
Proceedings of the 45th Annual Meeting of the Association of Computational Linguistics, pages 688–695,
Prague, Czech Republic, June 2007. c©2007 Association for Computational Linguistics

A Unified Tagging Approach to Text Normalization

Conghui Zhu
Harbin Institute of Technology

Harbin, China
chzhu@mtlab.hit.edu.cn

Jie Tang
Department of Computer Science

Tsinghua University, China
jietang@tsinghua.edu.cn

Hang Li
Microsoft Research Asia

Beijing, China
hangli@microsoft.com

Hwee Tou Ng
Department of Computer Science

National University of Singapore, Singapore
nght@comp.nus.edu.sg

Tiejun Zhao
Harbin Institute of Technology

Harbin, China
tjzhao@mtlab.hit.edu.cn

Abstract

This paper addresses the issue of text nor-
malization, an important yet often over-
looked problem in natural language proc-
essing. By text normalization, we mean
converting ‘informally inputted’ text into
the canonical form, by eliminating ‘noises’
in the text and detecting paragraph and sen-
tence boundaries in the text. Previously,
text normalization issues were often under-
taken in an ad-hoc fashion or studied sepa-
rately. This paper first gives a formaliza-
tion of the entire problem. It then proposes
a unified tagging approach to perform the
task using Conditional Random Fields
(CRF). The paper shows that with the in-
troduction of a small set of tags, most of
the text normalization tasks can be per-
formed within the approach. The accuracy
of the proposed method is high, because
the subtasks of normalization are interde-
pendent and should be performed together.
Experimental results on email data cleaning
show that the proposed method signifi-
cantly outperforms the approach of using
cascaded models and that of employing in-
dependent models.

1 Introduction

More and more ‘informally inputted’ text data be-
comes available to natural language processing,

such as raw text data in emails, newsgroups, fo-
rums, and blogs. Consequently, how to effectively
process the data and make it suitable for natural
language processing becomes a challenging issue.
This is because informally inputted text data is
usually very noisy and is not properly segmented.
For example, it may contain extra line breaks, extra
spaces, and extra punctuation marks; and it may
contain words badly cased. Moreover, the bounda-
ries between paragraphs and the boundaries be-
tween sentences are not clear.

We have examined 5,000 randomly collected
emails and found that 98.4% of the emails contain
noises (based on the definition in Section 5.1).

In order to perform high quality natural lan-
guage processing, it is necessary to perform ‘nor-
malization’ on informally inputted data first, spe-
cifically, to remove extra line breaks, segment the
text into paragraphs, add missing spaces and miss-
ing punctuation marks, eliminate extra spaces and
extra punctuation marks, delete unnecessary tokens,
correct misused punctuation marks, restore badly
cased words, correct misspelled words, and iden-
tify sentence boundaries.

Traditionally, text normalization is viewed as an
engineering issue and is conducted in a more or
less ad-hoc manner. For example, it is done by us-
ing rules or machine learning models at different
levels. In natural language processing, several is-
sues of text normalization were studied, but were
only done separately.

This paper aims to conduct a thorough investiga-
tion on the issue. First, it gives a formalization of

688

the problem; specifically, it defines the subtasks of
the problem. Next, it proposes a unified approach
to the whole task on the basis of tagging. Specifi-
cally, it takes the problem as that of assigning tags
to the input texts, with a tag representing deletion,
preservation, or replacement of a token. As the
tagging model, it employs Conditional Random
Fields (CRF). The unified model can achieve better
performances in text normalization, because the
subtasks of text normalization are often interde-
pendent. Furthermore, there is no need to define
specialized models and features to conduct differ-
ent types of cleaning; all the cleaning processes
have been formalized and conducted as assign-
ments of the three types of tags.

Experimental results indicate that our method
significantly outperforms the methods using cas-
caded models or independent models on normali-
zation. Our experiments also indicate that with the
use of the tags defined, we can conduct most of the
text normalization in the unified framework.

Our contributions in this paper include: (a) for-
malization of the text normalization problem, (b)
proposal of a unified tagging approach, and (c)
empirical verification of the effectiveness of the
proposed approach.

The rest of the paper is organized as follows. In
Section 2, we introduce related work. In Section 3,
we formalize the text normalization problem. In
Section 4, we explain our approach to the problem
and in Section 5 we give the experimental results.
We conclude the paper in Section 6.

2 Related Work

Text normalization is usually viewed as an
engineering issue and is addressed in an ad-hoc
manner. Much of the previous work focuses on
processing texts in clean form, not texts in
informal form. Also, prior work mostly focuses on
processing one type or a small number of types of
errors, whereas this paper deals with many
different types of errors.

Clark (2003) has investigated the problem of
preprocessing noisy texts for natural language
processing. He proposes identifying token bounda-
ries and sentence boundaries, restoring cases of
words, and correcting misspelled words by using a
source channel model.

Minkov et al. (2005) have investigated the prob-
lem of named entity recognition in informally in-

putted texts. They propose improving the perform-
ance of personal name recognition in emails using
two machine-learning based methods: Conditional
Random Fields and Perceptron for learning HMMs.
See also (Carvalho and Cohen, 2004).

Tang et al. (2005) propose a cascaded approach
for email data cleaning by employing Support Vec-
tor Machines and rules. Their method can detect
email headers, signatures, program codes, and ex-
tra line breaks in emails. See also (Wong et al.,
2007).

Palmer and Hearst (1997) propose using a Neu-
ral Network model to determine whether a period
in a sentence is the ending mark of the sentence, an
abbreviation, or both. See also (Mikheev, 2000;
Mikheev, 2002).

Lita et al. (2003) propose employing a language
modeling approach to address the case restoration
problem. They define four classes for word casing:
all letters in lower case, first letter in uppercase, all
letters in upper case, and mixed case, and formal-
ize the problem as assigning class labels to words
in natural language texts. Mikheev (2002) proposes
using not only local information but also global
information in a document in case restoration.

Spelling error correction can be formalized as a
classification problem. Golding and Roth (1996)
propose using the Winnow algorithm to address
the issue. The problem can also be formalized as
that of data conversion using the source channel
model. The source model can be built as an n-gram
language model and the channel model can be con-
structed with confusing words measured by edit
distance. Brill and Moore, Church and Gale, and
Mayes et al. have developed different techniques
for confusing words calculation (Brill and Moore,
2000; Church and Gale, 1991; Mays et al., 1991).

Sproat et al. (1999) have investigated normaliza-
tion of non-standard words in texts, including
numbers, abbreviations, dates, currency amounts,
and acronyms. They propose a taxonomy of non-
standard words and apply n-gram language models,
decision trees, and weighted finite-state transduc-
ers to the normalization.

3 Text Normalization

In this paper we define text normalization at three
levels: paragraph, sentence, and word level. The
subtasks at each level are listed in Table 1. For ex-
ample, at the paragraph level, there are two sub-

689

tasks: extra line-break deletion and paragraph
boundary detection. Similarly, there are six (three)
subtasks at the sentence (word) level, as shown in
Table 1. Unnecessary token deletion refers to dele-
tion of tokens like ‘-----’ and ‘====’, which are
not needed in natural language processing. Note
that most of the subtasks conduct ‘cleaning’ of
noises, except paragraph boundary detection and
sentence boundary detection.

Level Task Percentages
of Noises

Extra line break deletion 49.53 Paragraph
Paragraph boundary detection

Extra space deletion 15.58
Extra punctuation mark deletion 0.71

Missing space insertion 1.55
Missing punctuation mark insertion 3.85

Misused punctuation mark correction 0.64

Sentence

Sentence boundary detection
Case restoration 15.04

Unnecessary token deletion 9.69 Word
Misspelled word correction 3.41

Table 1. Text Normalization Subtasks

As a result of text normalization, a text is seg-
mented into paragraphs; each paragraph is seg-
mented into sentences with clear boundaries; and
each word is converted into the canonical form.
After normalization, most of the natural language
processing tasks can be performed, for example,
part-of-speech tagging and parsing.

We have manually cleaned up some email data
(cf., Section 5) and found that nearly all the noises
can be eliminated by performing the subtasks de-
fined above. Table 1 gives the statistics.

1. i’m thinking about buying a pocket
2. pc device for my wife this christmas,.
3. the worry that i have is that she won’t
4. be able to sync it to her outlook express
5. contacts…

Figure 1. An example of informal text
I’m thinking about buying a Pocket PC device for my
wife this Christmas.// The worry that I have is that
she won’t be able to sync it to her Outlook Express
contacts.//

Figure 2. Normalized text

Figure 1 shows an example of informally input-
ted text data. It includes many typical noises. From
line 1 to line 4, there are four extra line breaks at
the end of each line. In line 2, there is an extra

comma after the word ‘Christmas’. The first word
in each sentence and the proper nouns (e.g.,
‘Pocket PC’ and ‘Outlook Express’) should be
capitalized. The extra spaces between the words
‘PC’ and ‘device’ should be removed. At the end
of line 2, the line break should be removed and a
space is needed after the period. The text should be
segmented into two sentences.

Figure 2 shows an ideal output of text normali-
zation on the input text in Figure 1. All the noises
in Figure 1 have been cleaned and paragraph and
sentence endings have been identified.

We must note that dependencies (sometimes
even strong dependencies) exist between different
types of noises. For example, word case restoration
needs help from sentence boundary detection, and
vice versa. An ideal normalization method should
consider processing all the tasks together.

4 A Unified Tagging Approach

4.1 Process

In this paper, we formalize text normalization as a
tagging problem and employ a unified approach to
perform the task (no matter whether the processing
is at paragraph level, sentence level, or word level).

There are two steps in the method: preprocess-
ing and tagging. In preprocessing, (A) we separate
the text into paragraphs (i.e., sequences of tokens),
(B) we determine tokens in the paragraphs, and (C)
we assign possible tags to each token. The tokens
form the basic units and the paragraphs form the
sequences of units in the tagging problem. In tag-
ging, given a sequence of units, we determine the
most likely corresponding sequence of tags by us-
ing a trained tagging model. In this paper, as the
tagging model, we make use of CRF.

Next we describe the steps (A)-(C) in detail and
explain why our method can accomplish many of
the normalization subtasks in Table 1.

(A). We separate the text into paragraphs by tak-
ing two or more consecutive line breaks as the end-
ings of paragraphs.

(B). We identify tokens by using heuristics.
There are five types of tokens: ‘standard word’,
‘non-standard word’, punctuation mark, space, and
line break. Standard words are words in natural
language. Non-standard words include several
general ‘special words’ (Sproat et al., 1999), email
address, IP address, URL, date, number, money,
percentage, unnecessary tokens (e.g., ‘===‘ and

690

‘###’), etc. We identify non-standard words by
using regular expressions. Punctuation marks in-
clude period, question mark, and exclamation mark.
Words and punctuation marks are separated into
different tokens if they are joined together. Natural
spaces and line breaks are also regarded as tokens.

(C). We assign tags to each token based on the
type of the token. Table 2 summarizes the types of
tags defined.

Token Type Tag Description
PRV Preserve line break
RPA Replace line break by space Line break
DEL Delete line break
PRV Preserve space Space
DEL Delete space

PSB Preserve punctuation mark and view it
as sentence ending

PRV Preserve punctuation mark without
viewing it as sentence ending

Punctuation
mark

DEL Delete punctuation mark
AUC Make all characters in uppercase
ALC Make all characters in lowercase
FUC Make the first character in uppercase

Word

AMC Make characters in mixed case
PRV Preserve the special token Special token
DEL Delete the special token

Table 2. Types of tags

Figure 3. An example of tagging

Figure 3 shows an example of the tagging proc-
ess. (The symbol ‘’ indicates a space). In the fig-
ure, a white circle denotes a token and a gray circle
denotes a tag. Each token can be assigned several
possible tags.

Using the tags, we can perform most of the text
normalization processing (conducting seven types
of subtasks defined in Table 1 and cleaning
90.55% of the noises).

In this paper, we do not conduct three subtasks,
although we could do them in principle. These in-
clude missing space insertion, missing punctuation

mark insertion, and misspelled word correction. In
our email data, it corresponds to 8.81% of the
noises. Adding tags for insertions would increase
the search space dramatically. We did not do that
due to computation consideration. Misspelled word
correction can be done in the same framework eas-
ily. We did not do that in this work, because the
percentage of misspelling in the data is small.

We do not conduct misused punctuation mark
correction as well (e.g., correcting ‘.’ with ‘?’). It
consists of 0.64% of the noises in the email data.
To handle it, one might need to parse the sentences.

4.2 CRF Model

We employ Conditional Random Fields (CRF) as
the tagging model. CRF is a conditional probability
distribution of a sequence of tags given a sequence
of tokens, represented as P(Y|X) , where X denotes
the token sequence and Y the tag sequence
(Lafferty et al., 2001).

In tagging, the CRF model is used to find the
sequence of tags Y* having the highest likelihood
Y* = maxYP(Y|X), with an efficient algorithm (the
Viterbi algorithm).

In training, the CRF model is built with labeled
data and by means of an iterative algorithm based
on Maximum Likelihood Estimation.

Transition Features
yi-1=y’, yi=y

yi-1=y’, yi=y, wi=w
yi-1=y’, yi=y, ti=t
State Features

wi=w, yi=y
wi-1=w, yi=y
wi-2=w, yi=y
wi-3=w, yi=y
wi-4=w, yi=y
wi+1=w, yi=y
wi+2=w, yi=y
wi+3=w, yi=y
wi+4=w, yi=y

wi-1=w’, wi=w, yi=y
wi+1=w’, wi=w, yi=y

ti=t, yi=y
ti-1=t, yi=y
ti-2=t, yi=y
ti-3=t, yi=y
ti-4=t, yi=y
ti+1=t, yi=y
ti+2=t, yi=y
ti+3=t, yi=y
ti+4=t, yi=y

ti-2=t’’, ti-1=t’, yi=y
ti-1=t’, ti=t, yi=y
ti=t, ti+1=t’, yi=y

ti+1=t’, ti+2=t’’, yi=y
ti-2=t’’, ti-1=t’, ti=t, yi=y
ti-1=t’’, ti=t, ti+1=t’, yi=y
ti=t, ti+1=t’, ti+2=t’’, yi=y

Table 3. Features used in the unified CRF model

691

4.3 Features

Two sets of features are defined in the CRF model:
transition features and state features. Table 3
shows the features used in the model.

Suppose that at position i in token sequence x, wi
is the token, ti the type of token (see Table 2), and
yi the possible tag. Binary features are defined as
described in Table 3. For example, the transition
feature yi-1=y’, yi=y implies that if the current tag is
y and the previous tag is y’, then the feature value
is true; otherwise false. The state feature wi=w,
yi=y implies that if the current token is w and the
current label is y, then the feature value is true;
otherwise false. In our experiments, an actual fea-
ture might be the word at position 5 is ‘PC’ and the
current tag is AUC. In total, 4,168,723 features
were used in our experiments.

4.4 Baseline Methods

We can consider two baseline methods based on
previous work, namely cascaded and independent
approaches. The independent approach performs
text normalization with several passes on the text.
All of the processes take the raw text as input and
output the normalized/cleaned result independently.
The cascaded approach also performs normaliza-
tion in several passes on the text. Each process car-
ries out cleaning/normalization from the output of
the previous process.

4.5 Advantages

Our method offers some advantages.
(1) As indicated, the text normalization tasks are

interdependent. The cascaded approach or the in-
dependent approach cannot simultaneously per-
form the tasks. In contrast, our method can effec-
tively overcome the drawback by employing a uni-
fied framework and achieve more accurate per-
formances.

(2) There are many specific types of errors one
must correct in text normalization. As shown in
Figure 1, there exist four types of errors with each
type having several correction results. If one de-
fines a specialized model or rule to handle each of
the cases, the number of needed models will be
extremely large and thus the text normalization
processing will be impractical. In contrast, our
method naturally formalizes all the tasks as as-
signments of different types of tags and trains a
unified model to tackle all the problems at once.

5 Experimental Results

5.1 Experiment Setting

Data Sets

We used email data in our experiments. We ran-
domly chose in total 5,000 posts (i.e., emails) from
12 newsgroups. DC, Ontology, NLP, and ML are
from newsgroups at Google (http://groups-
beta.google.com/groups). Jena is a newsgroup at Ya-
hoo (http://groups.yahoo.com/group/jena-dev). Weka
is a newsgroup at Waikato University (https://list.
scms.waikato.ac.nz). Protégé and OWL are from a
project at Stanford University
(http://protege.stanford.edu/). Mobility, WinServer,
Windows, and PSS are email collections from a
company.

Five human annotators conducted normalization
on the emails. A spec was created to guide the an-
notation process. All the errors in the emails were
labeled and corrected. For disagreements in the
annotation, we conducted “majority voting”. For
example, extra line breaks, extra spaces, and extra
punctuation marks in the emails were labeled. Un-
necessary tokens were deleted. Missing spaces and
missing punctuation marks were added and marked.
Mistakenly cased words, misspelled words, and
misused punctuation marks were corrected. Fur-
thermore, paragraph boundaries and sentence
boundaries were also marked. The noises fell into
the categories defined in Table 1.

Table 4 shows the statistics in the data sets.
From the table, we can see that a large number of
noises (41,407) exist in the emails. We can also see
that the major noise types are extra line breaks,
extra spaces, casing errors, and unnecessary tokens.

In the experiments, we conducted evaluations in
terms of precision, recall, F1-measure, and accu-
racy (for definitions of the measures, see for ex-
ample (van Rijsbergen, 1979; Lita et al., 2003)).

Implementation of Baseline Methods

We used the cascaded approach and the independ-
ent approach as baselines.

For the baseline methods, we defined several
basic prediction subtasks: extra line break detec-
tion, extra space detection, extra punctuation mark
detection, sentence boundary detection, unneces-
sary token detection, and case restoration. We
compared the performances of our method with
those of the baseline methods on the subtasks.

692

Data Set
Number

of
Email

Number
of

Noises

Extra
Line

Break

Extra
Space

Extra
 Punc.

Missing
Space

Missing
Punc.

Casing
Error

Spelling
Error

Misused
Punc.

Unnece-
ssary
Token

Number of
Paragraph
Boundary

Number of
Sentence

Boundary
DC 100 702 476 31 8 3 24 53 14 2 91 457 291

Ontology 100 2,731 2,132 24 3 10 68 205 79 15 195 677 1,132
NLP 60 861 623 12 1 3 23 135 13 2 49 244 296
ML 40 980 868 17 0 2 13 12 7 0 61 240 589
Jena 700 5,833 3,066 117 42 38 234 888 288 59 1,101 2,999 1,836

Weka 200 1,721 886 44 0 30 37 295 77 13 339 699 602
Protégé 700 3,306 1,770 127 48 151 136 552 116 9 397 1,645 1,035
OWL 300 1,232 680 43 24 47 41 152 44 3 198 578 424

Mobility 400 2,296 1,292 64 22 35 87 495 92 8 201 891 892
WinServer 400 3,487 2,029 59 26 57 142 822 121 21 210 1,232 1,151
Windows 1,000 9,293 3,416 3,056 60 116 348 1,309 291 67 630 3,581 2,742

PSS 1,000 8,965 3,348 2,880 59 153 296 1,331 276 66 556 3,411 2,590
Total 5,000 41,407 20,586 6,474 293 645 1,449 6,249 1,418 265 4,028 16,654 13,580

Table 4. Statistics on data sets

For the case restoration subtask (processing on
token sequence), we employed the TrueCasing
method (Lita et al., 2003). The method estimates a
tri-gram language model using a large data corpus
with correctly cased words and then makes use of
the model in case restoration. We also employed
Conditional Random Fields to perform case
restoration, for comparison purposes. The CRF
based casing method estimates a conditional
probabilistic model using the same data and the
same tags defined in TrueCasing.

For unnecessary token deletion, we used rules as
follows. If a token consists of non-ASCII charac-
ters or consecutive duplicate characters, such as
‘===‘, then we identify it as an unnecessary token.

For each of the other subtasks, we exploited the
classification approach. For example, in extra line
break detection, we made use of a classification
model to identify whether or not a line break is a
paragraph ending. We employed Support Vector
Machines (SVM) as the classification model (Vap-
nik, 1998). In the classification model we utilized
the same features as those in our unified model
(see Table 3 for details).

In the cascaded approach, the prediction tasks
are performed in sequence, where the output of
each task becomes the input of each immediately
following task. The order of the prediction tasks is:
(1) Extra line break detection: Is a line break a
paragraph ending? It then separates the text into
paragraphs using the remaining line breaks. (2)
Extra space detection: Is a space an extra space? (3)
Extra punctuation mark detection: Is a punctuation
mark a noise? (4) Sentence boundary detection: Is
a punctuation mark a sentence boundary? (5) Un-
necessary token deletion: Is a token an unnecessary

token? (6) Case restoration. Each of steps (1) to (4)
uses a classification model (SVM), step (5) uses
rules, whereas step (6) uses either a language
model (TrueCasing) or a CRF model (CRF).

In the independent approach, we perform the
prediction tasks independently. When there is a
conflict between the outcomes of two classifiers,
we adopt the result of the latter classifier, as de-
termined by the order of classifiers in the cascaded
approach.

To test how dependencies between different
types of noises affect the performance of normali-
zation, we also conducted experiments using the
unified model by removing the transition features.

Implementation of Our Method

In the implementation of our method, we used the
tool CRF++, available at http://chasen.org/~taku
/software/CRF++/. We made use of all the default
settings of the tool in the experiments.

5.2 Text Normalization Experiments

Results

We evaluated the performances of our method
(Unified) and the baseline methods (Cascaded and
Independent) on the 12 data sets. Table 5 shows
the five-fold cross-validation results. Our method
outperforms the two baseline methods.

Table 6 shows the overall performances of text
normalization by our method and the two baseline
methods. We see that our method outperforms the
two baseline methods. It can also be seen that the
performance of the unified method decreases when
removing the transition features (Unified w/o
Transition Features).

693

We conducted sign tests for each subtask on the
results, which indicate that all the improvements of
Unified over Cascaded and Independent are statis-
tically significant (p << 0.01).

Detection Task Prec. Rec. F1 Acc.
Independent 95.16 91.52 93.30 93.81

Cascaded 95.16 91.52 93.30 93.81Extra Line
Break Unified 93.87 93.63 93.75 94.53

Independent 91.85 94.64 93.22 99.87
Cascaded 94.54 94.56 94.55 99.89Extra Space
Unified 95.17 93.98 94.57 99.90

Independent 88.63 82.69 85.56 99.66
Cascaded 87.17 85.37 86.26 99.66

Extra
 Punctuation

Mark Unified 90.94 84.84 87.78 99.71
Independent 98.46 99.62 99.04 98.36

Cascaded 98.55 99.20 98.87 98.08Sentence
Boundary Unified 98.76 99.61 99.18 98.61

Independent 72.51 100.0 84.06 84.27
Cascaded 72.51 100.0 84.06 84.27Unnecessary

Token Unified 98.06 95.47 96.75 96.18
Independent 27.32 87.44 41.63 96.22Case

Restoration
(TrueCasing) Cascaded 28.04 88.21 42.55 96.35

Independent 84.96 62.79 72.21 99.01
Cascaded 85.85 63.99 73.33 99.07

Case
Restoration

(CRF) Unified 86.65 67.09 75.63 99.21

Table 5. Performances of text normalization (%)
Text Normalization Prec. Rec. F1 Acc.

Independent (TrueCasing) 69.54 91.33 78.96 97.90
Independent (CRF) 85.05 92.52 88.63 98.91

Cascaded (TrueCasing) 70.29 92.07 79.72 97.88
Cascaded (CRF) 85.06 92.70 88.72 98.92

Unified w/o Transition
Features 86.03 93.45 89.59 99.01

Unified 86.46 93.92 90.04 99.05

Table 6. Performances of text normalization (%)

Discussions

Our method outperforms the independent method
and the cascaded method in all the subtasks, espe-
cially in the subtasks that have strong dependen-
cies with each other, for example, sentence bound-
ary detection, extra punctuation mark detection,
and case restoration.

The cascaded method suffered from ignorance
of the dependencies between the subtasks. For ex-
ample, there were 3,314 cases in which sentence
boundary detection needs to use the results of extra
line break detection, extra punctuation mark detec-
tion, and case restoration. However, in the cas-
caded method, sentence boundary detection is con-
ducted after extra punctuation mark detection and
before case restoration, and thus it cannot leverage

the results of case restoration. Furthermore, errors
of extra punctuation mark detection can lead to
errors in sentence boundary detection.

The independent method also cannot make use
of dependencies across different subtasks, because
it conducts all the subtasks from the raw input data.
This is why for detection of extra space, extra
punctuation mark, and casing error, the independ-
ent method cannot perform as well as our method.

Our method benefits from the ability of model-
ing dependencies between subtasks. We see from
Table 6 that by leveraging the dependencies, our
method can outperform the method without using
dependencies (Unified w/o Transition Features) by
0.62% in terms of F1-measure.

Here we use the example in Figure 1 to show the
advantage of our method compared with the inde-
pendent and the cascaded methods. With normali-
zation by the independent method, we obtain:

I’m thinking about buying a pocket PC device for my wife
this Christmas, The worry that I have is that she won’t be able
to sync it to her outlook express contacts.//

With normalization by the cascaded method, we
obtain:

I’m thinking about buying a pocket PC device for my wife
this Christmas, the worry that I have is that she won’t be able
to sync it to her outlook express contacts.//

With normalization by our method, we obtain:
I’m thinking about buying a Pocket PC device for my wife

this Christmas.// The worry that I have is that she won’t be
able to sync it to her Outlook Express contacts.//

The independent method can correctly deal with
some of the errors. For instance, it can capitalize
the first word in the first and the third line, remove
extra periods in the fifth line, and remove the four
extra line breaks. However, it mistakenly removes
the period in the second line and it cannot restore
the cases of some words, for example ‘pocket’ and
‘outlook express’.

In the cascaded method, each process carries out
cleaning/normalization from the output of the pre-
vious process and thus can make use of the
cleaned/normalized results from the previous proc-
ess. However, errors in the previous processes will
also propagate to the later processes. For example,
the cascaded method mistakenly removes the pe-
riod in the second line. The error allows case resto-
ration to make the error of keeping the word ‘the’
in lower case.

694

TrueCasing-based methods for case restoration
suffer from low precision (27.32% by Independent
and 28.04% by Cascaded), although their recalls
are high (87.44% and 88.21% respectively). There
are two reasons: 1) About 10% of the errors in
Cascaded are due to errors of sentence boundary
detection and extra line break detection in previous
steps; 2) The two baselines tend to restore cases of
words to the forms having higher probabilities in
the data set and cannot take advantage of the de-
pendencies with the other normalization subtasks.
For example, ‘outlook’ was restored to first letter
capitalized in both ‘Outlook Express’ and ‘a pleas-
ant outlook’. Our method can take advantage of the
dependencies with other subtasks and thus correct
85.01% of the errors that the two baseline methods
cannot handle. Cascaded and Independent methods
employing CRF for case restoration improve the
accuracies somewhat. However, they are still infe-
rior to our method.

Although we have conducted error analysis on
the results given by our method, we omit the de-
tails here due to space limitation and will report
them in a future expanded version of this paper.

We also compared the speed of our method with
those of the independent and cascaded methods.
We tested the three methods on a computer with
two 2.8G Dual-Core CPUs and three Gigabyte
memory. On average, it needs about 5 hours for
training the normalization models using our
method and 25 seconds for tagging in the cross-
validation experiments. The independent and the
cascaded methods (with TrueCasing) require less
time for training (about 2 minutes and 3 minutes
respectively) and for tagging (several seconds).
This indicates that the efficiency of our method
still needs improvement.

6 Conclusion

In this paper, we have investigated the problem of
text normalization, an important issue for natural
language processing. We have first defined the
problem as a task consisting of noise elimination
and boundary detection subtasks. We have then
proposed a unified tagging approach to perform the
task, specifically to treat text normalization as as-
signing tags representing deletion, preservation, or
replacement of the tokens in the text. Experiments
show that our approach significantly outperforms
the two baseline methods for text normalization.

References
E. Brill and R. C. Moore. 2000. An Improved Error

Model for Noisy Channel Spelling Correction, Proc.
of ACL 2000.

V. R. Carvalho and W. W. Cohen. 2004. Learning to
Extract Signature and Reply Lines from Email, Proc.
of CEAS 2004.

K. Church and W. Gale. 1991. Probability Scoring for
Spelling Correction, Statistics and Computing, Vol. 1.

A. Clark. 2003. Pre-processing Very Noisy Text, Proc.
of Workshop on Shallow Processing of Large Cor-
pora.

A. R. Golding and D. Roth. 1996. Applying Winnow to
Context-Sensitive Spelling Correction, Proc. of
ICML’1996.

J. Lafferty, A. McCallum, and F. Pereira. 2001. Condi-
tional Random Fields: Probabilistic Models for Seg-
menting and Labeling Sequence Data, Proc. of ICML
2001.

L. V. Lita, A. Ittycheriah, S. Roukos, and N. Kambhatla.
2003. tRuEcasIng, Proc. of ACL 2003.

E. Mays, F. J. Damerau, and R. L. Mercer. 1991. Con-
text Based Spelling Correction, Information Process-
ing and Management, Vol. 27, 1991.

A. Mikheev. 2000. Document Centered Approach to
Text Normalization, Proc. SIGIR 2000.

A. Mikheev. 2002. Periods, Capitalized Words, etc.
Computational Linguistics, Vol. 28, 2002.

E. Minkov, R. C. Wang, and W. W. Cohen. 2005. Ex-
tracting Personal Names from Email: Applying
Named Entity Recognition to Informal Text, Proc. of
EMNLP/HLT-2005.

D. D. Palmer and M. A. Hearst. 1997. Adaptive Multi-
lingual Sentence Boundary Disambiguation, Compu-
tational Linguistics, Vol. 23.

C.J. van Rijsbergen. 1979. Information Retrieval. But-
terworths, London.

R. Sproat, A. Black, S. Chen, S. Kumar, M. Ostendorf,
and C. Richards. 1999. Normalization of non-
standard words, WS’99 Final Report.
http://www.clsp.jhu.edu/ws99/projects/normal/.

J. Tang, H. Li, Y. Cao, and Z. Tang. 2005. Email data
cleaning, Proc. of SIGKDD’2005.

V. Vapnik. 1998. Statistical Learning Theory, Springer.
W. Wong, W. Liu, and M. Bennamoun. 2007. Enhanced

Integrated Scoring for Cleaning Dirty Texts, Proc. of
IJCAI-2007 Workshop on Analytics for Noisy Un-
structured Text Data.

695

