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Abstract

We present a new approach to relation ex-

traction that requires only a handful of train-

ing examples. Given a few pairs of named

entities known to exhibit or not exhibit a

particular relation, bags of sentences con-

taining the pairs are extracted from the web.

We extend an existing relation extraction

method to handle this weaker form of su-

pervision, and present experimental results

demonstrating that our approach can reliably

extract relations from web documents.

1 Introduction

A growing body of recent work in information

extraction has addressed the problem of relation

extraction (RE), identifying relationships between

entities stated in text, such as LivesIn(Person,

Location) or EmployedBy(Person, Company).

Supervised learning has been shown to be effective

for RE (Zelenko et al., 2003; Culotta and Sorensen,

2004; Bunescu and Mooney, 2006); however, anno-

tating large corpora with examples of the relations

to be extracted is expensive and tedious.

In this paper, we introduce a supervised learning

approach to RE that requires only a handful of

training examples and uses the web as a corpus.

Given a few pairs of well-known entities that

clearly exhibit or do not exhibit a particular re-

lation, such as CorpAcquired(Google, YouTube)

and not(CorpAcquired(Yahoo, Microsoft)), a

search engine is used to find sentences on the web

that mention both of the entities in each of the pairs.

Although not all of the sentences for positive pairs

will state the desired relationship, many of them

will. Presumably, none of the sentences for negative

pairs state the targeted relation. Multiple instance

learning (MIL) is a machine learning framework

that exploits this sort of weak supervision, in

which a positive bag is a set of instances which is

guaranteed to contain at least one positive example,

and a negative bag is a set of instances all of which

are negative. MIL was originally introduced to

solve a problem in biochemistry (Dietterich et

al., 1997); however, it has since been applied to

problems in other areas such as classifying image

regions in computer vision (Zhang et al., 2002), and

text categorization (Andrews et al., 2003; Ray and

Craven, 2005).

We have extended an existing approach to rela-

tion extraction using support vector machines and

string kernels (Bunescu and Mooney, 2006) to han-

dle this weaker form of MIL supervision. This ap-

proach can sometimes be misled by textual features

correlated with the specific entities in the few train-

ing pairs provided. Therefore, we also describe a

method for weighting features in order to focus on

those correlated with the target relation rather than

with the individual entities. We present experimen-

tal results demonstrating that our approach is able to

accurately extract relations from the web by learning

from such weak supervision.

2 Problem Description

We address the task of learning a relation extrac-

tion system targeted to a fixed binary relationship

R. The only supervision given to the learning algo-
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rithm is a small set of pairs of named entities that are

known to belong (positive) or not belong (negative)

to the given relationship. Table 1 shows four posi-

tive and two negative example pairs for the corpo-

rate acquisition relationship. For each pair, a bag of

sentences containing the two arguments can be ex-

tracted from a corpus of text documents. The corpus

is assumed to be sufficiently large and diverse such

that, if the pair is positive, it is highly likely that the

corresponding bag contains at least one sentence that

explicitly asserts the relationship R between the two

arguments. In Section 6 we describe a method for

extracting bags of relevant sentences from the web.

+/− Arg a1 Arg a2

+ Google YouTube
+ Adobe Systems Macromedia
+ Viacom DreamWorks
+ Novartis Eon Labs
− Yahoo Microsoft
− Pfizer Teva

Table 1: Corporate Acquisition Pairs.

Using a limited set of entity pairs (e.g. those in

Table 1) and their associated bags as training data,

the aim is to induce a relation extraction system that

can reliably decide whether two entities mentioned

in the same sentence exhibit the target relationship

or not. In particular, when tested on the example

sentences from Figure 1, the system should classify

S1, S3,and S4 as positive, and S2 and S5 as negative.

+/S1: Search engine giant Google has bought video-
sharing website YouTube in a controversial $1.6 billion
deal.

−/S2: The companies will merge Google’s search ex-
pertise with YouTube’s video expertise, pushing what
executives believe is a hot emerging market of video
offered over the Internet.

+/S3: Google has acquired social media company,
YouTube for $1.65 billion in a stock-for-stock transaction
as announced by Google Inc. on October 9, 2006.

+/S4: Drug giant Pfizer Inc. has reached an agreement
to buy the private biotechnology firm Rinat Neuroscience
Corp., the companies announced Thursday.

−/S5: He has also received consulting fees from Al-
pharma, Eli Lilly and Company, Pfizer, Wyeth Pharmaceu-
ticals, Rinat Neuroscience, Elan Pharmaceuticals, and For-
est Laboratories.

Figure 1: Sentence examples.

As formulated above, the learning task can be

seen as an instance of multiple instance learning.

However, there are important properties that set it

apart from problems previously considered in MIL.

The most distinguishing characteristic is that the

number of bags is very small, while the average size

of the bags is very large.

3 Multiple Instance Learning

Since its introduction by Dietterich (1997), an ex-

tensive and quite diverse set of methods have been

proposed for solving the MIL problem. For the task

of relation extraction, we consider only MIL meth-

ods where the decision function can be expressed in

terms of kernels computed between bag instances.

This choice was motivated by the comparatively

high accuracy obtained by kernel-based SVMs when

applied to various natural language tasks, and in par-

ticular to relation extraction. Through the use of ker-

nels, SVMs (Vapnik, 1998; Schölkopf and Smola,

2002) can work efficiently with instances that im-

plicitly belong to a high dimensional feature space.

When used for classification, the decision function

computed by the learning algorithm is equivalent to

a hyperplane in this feature space. Overfitting is

avoided in the SVM formulation by requiring that

positive and negative training instances be maxi-

mally separated by the decision hyperplane.

Gartner et al. (2002) adapted SVMs to the MIL

setting using various multi-instance kernels. Two

of these – the normalized set kernel, and the statis-

tic kernel – have been experimentally compared to

other methods by Ray and Craven (2005), with com-

petitive results. Alternatively, a simple approach to

MIL is to transform it into a standard supervised

learning problem by labeling all instances from pos-

itive bags as positive. An interesting outcome of the

study conducted by Ray and Craven (2005) was that,

despite the class noise in the resulting positive ex-

amples, such a simple approach often obtains com-

petitive results when compared against other more

sophisticated MIL methods.

We believe that an MIL method based on multi-

instance kernels is not appropriate for training

datasets that contain just a few, very large bags. In

a multi-instance kernel approach, only bags (and

not instances) are considered as training examples,
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which means that the number of support vectors is

going to be upper bounded by the number of train-

ing bags. Taking the bags from Table 1 as a sam-

ple training set, the decision function is going to be

specified by at most seven parameters: the coeffi-

cients for at most six support vectors, plus an op-

tional bias parameter. A hypothesis space character-

ized by such a small number of parameters is likely

to have insufficient capacity.

Based on these observations, we decided to trans-

form the MIL problem into a standard supervised

problem as described above. The use of this ap-

proach is further motivated by its simplicity and its

observed competitive performance on very diverse

datasets (Ray and Craven, 2005). Let X be the set

of bags used for training, Xp ⊆ X the set of posi-

tive bags, and Xn ⊆ X the set of negative bags. For

any instance x ∈ X from a bag X ∈ X , let φ(x)
be the (implicit) feature vector representation of x.

Then the corresponding SVM optimization problem

can be formulated as in Figure 2:

minimize:

J(w, b, ξ) = 1
2‖w‖

2 + C
L

(

cp
Ln

L
Ξp + cn

Lp

L
Ξn

)

Ξp =
∑

X∈Xp

∑

x∈X

ξx

Ξn =
∑

X∈Xn

∑

x∈X

ξx

subject to:

w φ(x) + b ≥ +1− ξx, ∀x ∈ X ∈ Xp

w φ(x) + b ≤ −1 + ξx, ∀x ∈ X ∈ Xn

ξx ≥ 0

Figure 2: SVM Optimization Problem.

The capacity control parameter C is normalized

by the total number of instances L = Lp + Ln =
∑

X∈Xp
|X| +

∑

X∈Xn
|X|, so that it remains in-

dependent of the size of the dataset. The additional

non-negative parameter cp (cn = 1−cp) controls the

relative influence that false negative vs. false posi-

tive errors have on the value of the objective func-

tion. Because not all instances from positive bags

are real positive instances, it makes sense to have

false negative errors be penalized less than false pos-

itive errors (i.e. cp < 0.5).

In the dual formulation of the optimization prob-

lem from Figure 2, bag instances appear only inside

dot products of the form K(x1, x2) = φ(x1)φ(x2).
The kernel K is instantiated to a subsequence ker-

nel, as described in the next section.

4 Relation Extraction Kernel

The training bags consist of sentences extracted

from online documents, using the methodology de-

scribed in Section 6. Parsing web documents in

order to obtain a syntactic analysis often gives un-

reliable results – the type of narrative can vary

greatly from one web document to another, and sen-

tences with grammatical errors are frequent. There-

fore, for the initial experiments, we used a modi-

fied version of the subsequence kernel of Bunescu

and Mooney (2006), which does not require syn-

tactic information. This kernel computes the num-

ber of common subsequences of tokens between two

sentences. The subsequences are constrained to be

“anchored” at the two entity names, and there is

a maximum number of tokens that can appear in

a sequence. For example, a subsequence feature

for the sentence S1 in Figure 1 is s̃ = “〈e1〉 . . .
bought . . . 〈e2〉 . . . in . . . billion . . . deal”, where

〈e1〉 and 〈e2〉 are generic placeholders for the two

entity names. The subsequence kernel induces a

feature space where each dimension corresponds

to a sequence of words. Any such sequence that

matches a subsequence of words in a sentence exam-

ple is down-weighted as a function of the total length

of the gaps between every two consecutive words.

More exactly, let s = w1w2 . . . wk be a sequence of

k words, and s̃ = w1 g1 w2 g2 . . . wk−1 gk−1 wk a

matching subsequence in a relation example, where

gi stands for any sequence of words between wi and

wi+1. Then the sequence s will be represented in the

relation example as a feature with weight computed

as τ(s) = λg(s̃). The parameter λ controls the mag-

nitude of the gap penalty, where g(s̃) =
∑

i |gi| is

the total gap.

Many relations, like the ones that we explore in

the experimental evaluation, cannot be expressed

without using at least one content word. We there-

fore modified the kernel computation to optionally

ignore subsequence patterns formed exclusively of
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stop words and punctuation signs. In Section 5.1,

we introduce a new weighting scheme, wherein a

weight is assigned to every token. Correspondingly,

every sequence feature will have an additional mul-

tiplicative weight, computed as the product of the

weights of all the tokens in the sequence. The aim

of this new weighting scheme, as detailed in the next

section, is to eliminate the bias caused by the special

structure of the relation extraction MIL problem.

5 Two Types of Bias

As already hinted at the end of Section 2, there is

one important property that distinguishes the cur-

rent MIL setting for relation extraction from other

MIL problems: the training dataset contains very

few bags, and each bag can be very large. Con-

sequently, an application of the learning model de-

scribed in Sections 3 & 4 is bound to be affected by

the following two types of bias:

� [Type I Bias] By definition, all sentences inside

a bag are constrained to contain the same two ar-

guments. Words that are semantically correlated

with either of the two arguments are likely to oc-

cur in many sentences. For example, consider the

sentences S1 and S2 from the bag associated with

“Google” and “YouTube” (as shown in Figure 1).

They both contain the words “search” – highly cor-

related with “Google”, and “video” – highly corre-

lated with “YouTube”, and it is likely that a signifi-

cant percentage of sentences in this bag contain one

of the two words (or both). The two entities can be

mentioned in the same sentence for reasons other

than the target relation R, and these noisy training

sentences are likely to contain words that are corre-

lated with the two entities, without any relationship

to R. A learning model where the features are based

on words, or word sequences, is going to give too

much weight to words or combinations of words that

are correlated with either of individual arguments.

This overweighting will adversely affect extraction

performance through an increased number of errors.

A method for eliminating this type of bias is intro-

duced in Section 5.1.

� [Type II Bias] While Type I bias is due to words

that are correlated with the arguments of a relation

instance, the Type II bias is caused by words that

are specific to the relation instance itself. Using

FrameNet terminology (Baker et al., 1998), these

correspond to instantiated frame elements. For ex-

ample, the corporate acquisition frame can be seen

as a subtype of the “Getting” frame in FrameNet.

The core elements in this frame are the Recipi-

ent (e.g. Google) and the Theme (e.g. YouTube),

which for the acquisition relationship coincide with

the two arguments. They do not contribute any

bias, since they are replaced with the generic tags

〈e1〉 and 〈e2〉 in all sentences from the bag. There

are however other frame elements – peripheral, or

extra-thematic – that can be instantiated with the

same value in many sentences. In Figure 1, for in-

stance, sentence S3 contains two non-core frame ele-

ments: the Means element (e.g “in a stock-for-stock

transaction”) and the Time element (e.g. “on Oc-

tober 9, 2006”). Words from these elements, like

“stock”, or “October”, are likely to occur very often

in the Google-YouTube bag, and because the train-

ing dataset contains only a few other bags, subse-

quence patterns containing these words will be given

too much weight in the learned model. This is prob-

lematic, since these words can appear in many other

frames, and thus the learned model is likely to make

errors. Instead, we would like the model to fo-

cus on words that trigger the target relationship (in

FrameNet, these are the lexical units associated with

the target frame).

5.1 A Solution for Type I Bias

In order to account for how strongly the words in a

sequence are correlated with either of the individual

arguments of the relation, we modify the formula for

the sequence weight τ(s) by factoring in a weight

τ(w) for each word in the sequence, as illustrated in

Equation 1.

τ(s) = λg(s̃) ·
∏

w∈s

τ(w) (1)

Given a predefined set of weights τ(w), it is straight-

forward to update the recursive computation of

the subsequence kernel so that it reflects the new

weighting scheme.

If all the word weights are set to 1, then the new

kernel is equivalent to the old one. What we want,

however, is a set of weights where words that are

correlated with either of the two arguments are given

lower weights. For any word, the decrease in weight
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should reflect the degree of correlation between that

word and the two arguments. Before showing the

formula used for computing the word weights, we

first introduce some notation:

• Let X ∈ X be an arbitrary bag, and let X.a1

and X.a2 be the two arguments associated with

the bag.

• Let C(X) be the size of the bag (i.e. the num-

ber of sentences in the bag), and C(X, w) the

number of sentences in the bag X that contain

the word w. Let P (w|X) = C(X, w)/C(X).

• Let P (w|X.a1 ∨ X.a2) be the probability that

the word w appears in a sentence due only to

the presence of X.a1 or X.a2, assuming X.a1

and X.a2 are independent causes for w.

The word weights are computed as follows:

τ(w) =
C(X, w)− P (w|X.a1 ∨X.a2) · C(X)

C(X, w)

= 1−
P (w|X.a1 ∨X.a2)

P (w|X)
(2)

The quantity P (w|X.a1 ∨ X.a2) · C(X) represents

the expected number of sentences in which w would

occur, if the only causes were X.a1 or X.a2, inde-

pendent of each other. We want to discard this quan-

tity from the total number of occurrences C(X, w),
so that the effect of correlations with X.a1 or X.a2

is eliminated.

We still need to compute P (w|X.a1∨X.a2). Be-

cause in the definition of P (w|X.a1∨X.a2), the ar-

guments X.a1 and X.a2 were considered indepen-

dent causes, P (w|X.a1 ∨ X.a2) can be computed

with the noisy-or operator (Pearl, 1986):

P (·) = 1−(1−P (w|a1)) · (1−P (w|a2)) (3)

= P (w|a1)+P (w|a2)−P (w|a1) · P (w|a2)

The quantity P (w|a) represents the probability that

the word w appears in a sentence due only to the

presence of a, and it could be estimated using counts

on a sufficiently large corpus. For our experimen-

tal evaluation, we used the following approxima-

tion: given an argument a, a set of sentences con-

taining a are extracted from web documents (de-

tails in Section 6). Then P (w|a) is simply approxi-

mated with the ratio of the number of sentences con-

taining w over the total number of sentences, i.e.

P (w|a) = C(w, a)/C(a). Because this may be an

overestimate (w may appear in a sentence contain-

ing a due to causes other than a), and also because

of data sparsity, the quantity τ(w) may sometimes

result in a negative value – in these cases it is set to

0, which is equivalent to ignoring the word w in all

subsequence patterns.

6 MIL Relation Extraction Datasets

For the purpose of evaluation, we created two

datasets: one for corporate acquisitions, as shown

in Table 2, and one for the person-birthplace rela-

tion, with the example pairs from Table 3. In both

tables, the top part shows the training pairs, while

the bottom part shows the test pairs.

+/− Arg a1 Arg a2 Size

+ Google YouTube 1375
+ Adobe Systems Macromedia 622
+ Viacom DreamWorks 323
+ Novartis Eon Labs 311
− Yahoo Microsoft 163
− Pfizer Teva 247
+ Pfizer Rinat Neuroscience 50 (41)
+ Yahoo Inktomi 433 (115)
− Google Apple 281
− Viacom NBC 231

Table 2: Corporate Acquisition Pairs.

+/− Arg a1 Arg a2 Size

+ Franz Kafka Prague 552
+ Andre Agassi Las Vegas 386
+ Charlie Chaplin London 292
+ George Gershwin New York 260
− Luc Besson New York 74
− Wolfgang A. Mozart Vienna 288
+ Luc Besson Paris 126 (6)
+ Marie Antoinette Vienna 105 (39)
− Charlie Chaplin Hollywood 266
− George Gershwin London 104

Table 3: Person-Birthplace Pairs.

Given a pair of arguments (a1, a2), the corre-

sponding bag of sentences is created as follows:

� A query string “a1 ∗ ∗ ∗ ∗ ∗ ∗ ∗ a2” containing

seven wildcard symbols between the two arguments

is submitted to Google. The preferences are set to

search only for pages written in English, with Safe-

search turned on. This type of query will match doc-

uments where an occurrence of a1 is separated from

an occurrence of a2 by at most seven content words.

This is an approximation of our actual information
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need: “return all documents containing a1 and a2 in

the same sentence”.

� The returned documents (limited by Google to

the first 1000) are downloaded, and then the text

is extracted using the HTML parser from the Java

Swing package. Whenever possible, the appropriate

HTML tags (e.g. BR, DD, P, etc.) are used as hard

end-of-sentence indicators. The text is further seg-

mented into sentences with the OpenNLP1 package.

� Sentences that do not contain both arguments a1

and a2 are discarded. For every remaining sentence,

we find the occurrences of a1 and a2 that are clos-

est to each other, and create a relation example by

replacing a1 with 〈e1〉 and a2 with 〈e2〉. All other

occurrences of a1 and a2 are replaced with a null

token ignored by the subsequence kernel.

The number of sentences in every bag is shown in

the last column of Tables 2 & 3. Because Google

also counts pages that are deemed too similar in the

first 1000, some of the bags can be relatively small.

As described in Section 5.1, the word-argument

correlations are modeled through the quantity

P (w|a) = C(w, a)/C(a), estimated as the ratio be-

tween the number of sentences containing w and a,

and the number of sentences containing a. These

counts are computed over a bag of sentences con-

taining a, which is created by querying Google for

the argument a, and then by processing the results

as described above.

7 Experimental Evaluation

Each dataset is split into two sets of bags: one

for training and one for testing. The test dataset

was purposefully made difficult by including neg-

ative bags with arguments that during training were

used in positive bags, and vice-versa. In order to

evaluate the relation extraction performance at the

sentence level, we manually annotated all instances

from the positive test bags. The last column in Ta-

bles 2 & 3 shows, between parentheses, how many

instances from the positive test bags are real pos-

itive instances. The corporate acquisition test set

has a total of 995 instances, out of which 156 are

positive. The person-birthplace test set has a total

of 601 instances, and only 45 of them are positive.

Extrapolating from the test set distribution, the pos-

1http://opennlp.sourceforge.net

itive bags in the person-birthplace dataset are sig-

nificantly sparser in real positive instances than the

positive bags in the corporate acquisition dataset.

The subsequence kernel described in Section 4

was used as a custom kernel for the LibSVM2 Java

package. When run with the default parameters,

the results were extremely poor – too much weight

was given to the slack term in the objective func-

tion. Minimizing the regularization term is essen-

tial in order to capture subsequence patterns shared

among positive bags. Therefore LibSVM was mod-

ified to solve the optimization problem from Fig-

ure 2, where the capacity parameter C is normal-

ized by the size of the transformed dataset. In this

new formulation, C is set to its default value of 1.0
– changing it to other values did not result in signifi-

cant improvement. The trade-off between false pos-

itive and false negative errors is controlled by the

parameter cp. When set to its default value of 0.5,

false-negative errors and false positive errors have

the same impact on the objective function. As ex-

pected, setting cp to a smaller value (0.1) resulted

in better performance. Tests with even lower values

did not improve the results.

We compare the following four systems:

� SSK–MIL: This corresponds to the MIL formu-

lation from Section 3, with the original subsequence

kernel described in Section 4.

� SSK–T1: This is the SSK–MIL system aug-

mented with word weights, so that the Type I bias

is reduced, as described in Section 5.1.

� BW-MIL: This is a bag-of-words kernel, in

which the relation examples are classified based on

the unordered words contained in the sentence. This

baseline shows the performance of a standard text-

classification approach to the problem using a state-

of-the art algorithm (SVM).

� SSK–SIL: This corresponds to the original sub-

sequence kernel trained with traditional, single in-

stance learning (SIL) supervision. For evaluation,

we train on the manually labeled instances from the

test bags. We use a combination of one positive bag

and one negative bag for training, while the other

two bags are used for testing. The results are aver-

aged over all four possible combinations. Note that

the supervision provided to SSK–SIL requires sig-

2http://www.csie.ntu.edu.tw/˜cjlin/libsvm
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Figure 3: Precision-Recall graphs on the two datasets.

nificantly more annotation effort, therefore, given a

sufficient amount of training examples, we expect

this system to perform at least as well as its MIL

counterpart.

In Figure 3, precision is plotted against recall by

varying a threshold on the value of the SVM deci-

sion function. To avoid clutter, we show only the

graphs for the first three systems. In Table 4 we

show the area under the precision recall curves of

all four systems. Overall, the learned relation extrac-

tors are able to identify the relationship in novel sen-

tences quite accurately and significantly out-perform

a bag-of-words baseline. The new version of the

subsequence kernel SSK–T1 is significantly more

accurate in the MIL setting than the original sub-

sequence kernel SSK–MIL, and is also competitive

with SSK–SIL, which was trained using a reason-

able amount of manually labeled sentence examples.

Dataset SSK–MIL SSK–T1 BW–MIL SSK–SIL
(a) CA 76.9% 81.1% 45.9% 80.4%
(b) PB 72.5% 78.2% 69.2% 73.4%

Table 4: Area Under Precision-Recall Curve.

8 Future Work

An interesting potential application of our approach

is a web relation-extraction system similar to Google

Sets, in which the user provides only a handful of

pairs of entities known to exhibit or not to exhibit

a particular relation, and the system is used to find

other pairs of entities exhibiting the same relation.

Ideally, the user would only need to provide pos-

itive pairs. Sentences containing one of the rela-

tion arguments could be extracted from the web, and

likely negative sentence examples automatically cre-

ated by pairing this entity with other named enti-

ties mentioned in the sentence. In this scenario, the

training set can contain both false positive and false

negative noise. One useful side effect is that Type

I bias is partially removed – some bias still remains

due to combinations of at least two words, each cor-

related with a different argument of the relation.

We are also investigating methods for reducing Type

II bias, either by modifying the word weights, or by

integrating an appropriate measure of word distri-

bution across positive bags directly in the objective

function for the MIL problem. Alternatively, im-

plicit negative evidence can be extracted from sen-

tences in positive bags by exploiting the fact that, be-

sides the two relation arguments, a sentence from a

positive bag may contain other entity mentions. Any

pair of entities different from the relation pair is very

likely to be a negative example for that relation. This

is similar to the concept of negative neighborhoods

introduced by Smith and Eisner (2005), and has the

potential of eliminating both Type I and Type II bias.

9 Related Work

One of the earliest IE methods designed to work

with a reduced amount of supervision is that of

Hearst (1992), where a small set of seed patterns

is used in a bootstrapping fashion to mine pairs of
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hypernym-hyponym nouns. Bootstrapping is actu-

ally orthogonal to our method, which could be used

as the pattern learner in every bootstrapping itera-

tion. A more recent IE system that works by boot-

strapping relation extraction patterns from the web is

KNOWITALL (Etzioni et al., 2005). For a given tar-

get relation, supervision in KNOWITALL is provided

as a rule template containing words that describe the

class of the arguments (e.g. “company”), and a small

set of seed extraction patterns (e.g. “has acquired”).

In our approach, the type of supervision is different –

we ask only for pairs of entities known to exhibit the

target relation or not. Also, KNOWITALL requires

large numbers of search engine queries in order to

collect and validate extraction patterns, therefore ex-

periments can take weeks to complete. Compara-

tively, the approach presented in this paper requires

only a small number of queries: one query per rela-

tion pair, and one query for each relation argument.

Craven and Kumlien (1999) create a noisy train-

ing set for the subcellular-localization relation by

mining Medline for sentences that contain tuples

extracted from relevant medical databases. To our

knowledge, this is the first approach that is using a

“weakly” labeled dataset for relation extraction. The

resulting bags however are very dense in positive ex-

amples, and they are also many and small – conse-

quently, the two types of bias are not likely to have

significant impact on their system’s performance.

10 Conclusion

We have presented a new approach to relation ex-

traction that leverages the vast amount of informa-

tion available on the web. The new RE system is

trained using only a handful of entity pairs known to

exhibit and not exhibit the target relationship. We

have extended an existing relation extraction ker-

nel to learn in this setting and to resolve problems

caused by the minimal supervision provided. Exper-

imental results demonstrate that the new approach

can reliably extract relations from web documents.
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