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Abstract

We introduce a framework for syntactic
parsing with latent variables based on a form
of dynamic Sigmoid Belief Networks called
Incremental Sigmoid Belief Networks. We
demonstrate that a previous feed-forward
neural network parsing model can be viewed
as a coarse approximation to inference with
this class of graphical model. By construct-
ing a more accurate but still tractable ap-
proximation, we significantly improve pars-
ing accuracy, suggesting that ISBNs provide
a good idealization for parsing. This gener-
ative model of parsing achieves state-of-the-
art results on WSJ text and 8% error reduc-
tion over the baseline neural network parser.

1 Introduction

Latent variable models have recently been of in-
creasing interest in Natural Language Processing,
and in parsing in particular (e.g. (Koo and Collins,
2005; Matsuzaki et al., 2005; Riezler et al., 2002)).
Latent variables provide a principled way to in-
clude features in a probability model without need-
ing to have data labeled with those features in ad-
vance. Instead, a labeling with these features can
be induced as part of the training process. The
difficulty with latent variable models is that even
small numbers of latent variables can lead to com-
putationally intractable inference (a.k.a. decoding,
parsing). In this paper we propose a solution to
this problem based on dynamic Sigmoid Belief Net-
works (SBNs) (Neal, 1992). The dynamic SBNs
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which we peopose, called Incremental Sigmoid Be-
lief Networks (ISBNs) have large numbers of latent
variables, which makes exact inference intractable.
However, they can be approximated sufficiently well
to build fast and accurate statistical parsers which in-
duce features during training.

We use SBNs in a generative history-based model
of constituent structure parsing. The probability of
an unbounded structure is decomposed into a se-
quence of probabilities for individual derivation de-
cisions, each decision conditioned on the unbounded
history of previous decisions. The most common ap-
proach to handling the unbounded nature of the his-
tories is to choose a pre-defined set of features which
can be unambiguously derived from the history (e.g.
(Charniak, 2000; Collins, 1999)). Decision prob-
abilities are then assumed to be independent of all
information not represented by this finite set of fea-
tures. Another previous approach is to use neural
networks to compute a compressed representation of
the history and condition decisions on this represen-
tation (Henderson, 2003; Henderson, 2004). It is
possible that an unbounded amount of information
is encoded in the compressed representation via its
continuous values, but it is not clear whether this is
actually happening due to the lack of any principled
interpretation for these continuous values.

Like the former approach, we assume that there
are a finite set of features which encode the relevant
information about the parse history. But unlike that
approach, we allow feature values to be ambiguous,
and represent each feature as a distribution over (bi-
nary) values. In other words, these history features
are treated as latent variables. Unfortunately, inter-
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preting the history representations as distributions
over discrete values of latent variables makes the ex-
act computation of decision probabilities intractable.
Exact computation requires marginalizing out the la-
tent variables, which involves summing over all pos-
sible vectors of discrete values, which is exponential
in the length of the vector.

We propose two forms of approximation for dy-
namic SBNs, a neural network approximation and
a form of mean field approximation (Saul and Jor-
dan, 1999). We first show that the previous neural
network model of (Henderson, 2003) can be viewed
as a coarse approximation to inference with ISBNSs.
We then propose an incremental mean field method,
which results in an improved approximation over
the neural network but remains tractable. The re-
sulting parser achieves significantly higher accuracy
than the neural network parser (90.0% F-measure vs
89.1%). We argue that this correlation between bet-
ter approximation and better accuracy suggests that
dynamic SBNSs are a good abstract model for natural
language parsing.

2 Sigmoid Belief Networks

A belief network, or a Bayesian network, is a di-
rected acyclic graph which encodes statistical de-
pendencies between variables. Each variable .S; in
the graph has an associated conditional probability
distributions P(S;|Par(S;)) over its values given
the values of its parents Par(S;) in the graph. A
Sigmoid Belief Network (Neal, 1992) is a particu-
lar type of belief networks with binary variables and
conditional probability distributions in the form of
the logistic sigmoid function:
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where J;; is the weight for the edge from variable
S; to variable \S;. In this paper we consider a gen-
eralized version of SBNs where we allow variables
with any range of discrete values. We thus general-
ize the logistic sigmoid function to the normalized
exponential (a.k.a. softmax) function to define the
conditional probabilities for non-binary variables.
Exact inference with all but very small SBNs
is not tractable. Initially sampling methods were
used (Neal, 1992), but this is also not feasible for
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large networks, especially for the dynamic models
of the type described in section 2.2. Variational
methods have also been proposed for approximat-
ing SBNs (Saul and Jordan, 1999). The main idea of
variational methods (Jordan et al., 1999) is, roughly,
to construct a tractable approximate model with a
number of free parameters. The free parameters are
set so that the resulting approximate model is as
close as possible to the original graphical model for
a given inference problem.

2.1 Mean Field Approximation M ethods

The simplest example of a variation method is the
mean field method, originally introduced in statis-
tical mechanics and later applied to unsupervised
neural networks in (Hinton et al., 1995). Let us de-
note the set of visible variables in the model (i.e. the
inputs and outputs) by V' and hidden variables by
H = hq,...,h;. The mean field method uses a fully
factorized distribution () as the approximate model:

QH|V) = HQ (hi|V).

where each @); is the distribution of an individual
latent variable. The independence between the vari-
ables h; in this approximate distribution ) does not
imply independence of the free parameters which
define the ;. These parameters are set to min-
imize the Kullback-Leibler divergence (Cover and
Thomas, 1991) between the approximate distribu-
tion Q(H|V') and the true distribution P(H|V):

(H!V)
P) E (H|V)1 , 1
or, equivalently, to maximize the expression:
P(H,V)
Ly = E H|V)In ———. 2

The expression Ly is a lower bound on the log-
likelihood In P(V'). It is used in the mean field
theory (Saul and Jordan, 1999) to approximate the
likelihood. However, in our case of dynamic graph-
ical models, we have to use a different approach
which allows us to construct an incremental parsing
method without needing to introduce the additional
parameters proposed in (Saul and Jordan, 1999).
We will describe our modification of the mean field
method in section 3.3.



2.2 Dynamics

Dynamic Bayesian networks are Bayesian networks
applied to arbitrarily long sequences. A new set of
variables is instantiated for each position in the se-
quence, but the edges and weights for these variables
are the same as in other positions. The edges which
connect variables instantiated for different positions
must be directed forward in the sequence, thereby
allowing a temporal interpretation of the sequence.
Typically a dynamic Bayesian Network will only in-
volve edges between adjacent positions in the se-
guence (i.e. they are Markovian), but in our parsing
models the pattern of interconnection is determined
by structural locality, rather than sequence locality,
as in the neural networks of (Henderson, 2003).

Using structural locality to define the graph in a
dynamic SBN means that the subgraph of edges with
destinations at a given position cannot be determined
until all the parser decisions for previous positions
have been chosen. We therefore call these models
Incremental SBNs, because, at any given position
in the parse, we only know the graph of edges for
that position and previous positions in the parse. For
example in figure 1, discussed below, it would not
be possible to draw the portion of the graph after ¢,
because we do not yet know the decision d.

The incremental specification of model structure
means that we cannot use an undirected graphical
model, such as Conditional Random Fields. With
a directed dynamic model, all edges connecting the
known portion of the graph to the unknown portion
of the graph are directed toward the unknown por-
tion. Also there are no variables in the unknown
portion of the graph whose values are known (i.e. no
visible variables), because at each step in a history-
based model the decision probability is conditioned
only on the parsing history. Only visible variables
can result in information being reflected backward
through a directed edge, so it is impossible for any-
thing in the unknown portion of the graph to affect
the probabilities in the known portion of the graph.
Therefore inference can be performed by simply ig-
noring the unknown portion of the graph, and there
is no need to sum over all possible structures for the
unknown portion of the graph, as would be neces-
sary for an undirected graphical model.
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Figure 1: Hlustration of an ISBN.

3 TheProbabilistic Model of Parsing

In this section we present our framework for syn-
tactic parsing with dynamic Sigmoid Belief Net-
works. We first specify the form of SBN we propose,
namely ISBNs, and then two methods for approx-
imating the inference problems required for pars-
ing. We only consider generative models of pars-
ing, since generative probability models are simpler
and we are focused on probability estimation, not
decision making. Although the most accurate pars-
ing models (Charniak and Johnson, 2005; Hender-
son, 2004; Collins, 2000) are discriminative, all the
most accurate discriminative models make use of a
generative model. More accurate generative models
should make the discriminative models which use
them more accurate as well. Also, there are some
applications, such as language modeling, which re-
quire generative models.

3.1 TheGraphical Model

In ISBNs, we use a history-based model, which de-
composes the probability of the parse as:

P(T) = P(D', ... D™) = [[ P(D'|D"..... D',
t

where T is the parse tree and D',..., D™ is its
equivalent sequence of parser decisions. Instead of
treating each D! as atomic decisions, it is convenient
to further split them into a sequence of elementary
decisions D' =dt, ... dt:

n-

P(DYDY, ..., DY) =[] P(di|n(t, k),
k

where h(t,k) denotes the

1 t—1 gt t
D,...,D ’d].”dk—l

parsing history
For example, a



decision to create a new constituent can be divided
in two elementary decisions: deciding to create a
constituent and deciding which label to assign to it.
We use a graphical model to define our proposed
class of probability models. An example graphical
model for the computation of P(d%|h(t,k)) is
illustrated in figure 1.

The graphical model is organized into vectors
of variables: latent state variable vectors St =
st', ..., st representing an intermediate state of the
parser at derivation step ¢/, and decision variable
vectors D¥ = dt ..., d!, representing a parser de-
cision at derivation step ¢, where ¢’ < t. Variables
whose value are given at the current decision (¢, k)
are shaded in figure 1, latent and output variables are
left unshaded.

As illustrated by the arrows in figure 1, the prob-
ability of each state variable s! depends on all the
variables in a finite set of relevant previous state and
decision vectors, but there are no direct dependen-
cies between the different variables in a single state
vector. Which previous state and decision vectors
are connected to the current state vector is deter-
mined by a set of structural relations specified by
the parser designer. For example, we could select
the most recent state where the same constituent was
on the top of the stack, and a decision variable rep-
resenting the constituent’s label. Each such selected
relation has its own distinct weight matrix for the
resulting edges in the graph, but the same weight
matrix is used at each derivation position where the
relation is relevant.

As indicated in figure 1, the probability of each
elementary decision dg depends both on the current
state vector S* and on the previously chosen ele-
mentary action dgfl from D*'. This probability dis-
tribution has the form of a normalized exponential:

ot

P(di = d|St dy )= D,y 1y (d) s M) 7
a0 Phee ) (d) 2V
where @,/ 1) is the indicator function of a set of
elementary decisions that may possibly follow the
parsing history h(t’, k), and the 17 are the weights.

For our experiments, we replicated the same pat-
tern of interconnection between state variables as
described in (Henderson, 2003).1 We also used the

YIn the neural network of (Henderson, 2003), our variables
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, (3)

same left-corner parsing strategy, and the same set of
decisions, features, and states. We refer the reader to
(Henderson, 2003) for details.

Exact computation with this model is not
tractable. Sampling of parse trees from the model
is not feasible, because a generative model defines a
joint model of both a sentence and a tree, thereby re-
quiring sampling over the space of sentences. Gibbs
sampling (Geman and Geman, 1984) is also impos-
sible, because of the huge space of variables and
need to resample after making each new decision in
the sequence. Thus, we know of no reasonable alter-
natives to the use of variational methods.

3.2 A Feed-Forward Approximation

The first model we consider is a strictly incremental
computation of a variational approximation, which
we will call the feed-forward approximation. It can
be viewed as the simplest form of mean field approx-
imation. As in any mean field approximation, each
of the latent variables is independently distributed.
But unlike the general case of mean field approxi-
mation, in the feed-forward approximation we only
allow the parameters of the distributions @; to de-
pend on the distributions of their parents. This addi-
tional constraint increases the potential for a large
Kullback-Leibler divergence with the true model,
defined in expression (1), but it significantly simpli-
fies the computations.

The set of hidden variables H in our graphical
model consists of all the state vectors S, ¢/ < t,
and the last decision d},.. All the previously observed
decisions h(t, k) comprise the set of visible vari-
ables V. The approximate fully factorisable distri-
bution Q(H|V') can be written as:

! !

QUEV) = () T (1) (1-u)" ™

y
t'

where 1!’ is the free parameter which determines the
distribution of state variable  at position ¢/, namely
its mean, and ¢}, (d..) is the free parameter which de-
termines the distribution over decisions dZ,.

Because we are only allowed to use information
about the distributions of the parent variables to

map to their “units”, and our dependencies/edges map to their
“links”.



compute the free parameters u;?', the optimal assign-
ment of values to the ' is:

w =a ('),

where o denotes the logistic sigmoid function and
nf/ is a weighted sum of the parent variables’ means:

DI SERTES i o

t”ERS ) j t"€RD(t') k

(4)

where RS(t') is the set of previous positions with
edges from their state vectors to the state vector at ¢/,
RD(t") is the set of previous positions with edges
from their decision vectors to the state vector at ¢/,
7(',t") is the relevant relation between the position
t" and the position ', and J7; and B]; are weight
matrices.

In order to maximize (2), the approximate distri-
bution of the next decisions ¢}, (d) should be set to

Dk (d) e2i Wik
> Pher) (d) e Warstt

as follows from expression (3). The resulting esti-
mate of the tree probability is given by:

~ [ [ gk(d).
tk

g (d) =

Q)

This approximation method replicates exactly the
computation of the feed-forward neural network
in (Henderson, 2003), where the above means M'EI
are equivalent to the neural network hidden unit acti-
vations. Thus, that neural network probability model
can be regarded as a simple approximation to the
graphical model introduced in section 3.1.

In addition to the drawbacks shared by any mean
field approximation method, this feed-forward ap-
proximation cannot capture backward reasoning.
By backward (a.k.a. top-down) reasoning we mean
the need to update the state vector means ! after
observing a decision dt, for ¢’ < t. The next section
discusses how backward reasoning can be incorpo-
rated in the approximate model.

3.3 A Mean Field Approximation

This section proposes a more accurate way to ap-
proximate ISBNs with mean field methods, which
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we will call the mean field approximation. Again,
we are interested in finding the distribution @2 which
maximizes the quantity Ly, in expression (2). The
decision distribution ¢},(d},) maximizes Ly, when it
has the same dependence on the state vector means
k. as in the feed-forward approximation, namely ex-
pression (5). However, as we mentioned above, the
feed-forward computation does not allow us to com-
pute the optimal values of state means p,;?'.

Optimally, after each new decision d};, we should
recompute all the means ! for all the state vec-
tors S*', ¢ < t. However, this would make the
method intractable, due to the length of derivations
in constituent parsing and the interdependence be-
tween these means. Instead, after making each deci-
sion d}, and adding it to the set of visible variables V/,
we recompute only means of the current state vector
St

The denominator of the normalized exponential
function in (3) does not allow us to compute Ly ex-
actly. Instead, we use a simple first order approxi-
mation:

Eq In Z cI)h(t,k) (d
d

~ ln Z (I)h(t,k) (d
d

Jexp(3 Waysh)

) exp(Y | W), (6)
;

where the expectation Eq|. . ] is taken over the state
vector S* distributed according to the approximate
distribution Q.

Unfortunately, even with this assumption there is
no analytic way to maximize Ly with respect to the
means uf, so we need to use numerical methods.
Assuming (6), we can rewrite the expression (2) as
follows, substituting the true P(H,V') defined by
the graphical model and the approximate distribu-
tion Q(H|V'), omitting parts independent of 1! :

k
Ly = Z—uﬁlnuﬁ -

+/J'z"77, + Z (I)h t,k") dk:’ ZWdt j/’L]

k' <k
—Zm@ﬁmywmzmwﬂ<n
J

k'<k

(1—ph)in (1- pt)

here, n! is computed from the previous relevant state
means and decisions as in (4). This expression is



concave with respect to the parameters pf, so the
global maximum can be found. We use coordinate-
wise ascent, where each 1! is selected by an efficient
line search (Press et al., 1996), while keeping other
s fixed.

3.4 Parameter Estimation

We train these models to maximize the fit of the
approximate model to the data. We use gradient
descent and a maximum likelihood objective func-
tion. This requires computation of the gradient of
the approximate log-likelihood with respect to the
model parameters. In order to compute these deriva-
tives, the error should be propagated all the way
back through the structure of the graphical model.
For the feed-forward approximation, computation of
the derivatives is straightforward, as in neural net-
works. But for the mean field approximation, it re-
quires computation of the derivatives of the means
wt with respect to the other parameters in expres-
sion (7). The use of a numerical search in the mean
field approximation makes the analytical computa-
tion of these derivatives impossible, so a different
method needs to be used to compute their values. If
maximization of Lﬁ}k is done until convergence, then
the derivatives of Lﬁ;’“ with respect to 4! are close to
zero:

t,k
th _ oLy,
? aﬂf

This system of equations allows us to use implicit

differentiation to compute the needed derivatives.

~ (0 forall 5.

4 Experimental Evaluation

In this section we evaluate the two approximations
to dynamic SBNs discussed in the previous section,
the feed-forward method equivalent to the neural
network of (Henderson, 2003) (NN method) and the
mean field method (MF method). The hypothesis
we wish to test is that the more accurate approxima-
tion of dynamic SBNs will result in a more accurate
model of constituent structure parsing. If this is true,
then it suggests that dynamic SBNs of the form pro-
posed here are a good abstract model of the nature
of natural language parsing.

We used the Penn Treebank WSJ corpus (Marcus
et al., 1993) to perform the empirical evaluation of
the considered approaches. It is expensive to train
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R P F1
Bikel, 2004 87.9 | 88.8 | 88.3
Taskar et al., 2004 89.1 | 89.1 | 89.1
NN method 89.1 | 89.2 | 89.1
Turian and Melamed, 2006 || 89.3 | 89.6 | 89.4
M F method 89.3 | 90.7 | 90.0
Charniak, 2000 90.0 | 90.2 | 90.1

Table 1: Percentage labeled constituent recall (R),
precision (P), combination of both (F1) on the test-
ing set.

the MF approximation on the whole WSJ corpus, so
instead we use only sentences of length at most 15,
as in (Taskar et al., 2004) and (Turian and Melamed,
2006). The standard split of the corpus into training
(sections 2-22, 9,753 sentences), validation (section
24, 321 sentences), and testing (section 23, 603 sen-
tences) was performed.?

As in (Henderson, 2003; Turian and Melamed,
2006) we used a publicly available tagger (Ratna-
parkhi, 1996) to provide the part-of-speech tag for
each word in the sentence. For each tag, there is an
unknown-word vocabulary item which is used for all
those words which are not sufficiently frequent with
that tag to be included individually in the vocabu-
lary. We only included a specific tag-word pair in the
vocabulary if it occurred at least 20 time in the train-
ing set, which (with tag-unknown-word pairs) led to
the very small vocabulary of 567 tag-word pairs.

During parsing with both the NN method and the
MF method, we used beam search with a post-word
beam of 10. Increasing the beam size beyond this
value did not significantly effect parsing accuracy.
For both of the models, the state vector size of 40
was used. All the parameters for both the NN and
MF models were tuned on the validation set. A sin-
gle best model of each type was then applied to the
final testing set.

Table 1 lists the results of the NN approximation
and the MF approximation, along with results of dif-

2Training of our MF method on this subset of WSJ took less
than 6 days on a standard desktop PC. We would expect that
a model for the entire WSJ corpus can be trained in about 3
months time. The training time is about linear with the num-
ber of words, but a larger state vector is needed to accommo-
date all the information. The long training times on the entire
WSJ would not allow us to tune the model parameters properly,
which would have increased the randomness of the empirical
comparison, although it would be feasible for building a sys-
tem.



ferent generative and discriminative parsing meth-
ods (Bikel, 2004; Taskar et al., 2004; Turian and
Melamed, 2006; Charniak, 2000) evaluated in the
same experimental setup. The MF model improves
over the baseline NN approximation, with an error
reduction in F-measure exceeding 8%. This im-
provement is statically significant.> The MF model
achieves results which do not appear to be signifi-
cantly different from the results of the best model
in the list (Charniak, 2000). It should also be noted
that the model (Charniak, 2000) is the most accu-
rate generative model on the standard WSJ parsing
benchmark, which confirms the viability of our gen-
erative model.

These experimental results suggest that Incre-
mental Sigmoid Belief Networks are an appropriate
model for natural language parsing. Even approxi-
mations such as those tested here, with a very strong
factorisability assumption, allow us to build quite
accurate parsing models. The main drawback of our
proposed mean field approach is the relative compu-
tational complexity of the numerical procedure used
to maximize L'{;’“. But this approximation has suc-
ceeded in showing that a more accurate approxima-
tion of ISBNs results in a more accurate parser. We
believe this provides strong justification for more ac-
curate approximations of ISBNs for parsing.

5 Reéated Work

There has not been much previous work on graph-
ical models for full parsing, although recently sev-
eral latent variable models for parsing have been
proposed (Koo and Collins, 2005; Matsuzaki et al.,
2005; Riezler et al., 2002). In (Koo and Collins,
2005), an undirected graphical model is used for
parse reranking. Dependency parsing with dynamic
Bayesian networks was considered in (Peshkin and
Savova, 2005), with limited success. Their model
is very different from ours. Roughly, it considered
the whole sentence at a time, with the graphical
model being used to decide which words correspond
to leaves of the tree. The chosen words are then
removed from the sentence and the model is recur-
sively applied to the reduced sentence.

Undirected graphical models, in particular Condi-

3We measured significance of all the experiments in this pa-
per with the randomized significance test (Yeh, 2000).
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tional Random Fields, are the standard tools for shal-
low parsing (Sha and Pereira, 2003). However, shal-
low parsing is effectively a sequence labeling prob-
lem and therefore differs significantly from full pars-
ing. As discussed in section 2.2, undirected graph-
ical models do not seem to be suitable for history-
based full parsing models.

Sigmoid Belief Networks were used originally
for character recognition tasks, but later a dynamic
modification of this model was applied to the rein-
forcement learning task (Sallans, 2002). However,
their graphical model, approximation method, and
learning method differ significantly from those of
this paper.

6 Conclusions

This paper proposes a new generative framework
for constituent parsing based on dynamic Sigmoid
Belief Networks with vectors of latent variables.
Exact inference with the proposed graphical model
(called Incremental Sigmoid Belief Networks) is
not tractable, but two approximations are consid-
ered. First, it is shown that the neural network
parser of (Henderson, 2003) can be considered as a
simple feed-forward approximation to the graphical
model. Second, a more accurate but still tractable
approximation based on mean field theory is pro-
posed. Both methods are empirically compared, and
the mean field approach achieves significantly better
results, which are non-significantly different from
the results of the most accurate generative parsing
model (Charniak, 2000) on our testing set. The fact
that a more accurate approximation leads to a more
accurate parser suggests that ISBNs are a good ab-
stract model for constituent structure parsing. This
empirical result motivates research into more accu-
rate approximations of dynamic SBNSs.

We focused in this paper on generative models
of parsing. The results of such a generative model
can be easily improved by a discriminative rerank-
ing model, even without any additional feature en-
gineering. For example, the discriminative train-
ing techniques successfully applied in (Henderson,
2004) to the feed-forward neural network model can
be directly applied to the mean field model pro-
posed in this paper. The same is true for rerank-
ing with data-defined kernels, with which we would



expect similar improvements as were achieved with
the neural network parser (Henderson and Titov,
2005). Such improvements should situate the result-
ing model among the best current parsing models.
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