buying a pocket PC   device for my wife 
this Christmas, The worry that I have is that she won’t be able 
to sync it to her outlook express contacts.// 

With normalization by the cascaded method, we 
obtain: 

I’m thinking about buying a pocket PC device for my wife 
this Christmas, the worry that I have is that she won’t be able 
to sync it to her outlook express contacts.// 

With normalization by our method, we obtain: 
I’m thinking about buying a Pocket PC device for my wife 

this Christmas.// The worry that I have is that she won’t be 
able to sync it to her Outlook Express contacts.// 

The independent method can correctly deal with 
some of the errors. For instance, it can capitalize 
the first word in the first and the third line, remove 
extra periods in the fifth line, and remove the four 
extra line breaks. However, it mistakenly removes 
the period in the second line and it cannot restore 
the cases of some words, for example ‘pocket’ and 
‘outlook express’. 

In the cascaded method, each process carries out 
cleaning/normalization from the output of the pre-
vious process and thus can make use of the 
cleaned/normalized results from the previous proc-
ess. However, errors in the previous processes will 
also propagate to the later processes. For example, 
the cascaded method mistakenly removes the pe-
riod in the second line. The error allows case resto-
ration to make the error of keeping the word ‘the’ 
in lower case. 
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TrueCasing-based methods for case restoration 
suffer from low precision (27.32% by Independent 
and 28.04% by Cascaded), although their recalls 
are high (87.44% and 88.21% respectively). There 
are two reasons: 1) About 10% of the errors in 
Cascaded are due to errors of sentence boundary 
detection and extra line break detection in previous 
steps; 2) The two baselines tend to restore cases of 
words to the forms having higher probabilities in 
the data set and cannot take advantage of the de-
pendencies with the other normalization subtasks. 
For example, ‘outlook’ was restored to first letter 
capitalized in both ‘Outlook Express’ and ‘a pleas-
ant outlook’. Our method can take advantage of the 
dependencies with other subtasks and thus correct 
85.01% of the errors that the two baseline methods 
cannot handle. Cascaded and Independent methods 
employing CRF for case restoration improve the 
accuracies somewhat. However, they are still infe-
rior to our method. 

Although we have conducted error analysis on 
the results given by our method, we omit the de-
tails here due to space limitation and will report 
them in a future expanded version of this paper. 

We also compared the speed of our method with 
those of the independent and cascaded methods. 
We tested the three methods on a computer with 
two 2.8G Dual-Core CPUs and three Gigabyte 
memory. On average, it needs about 5 hours for 
training the normalization models using our 
method and 25 seconds for tagging in the cross-
validation experiments. The independent and the 
cascaded methods (with TrueCasing) require less 
time for training (about 2 minutes and 3 minutes 
respectively) and for tagging (several seconds). 
This indicates that the efficiency of our method 
still needs improvement. 

6 Conclusion 

In this paper, we have investigated the problem of 
text normalization, an important issue for natural 
language processing. We have first defined the 
problem as a task consisting of noise elimination 
and boundary detection subtasks. We have then 
proposed a unified tagging approach to perform the 
task, specifically to treat text normalization as as-
signing tags representing deletion, preservation, or 
replacement of the tokens in the text. Experiments 
show that our approach significantly outperforms 
the two baseline methods for text normalization. 
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