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Abstract

This paper examines whether a learning-
based coreference resolver can be improved
using semantic class knowledge that is au-
tomatically acquired from a version of the
Penn Treebank in which the noun phrases
are labeled with their semantic classes. Ex-
periments on the ACE test data show that a
resolver that employs such induced semantic
class knowledge yields a statistically signif-
icant improvement of 2% in F-measure over
one that exploits heuristically computed se-
mantic class knowledge. In addition, the in-
duced knowledge improves the accuracy of
common noun resolution by 2-6%.

1 Introduction

In the past decade, knowledge-lean approaches have
significantly influenced research in noun phrase
(NP) coreference resolution — the problem of deter-
mining which NPs refer to the same real-world en-
tity in a document. In knowledge-lean approaches,
coreference resolvers employ only morpho-syntactic
cues as knowledge sources in the resolution process
(e.g., Mitkov (1998), Tetreault (2001)). While these
approaches have been reasonably successful (see
Mitkov (2002)), Kehler et al. (2004) speculate that
deeper linguistic knowledge needs to be made avail-
able to resolvers in order to reach the next level of
performance. In fact, semantics plays a crucially im-
portant role in the resolution of common NPs, allow-
ing us to identify the coreference relation between
two lexically dissimilar common nouns (e.g., talks

and negotiations) and to eliminate George W. Bush
from the list of candidate antecedents of the city, for
instance. As a result, researchers have re-adopted
the once-popular knowledge-rich approach, investi-
gating a variety of semantic knowledge sources for
common noun resolution, such as the semantic rela-
tions between two NPs (e.g., Ji et al. (2005)), their
semantic similarity as computed using WordNet
(e.g., Poesio et al. (2004)) or Wikipedia (Ponzetto
and Strube, 2006), and the contextual role played by
an NP (see Bean and Riloff (2004)).

Another type of semantic knowledge that has
been employed by coreference resolvers is the se-
mantic class (SC) of an NP, which can be used to dis-
allow coreference between semantically incompat-
ible NPs. However, learning-based resolvers have
not been able to benefit from having an SC agree-
ment feature, presumably because the method used
to compute the SC of an NP is too simplistic: while
the SC of a proper name is computed fairly accu-
rately using a named entity (NE) recognizer, many
resolvers simply assign to a common noun the first
(i.e., most frequent) WordNet sense as its SC (e.g.,
Soon et al. (2001), Markert and Nissim (2005)). It
is not easy to measure the accuracy of this heuristic,
but the fact that the SC agreement feature is not used
by Soon et al.’s decision tree coreference classifier
seems to suggest that the SC values of the NPs are
not computed accurately by this first-sense heuristic.

Motivated in part by this observation, we exam-
ine whether automatically induced semantic class
knowledge can improve the performance of a
learning-based coreference resolver, reporting eval-
uation results on the commonly-used ACE corefer-
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ence corpus. Our investigation proceeds as follows.
Train a classifier for labeling the SC of an NP.
In ACE, we are primarily concerned with classify-
ing an NP as belonging to one of the ACE seman-
tic classes. For instance, part of the ACE Phase 2
evaluation involves classifying an NP as PERSON,
ORGANIZATION, GPE (a geographical-political re-
gion), FACILITY, LOCATION, or OTHERS. We adopt
a corpus-based approach to SC determination, re-
casting the problem as a six-class classification task.
Derive two knowledge sources for coreference
resolution from the induced SCs. The first
knowledge source (KS) is semantic class agreement
(SCA). Following Soon et al. (2001), we represent
SCA as a binary value that indicates whether the in-
duced SCs of the two NPs involved are the same or
not. The second KS is mention, which is represented
as a binary value that indicates whether an NP be-
longs to one of the five ACE SCs mentioned above.
Hence, the mention value of an NP can be readily
derived from its induced SC: the value is NO if its
SC is OTHERS, and YES otherwise. This KS could
be useful for ACE coreference, since ACE is con-
cerned with resolving only NPs that are mentions.
Incorporate the two knowledge sources in a
coreference resolver. Next, we investigate whether
these two KSs can improve a learning-based base-
line resolver that employs a fairly standard feature
set. Since (1) the two KSs can each be repre-
sented in the resolver as a constraint (for filtering
non-mentions or disallowing coreference between
semantically incompatible NPs) or as a feature, and
(2) they can be applied to the resolver in isolation or
in combination, we have eight ways of incorporating
these KSs into the baseline resolver.

In our experiments on the ACE Phase 2 coref-
erence corpus, we found that (1) our SC induc-
tion method yields a significant improvement of 2%
in accuracy over Soon et al.’s first-sense heuristic
method as described above; (2) the coreference re-
solver that incorporates our induced SC knowledge
by means of the two KSs mentioned above yields
a significant improvement of 2% in F-measure over
the resolver that exploits the SC knowledge com-
puted by Soon et al.’s method; (3) the mention KS,
when used in the baseline resolver as a constraint,
improves the resolver by approximately 5-7% in F-
measure; and (4) SCA, when employed as a feature

by the baseline resolver, improves the accuracy of
common noun resolution by about 5-8%.

2 Related Work

Mention detection. Many ACE participants have
also adopted a corpus-based approach to SC deter-
mination that is investigated as part of the mention
detection (MD) task (e.g., Florian et al. (2006)).
Briefly, the goal of MD is to identify the boundary
of a mention, its mention type (e.g., pronoun, name),
and its semantic type (e.g., person, location). Un-
like them, (1) we do not perform the full MD task,
as our goal is to investigate the role of SC knowl-
edge in coreference resolution; and (2) we do not
use the ACE training data for acquiring our SC clas-
sifier; instead, we use the BBN Entity Type Corpus
(Weischedel and Brunstein, 2005), which consists of
all the Penn Treebank Wall Street Journal articles
with the ACE mentions manually identified and an-
notated with their SCs. This provides us with a train-
ing set that is approximately five times bigger than
that of ACE. More importantly, the ACE participants
do not evaluate the role of induced SC knowledge
in coreference resolution: many of them evaluate
coreference performance on perfect mentions (e.g.,
Luo et al. (2004)); and for those that do report per-
formance on automatically extracted mentions, they
do not explain whether or how the induced SC infor-
mation is used in their coreference algorithms.
Joint probabilistic models of coreference. Re-
cently, there has been a surge of interest in im-
proving coreference resolution by jointly modeling
coreference with a related task such as MD (e.g.,
Daumé and Marcu (2005)). However, joint models
typically need to be trained on data that is simulta-
neously annotated with information required by all
of the underlying models. For instance, Daumé and
Marcu’s model assumes as input a corpus annotated
with both MD and coreference information. On the
other hand, we tackle coreference and SC induction
separately (rather than jointly), since we train our SC
determination model on the BBN Entity Type Cor-
pus, where coreference information is absent.

3 Semantic Class Induction

This section describes how we train and evaluate a
classifier for determining the SC of an NP.
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3.1 Training the Classifier

Training corpus. As mentioned before, we use
the BBN Entity Type Corpus for training the SC
classifier. This corpus was originally developed to
support the ACE and AQUAINT programs and con-
sists of annotations of 12 named entity types and
nine nominal entity types. Nevertheless, we will
only make use of the annotations of the five ACE
semantic types that are present in our ACE Phase 2
coreference corpus, namely, PERSON, ORGANIZA-
TION, GPE, FACILITY, and LOCATION.
Training instance creation. We create one train-
ing instance for each proper or common NP (ex-
tracted using an NP chunker and an NE recognizer)
in each training text. Each instance is represented
by a set of lexical, syntactic, and semantic features,
as described below. If the NP under consideration is
annotated as one of the five ACE SCs in the corpus,
then the classification of the associated training in-
stance is simply the ACE SC value of the NP. Other-
wise, the instance is labeled as OTHERS. This results
in 310063 instances in the training set.
Features. We represent the training instance for a
noun phrase, NPi, using seven types of features:
(1) WORD: For each word w in NPi, we create a
WORD feature whose value is equal to w. No fea-
tures are created from stopwords, however.
(2) SUBJ VERB: If NPi is involved in a subject-
verb relation, we create a SUBJ VERB feature whose
value is the verb participating in the relation. We
use Lin’s (1998b) MINIPAR dependency parser to
extract grammatical relations. Our motivation here
is to coarsely model subcategorization.
(3) VERB OBJ: A VERB OBJ feature is created in
a similar fashion as SUBJ VERB if NPi participates
in a verb-object relation. Again, this represents our
attempt to coarsely model subcategorization.
(4) NE: We use BBN’s IdentiFinder (Bikel et al.,
1999), a MUC-style NE recognizer to determine the
NE type of NPi. If NPi is determined to be a PERSON
or ORGANIZATION, we create an NE feature whose
value is simply its MUC NE type. However, if NPi
is determined to be a LOCATION, we create a feature
with value GPE (because most of the MUC LOCA-
TION NEs are ACE GPE NEs). Otherwise, no NE
feature will be created (because we are not interested
in the other MUC NE types).

ACE SC Keywords
PERSON person
ORGANIZATION social group
FACILITY establishment, construction, building, facil-

ity, workplace
GPE country, province, government, town, city,

administration, society, island, community
LOCATION dry land, region, landmass, body of water,

geographical area, geological formation

Table 1: List of keywords used in WordNet search
for generating WN CLASS features.

(5) WN CLASS: For each keyword w shown in the
right column of Table 1, we determine whether the
head noun of NPi is a hyponym of w in WordNet,
using only the first WordNet sense of NPi.1 If so,
we create a WN CLASS feature with w as its value.
These keywords are potentially useful features be-
cause some of them are subclasses of the ACE SCs
shown in the left column of Table 1, while others
appear to be correlated with these ACE SCs.2
(6) INDUCED CLASS: Since the first-sense heuris-
tic used in the previous feature may not be accurate
in capturing the SC of an NP, we employ a corpus-
based method for inducing SCs that is motivated by
research in lexical semantics (e.g., Hearst (1992)).
Given a large, unannotated corpus3 , we use Identi-
Finder to label each NE with its NE type and MINI-
PAR to extract all the appositive relations. An ex-
ample extraction would be <Eastern Airlines, the
carrier>, where the first entry is a proper noun la-
beled with either one of the seven MUC-style NE
types4 or OTHERS5 and the second entry is a com-
mon noun. We then infer the SC of a common
noun as follows: (1) we compute the probability
that the common noun co-occurs with each of the
eight NE types6 based on the extracted appositive
relations, and (2) if the most likely NE type has a
co-occurrence probability above a certain threshold
(we set it to 0.7), we create a INDUCED CLASS fea-

1This is motivated by Lin’s (1998c) observation that a coref-
erence resolver that employs only the first WordNet sense per-
forms slightly better than one that employs more than one sense.

2The keywords are obtained via our experimentation with
WordNet and the ACE SCs of the NPs in the ACE training data.

3We used (1) the BLLIP corpus (30M words), which con-
sists of WSJ articles from 1987 to 1989, and (2) the Reuters
Corpus (3.7GB data), which has 806,791 Reuters articles.

4Person, organization, location, date, time, money, percent.
5This indicates the proper noun is not a MUC NE.
6For simplicity, OTHERS is viewed as an NE type here.
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ture for NPi whose value is the most likely NE type.
(7) NEIGHBOR: Research in lexical semantics sug-
gests that the SC of an NP can be inferred from its
distributionally similar NPs (see Lin (1998a)). Mo-
tivated by this observation, we create for each of
NPi’s ten most semantically similar NPs a NEIGH-
BOR feature whose value is the surface string of
the NP. To determine the ten nearest neighbors, we
use the semantic similarity values provided by Lin’s
dependency-based thesaurus, which is constructed
using a distributional approach combined with an
information-theoretic definition of similarity.
Learning algorithms. We experiment with four
learners commonly employed in language learning:
Decision List (DL): We use the DL learner as de-
scribed in Collins and Singer (1999), motivated by
its success in the related tasks of word sense dis-
ambiguation (Yarowsky, 1995) and NE classifica-
tion (Collins and Singer, 1999). We apply add-one
smoothing to smooth the class posteriors.
1-Nearest Neighbor (1-NN): We use the 1-NN clas-
sifier as implemented in TiMBL (Daelemans et al.,
2004), employing dot product as the similarity func-
tion (which defines similarity as the number of com-
mon feature-value pairs between two instances). All
other parameters are set to their default values.
Maximum Entropy (ME): We employ Lin’s ME
implementation7 , using a Gaussian prior for smooth-
ing and running the algorithm until convergence.
Naive Bayes (NB): We use an in-house implementa-
tion of NB, using add-one smoothing to smooth the
class priors and the class-conditional probabilities.

In addition, we train an SVM classifier for SC
determination by combining the output of five clas-
sification methods: DL, 1-NN, ME, NB, and Soon
et al.’s method as described in the introduction,8

with the goal of examining whether SC classifica-
tion accuracy can be improved by combining the
output of individual classifiers in a supervised man-
ner. Specifically, we (1) use 80% of the instances
generated from the BBN Entity Type Corpus to train
the four classifiers; (2) apply the four classifiers and
Soon et al.’s method to independently make predic-

7See http://www.cs.ualberta.ca/∼lindek/downloads.htm
8In our implementation of Soon’s method, we label an in-

stance as OTHERS if no NE or WN CLASS feature is generated;
otherwise its label is the value of the NE feature or the ACE SC
that has the WN CLASS features as its keywords (see Table 1).

PER ORG GPE FAC LOC OTH
Training 19.8 9.6 11.4 1.6 1.2 56.3
Test 19.5 9.0 9.6 1.8 1.1 59.0

Table 2: Distribution of SCs in the ACE corpus.

tions for the remaining 20% of the instances; and (3)
train an SVM classifier (using the LIBSVM pack-
age (Chang and Lin, 2001)) on these 20% of the in-
stances, where each instance, i, is represented by a
set of 31 binary features. More specifically, let Li =
{li1, li2, li3, li4, li5} be the set of predictions that we
obtained for i in step (2). To represent i, we generate
one feature from each non-empty subset of Li.

3.2 Evaluating the Classifiers

For evaluation, we use the ACE Phase 2 coreference
corpus, which comprises 422 training texts and 97
test texts. Each text has its mentions annotated with
their ACE SCs. We create our test instances from
the ACE texts in the same way as the training in-
stances described in Section 3.1. Table 2 shows the
percentages of instances corresponding to each SC.

Table 3 shows the accuracy of each classifier (see
row 1) for the ACE training set (54641 NPs, with
16414 proper NPs and 38227 common NPs) and the
ACE test set (13444 NPs, with 3713 proper NPs and
9731 common NPs), as well as their performance on
the proper NPs (row 2) and the common NPs (row
3). We employ as our baseline system the Soon et al.
method (see Footnote 8), whose accuracy is shown
under the Soon column. As we can see, DL, 1-NN,
and SVM show a statistically significant improve-
ment over the baseline for both data sets, whereas
ME and NB perform significantly worse.9 Addi-
tional experiments are needed to determine the rea-
son for ME and NB’s poor performance.

In an attempt to gain additional insight into the
performance contribution of each type of features,
we conduct feature ablation experiments using the
DL classifier (DL is chosen simply because it is the
best performer on the ACE training set). Results are
shown in Table 4, where each row shows the accu-
racy of the DL trained on all types of features except
for the one shown in that row (All), as well as accu-
racies on the proper NPs (PN) and the common NPs
(CN). For easy reference, the accuracy of the DL

9We use Noreen’s (1989) Approximate Randomization test
for significance testing, with p set to .05 unless otherwise stated.
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Training Set Test Set
Soon DL 1-NN ME NB SVM Soon DL 1-NN ME NB SVM

1 Overall 83.1 85.0 84.0 54.5 71.3 84.2 81.1 82.9 83.1 53.0 70.3 83.3
2 Proper NPs 83.1 84.1 81.0 54.2 65.5 82.2 79.6 82.0 79.8 55.8 64.4 80.4
3 Common NPs 83.1 85.4 85.2 54.6 73.8 85.1 81.6 83.3 84.3 51.9 72.6 84.4

Table 3: SC classification accuracies of different methods for the ACE training set and test set.

Training Set Test Set
Feature Type PN CN All PN CN All
All features 84.1 85.4 85.0 82.0 83.3 82.9
- WORD 84.2 85.4 85.0 82.0 83.1 82.8
- SUBJ VERB 84.1 85.4 85.0 82.0 83.3 82.9
- VERB OBJ 84.1 85.4 85.0 82.0 83.3 82.9
- NE 72.9 85.3 81.6 74.1 83.2 80.7
- WN CLASS 84.1 85.9 85.3 81.9 84.1 83.5
- INDUCED C 84.0 85.6 85.1 82.0 83.6 83.2
- NEIGHBOR 82.8 84.9 84.3 80.2 82.9 82.1

Table 4: Results for feature ablation experiments.
Training Set Test Set

Feature Type PN CN All PN CN All
WORD 64.0 83.9 77.9 66.5 82.4 78.0
SUBJ VERB 24.0 70.2 56.3 28.8 70.5 59.0
VERB OBJ 24.0 70.2 56.3 28.8 70.5 59.0
NE 81.1 72.1 74.8 78.4 71.4 73.3
WN CLASS 25.6 78.8 62.8 30.4 78.9 65.5
INDUCED C 25.8 81.1 64.5 30.0 80.3 66.3
NEIGHBOR 67.7 85.8 80.4 68.0 84.4 79.8

Table 5: Accuracies of single-feature classifiers.

classifier trained on all types of features is shown
in row 1 of the table. As we can see, accuracy drops
significantly with the removal of NE and NEIGHBOR.
As expected, removing NE precipitates a large drop
in proper NP accuracy; somewhat surprisingly, re-
moving NEIGHBOR also causes proper NP accuracy
to drop significantly. To our knowledge, there are no
prior results on using distributionally similar neigh-
bors as features for supervised SC induction.

Note, however, that these results do not imply
that the remaining feature types are not useful for
SC classification; they simply suggest, for instance,
that WORD is not important in the presence of other
feature types. To get a better idea of the utility of
each feature type, we conduct another experiment in
which we train seven classifiers, each of which em-
ploys exactly one type of features. The accuracies
of these classifiers are shown in Table 5. As we can
see, NEIGHBOR has the largest contribution. This
again demonstrates the effectiveness of a distribu-
tional approach to semantic similarity. Its superior
performance to WORD, the second largest contribu-
tor, could be attributed to its ability to combat data

sparseness. The NE feature, as expected, is crucial
to the classification of proper NPs.

4 Application to Coreference Resolution

We can now derive from the induced SC informa-
tion two KSs — semantic class agreement and men-
tion — and incorporate them into our learning-based
coreference resolver in eight different ways, as de-
scribed in the introduction. This section examines
whether our coreference resolver can benefit from
any of the eight ways of incorporating these KSs.

4.1 Experimental Setup

As in SC induction, we use the ACE Phase 2 coref-
erence corpus for evaluation purposes, acquiring the
coreference classifiers on the 422 training texts and
evaluating their output on the 97 test texts. We re-
port performance in terms of two metrics: (1) the F-
measure score as computed by the commonly-used
MUC scorer (Vilain et al., 1995), and (2) the accu-
racy on the anaphoric references, computed as the
fraction of anaphoric references correctly resolved.
Following Ponzetto and Strube (2006), we consider
an anaphoric reference, NPi, correctly resolved if NPi
and its closest antecedent are in the same corefer-
ence chain in the resulting partition. In all of our
experiments, we use NPs automatically extracted by
an in-house NP chunker and IdentiFinder.

4.2 The Baseline Coreference System

Our baseline coreference system uses the C4.5 deci-
sion tree learner (Quinlan, 1993) to acquire a classi-
fier on the training texts for determining whether two
NPs are coreferent. Following previous work (e.g.,
Soon et al. (2001) and Ponzetto and Strube (2006)),
we generate training instances as follows: a positive
instance is created for each anaphoric NP, NPj , and
its closest antecedent, NPi; and a negative instance is
created for NPj paired with each of the intervening
NPs, NPi+1, NPi+2, . . ., NPj−1. Each instance is rep-
resented by 33 lexical, grammatical, semantic, and
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positional features that have been employed by high-
performing resolvers such as Ng and Cardie (2002)
and Yang et al. (2003), as described below.
Lexical features. Nine features allow different
types of string matching operations to be performed
on the given pair of NPs, NPx and NPy10, including
(1) exact string match for pronouns, proper nouns,
and non-pronominal NPs (both before and after de-
terminers are removed); (2) substring match for
proper nouns and non-pronominal NPs; and (3) head
noun match. In addition, one feature tests whether
all the words that appear in one NP also appear in
the other NP. Finally, a nationality matching feature
is used to match, for instance, British with Britain.
Grammatical features. 22 features test the gram-
matical properties of one or both of the NPs. These
include ten features that test whether each of the two
NPs is a pronoun, a definite NP, an indefinite NP, a
nested NP, and a clausal subject. A similar set of
five features is used to test whether both NPs are
pronouns, definite NPs, nested NPs, proper nouns,
and clausal subjects. In addition, five features deter-
mine whether the two NPs are compatible with re-
spect to gender, number, animacy, and grammatical
role. Furthermore, two features test whether the two
NPs are in apposition or participate in a predicate
nominal construction (i.e., the IS-A relation).
Semantic features. Motivated by Soon et al.
(2001), we have a semantic feature that tests whether
one NP is a name alias or acronym of the other.
Positional feature. We have a feature that com-
putes the distance between the two NPs in sentences.

After training, the decision tree classifier is used
to select an antecedent for each NP in a test text.
Following Soon et al. (2001), we select as the an-
tecedent of each NP, NPj , the closest preceding NP
that is classified as coreferent with NPj . If no such
NP exists, no antecedent is selected for NPj .

Row 1 of Table 6 and Table 7 shows the results
of the baseline system in terms of F-measure (F)
and accuracy in resolving 4599 anaphoric references
(All), respectively. For further analysis, we also re-
port the corresponding recall (R) and precision (P)
in Table 6, as well as the accuracies of the system in
resolving 1769 pronouns (PRO), 1675 proper NPs
(PN), and 1155 common NPs (CN) in Table 7. As

10We assume that NPx precedes NPy in the associated text.

we can see, the baseline achieves an F-measure of
57.0 and a resolution accuracy of 48.4.

To get a better sense of how strong our baseline
is, we re-implement the Soon et al. (2001) corefer-
ence resolver. This simply amounts to replacing the
33 features in the baseline resolver with the 12 fea-
tures employed by Soon et al.’s system. Results of
our Duplicated Soon et al. system are shown in row
2 of Tables 6 and 7. In comparison to our baseline,
the Duplicated Soon et al. system performs worse
according to both metrics, and although the drop in
F-measure seems moderate, the performance differ-
ence is in fact highly significant (p=0.002).11

4.3 Coreference with Induced SC Knowledge

Recall from the introduction that our investigation of
the role of induced SC knowledge in learning-based
coreference resolution proceeds in three steps:
Label the SC of each NP in each ACE document.
If a noun phrase, NPi, is a proper or common NP,
then its SC value is determined using an SC classi-
fier that we acquired in Section 3. On the other hand,
if NPi is a pronoun, then we will be conservative and
posit its SC value as UNCONSTRAINED (i.e., it is se-
mantically compatible with all other NPs).12

Derive two KSs from the induced SCs. Recall that
our first KS, Mention, is defined on an NP; its value
is YES if the induced SC of the NP is not OTHERS,
and NO otherwise. On the other hand, our second
KS, SCA, is defined on a pair of NPs; its value is
YES if the two NPs have the same induced SC that
is not OTHERS, and NO otherwise.
Incorporate the two KSs into the baseline re-
solver. Recall that there are eight ways of incor-
porating these two KSs into our resolver: they can
each be represented as a constraint or as a feature,
and they can be applied to the resolver in isolation
and in combination. Constraints are applied dur-
ing the antecedent selection step. Specifically, when
employed as a constraint, the Mention KS disallows
coreference between two NPs if at least one of them
has a Mention value of NO, whereas the SCA KS dis-
allows coreference if the SCA value of the two NPs
involved is NO. When encoded as a feature for the
resolver, the Mention feature for an NP pair has the

11Again, we use Approximate Randomization with p=.05.
12The only exception is pronouns whose SC value can be eas-

ily determined to be PERSON (e.g., he, him, his, himself).
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System Variation R P F R P F R P F R P F
1 Baseline system 60.9 53.6 57.0 – – – – – – – – –
2 Duplicated Soon et al. 56.1 54.4 55.3 – – – – – – – – –

Add to the Baseline Soon’s SC Method Decision List SVM Perfect Information
3 Mention(C) only 56.9 69.7 62.6 59.5 70.6 64.6 59.5 70.7 64.6 61.2 83.1 70.5
4 Mention(F) only 60.9 54.0 57.2 61.2 52.9 56.7 60.9 53.6 57.0 62.3 33.7 43.8
5 SCA(C) only 56.4 70.0 62.5 57.7 71.2 63.7 58.9 70.7 64.3 61.3 86.1 71.6
6 SCA(F) only 62.0 52.8 57.0 62.5 53.5 57.6 63.0 53.3 57.7 71.1 33.0 45.1
7 Mention(C) + SCA(C) 56.4 70.0 62.5 57.7 71.2 63.7 58.9 70.8 64.3 61.3 86.1 71.6
8 Mention(C) + SCA(F) 58.2 66.4 62.0 60.9 66.8 63.7 61.4 66.5 63.8 71.1 76.7 73.8
9 Mention(F) + SCA(C) 56.4 69.8 62.4 57.7 71.3 63.8 58.9 70.6 64.3 62.7 85.3 72.3

10 Mention(F) + SCA(F) 62.0 52.7 57.0 62.6 52.8 57.3 63.2 52.6 57.4 71.8 30.3 42.6

Table 6: Coreference results obtained via the MUC scoring program for the ACE test set.

System Variation PRO PN CN All PRO PN CN All PRO PN CN All
1 Baseline system 59.2 54.8 22.5 48.4 – – – – – – – –
2 Duplicated Soon et al. 53.4 45.7 16.9 41.4 – – – – – – – –

Add to the Baseline Soon’s SC Method Decision List SVM
3 Mention(C) only 58.5 51.3 16.5 45.3 59.1 54.1 20.2 47.5 59.1 53.9 20.6 47.5
4 Mention(F) only 59.2 55.0 22.5 48.5 59.2 56.1 22.4 48.8 59.4 55.2 22.6 48.6
5 SCA(C) only 58.1 50.1 16.4 44.7 58.1 51.8 17.1 45.5 58.5 52.0 19.6 46.3
6 SCA(F) only 59.2 54.9 27.8 49.7 60.4 56.7 30.1 51.5 60.8 56.4 29.4 51.3
7 Mention(C) + SCA(C) 58.1 50.1 16.4 44.7 58.1 51.8 17.1 45.5 58.5 51.9 19.5 46.3
8 Mention(C) + SCA(F) 58.9 52.0 22.3 47.2 60.2 55.9 28.1 50.6 60.7 55.3 27.4 50.4
9 Mention(F) + SCA(C) 58.1 50.3 16.3 44.8 58.1 52.4 16.7 45.6 58.6 52.4 19.7 46.6

10 Mention(F) + SCA(F) 59.2 55.0 27.6 49.7 60.4 56.8 30.1 51.5 60.8 56.5 29.5 51.4

Table 7: Resolution accuracies for the ACE test set.

value YES if and only if the Mention value for both
NPs is YES, whereas the SCA feature for an NP pair
has its value taken from the SCA KS.

Now, we can evaluate the impact of the two KSs
on the performance of our baseline resolver. Specifi-
cally, rows 3-6 of Tables 6 and 7 show the F-measure
and the resolution accuracy, respectively, when ex-
actly one of the two KSs is employed by the baseline
as either a constraint (C) or a feature (F), and rows
7-10 of the two tables show the results when both
KSs are applied to the baseline. Furthermore, each
row of Table 6 contains four sets of results, each of
which corresponds to a different method for deter-
mining the SC value of an NP. For instance, the first
set is obtained by using Soon et al.’s method as de-
scribed in Footnote 8 to compute SC values, serving
as sort of a baseline for our results using induced SC
values. The second and third sets are obtained based
on the SC values computed by the DL and the SVM
classifier, respectively.13 The last set corresponds to
an oracle experiment in which the resolver has ac-
cess to perfect SC information. Rows 3-10 of Table

13Results using other learners are not shown due to space lim-
itations. DL and SVM are chosen simply because they achieve
the highest SC classification accuracies on the ACE training set.

7 can be interpreted in a similar manner.
From Table 6, we can see that (1) in comparison to

the baseline, F-measure increases significantly in the
five cases where at least one of the KSs is employed
as a constraint by the resolver, and such improve-
ments stem mainly from significant gains in preci-
sion; (2) in these five cases, the resolvers that use
SCs induced by DL and SVM achieve significantly
higher F-measure scores than their counterparts that
rely on Soon’s method for SC determination; and (3)
none of the resolvers appears to benefit from SCA in-
formation whenever mention is used as a constraint.

Moreover, note that even with perfectly computed
SC information, the performance of the baseline sys-
tem does not improve when neither MD nor SCA is
employed as a constraint. These results provide fur-
ther evidence that the decision tree learner is not ex-
ploiting these two semantic KSs in an optimal man-
ner, whether they are computed automatically or per-
fectly. Hence, in machine learning for coreference
resolution, it is important to determine not only what
linguistic KSs to use, but also how to use them.

While the coreference results in Table 6 seem to
suggest that SCA and mention should be employed
as constraints, the resolution results in Table 7 sug-
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gest that SCA is better encoded as a feature. Specifi-
cally, (1) in comparison to the baseline, the accuracy
of common NP resolution improves by about 5-8%
when SCA is encoded as a feature; and (2) whenever
SCA is employed as a feature, the overall resolution
accuracy is significantly higher for resolvers that use
SCs induced by DL and SVM than those that rely on
Soon’s method for SC determination, with improve-
ments in resolution observed on all three NP types.

Overall, these results provide suggestive evidence
that both KSs are useful for learning-based corefer-
ence resolution. In particular, mention should be em-
ployed as a constraint, whereas SCA should be used
as a feature. Interestingly, this is consistent with the
results that we obtained when the resolver has access
to perfect SC information (see Table 6), where the
highest F-measure is achieved by employing men-
tion as a constraint and SCA as a feature.

5 Conclusions

We have shown that (1) both mention and SCA can
be usefully employed to improve the performance
of a learning-based coreference system, and (2) em-
ploying SC knowledge induced in a supervised man-
ner enables a resolver to achieve better performance
than employing SC knowledge computed by Soon
et al.’s simple method. In addition, we found that
the MUC scoring program is unable to reveal the
usefulness of the SCA KS, which, when encoded
as a feature, substantially improves the accuracy of
common NP resolution. This underscores the im-
portance of reporting both resolution accuracy and
clustering-level accuracy when analyzing the perfor-
mance of a coreference resolver.
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