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Abstract

Semantic relatedness is a very important fac-
tor for the coreference resolution task. To
obtain this semantic information, corpus-
based approaches commonly leverage pat-
terns that can express a specific semantic
relation. The patterns, however, are de-
signed manually and thus are not necessar-
ily the most effective ones in terms of ac-
curacy and breadth. To deal with this prob-
lem, in this paper we propose an approach
that can automatically find the effective pat-
terns for coreference resolution. We explore
how to automatically discover and evaluate
patterns, and how to exploit the patterns to
obtain the semantic relatedness information.
The evaluation on ACE data set shows that
the pattern based semantic information is
helpful for coreference resolution.

1 Introduction

Semantic relatedness is a very important factor for
coreference resolution, as noun phrases used to re-
fer to the same entity should have a certain semantic
relation. To obtain this semantic information, previ-
ous work on reference resolution usually leverages
a semantic lexicon like WordNet (Vieira and Poe-
sio, 2000; Harabagiu et al., 2001; Soon et al., 2001;
Ng and Cardie, 2002). However, the drawback of
WordNet is that many expressions (especially for
proper names), word senses and semantic relations
are not available from the database (Vieira and Poe-
sio, 2000). In recent years, increasing interest has

been seen in mining semantic relations from large
text corpora. One common solution is to utilize a
pattern that can represent a specific semantic rela-
tion (e.g., “X such as Y” for is-a relation, and “X
and other Y” for other-relation). Instantiated with
two given noun phrases, the pattern is searched in a
large corpus and the occurrence number is used as
a measure of their semantic relatedness (Markert et
al., 2003; Modjeska et al., 2003; Poesio et al., 2004).

However, in the previous pattern based ap-
proaches, the selection of the patterns to represent a
specific semantic relation is done in an ad hoc way,
usually by linguistic intuition. The manually se-
lected patterns, nevertheless, are not necessarily the
most effective ones for coreference resolution from
the following two concerns:

• Accuracy. Can the patterns (e.g., “X such as
Y”) find as many NP pairs of the specific se-
mantic relation (e.g.is-a) as possible, with a
high precision?

• Breadth. Can the patterns cover a wide variety
of semantic relations, not justis-a, by which
coreference relationship is realized? For ex-
ample, in some annotation schemes like ACE,
“Beijing:China” are coreferential as the capital
and the country could be used to represent the
government. The pattern for the common “is-
a” relation will fail to identify the NP pairs of
such a “capital-country” relation.

To deal with this problem, in this paper we pro-
pose an approach which can automatically discover
effective patterns to represent the semantic relations
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for coreference resolution. We explore two issues in
our study:

(1) How to automatically acquire and evaluate
the patterns?We utilize a set of coreferential NP
pairs as seeds. For each seed pair, we search a large
corpus for the texts where the two noun phrases co-
occur, and collect the surrounding words as the sur-
face patterns. We evaluate a pattern based on its
commonality or association with the positive seed
pairs.

(2) How to mine the patterns to obtain the seman-
tic relatedness information for coreference resolu-
tion? We present two strategies to exploit the pat-
terns: choosing the top best patterns as a set of pat-
tern features, or computing the reliability of seman-
tic relatedness as a single feature. In either strategy,
the obtained features are applied to do coreference
resolution in a supervised-learning way.

To our knowledge, our work is the first effort that
systematically explores these issues in the corefer-
ence resolution task. We evaluate our approach on
ACE data set. The experimental results show that
the pattern based semantic relatedness information
is helpful for the coreference resolution.

The remainder of the paper is organized as fol-
lows. Section 2 gives some related work. Section 3
introduces the framework for coreference resolution.
Section 4 presents the model to obtain the pattern-
based semantic relatedness information. Section 5
discusses the experimental results. Finally, Section
6 summarizes the conclusions.

2 Related Work

Earlier work on coreference resolution commonly
relies on semantic lexicons for semantic relatedness
knowledge. In the system by Vieira and Poesio
(2000), for example, WordNet is consulted to obtain
the synonymy, hypernymy and meronymy relations
for resolving the definite anaphora. In (Harabagiu
et al., 2001), the path patterns in WordNet are uti-
lized to compute the semantic consistency between
NPs. Recently, Ponzetto and Strube (2006) suggest
to mine semantic relatedness from Wikipedia, which
can deal with the data sparseness problem suffered
by using WordNet.

Instead of leveraging existing lexicons, many
researchers have investigated corpus-based ap-

proaches to mine semantic relations. Garera and
Yarowsky (2006) propose an unsupervised model
which extracts hypernym relation for resloving def-
inite NPs. Their model assumes that a definite NP
and its hypernym words usually co-occur in texts.
Thus, for a definite-NP anaphor, a preceding NP that
has a high co-occurrence statistics in a large corpus
is preferred for the antecedent.

Bean and Riloff (2004) present a system called
BABAR that uses contextual role knowledge to do
coreference resolution. They apply an IE component
to unannotated texts to generate a set of extraction
caseframes. Each caseframe represents a linguis-
tic expression and a syntactic position, e.g. “mur-
der of<NP>”, “killed <patient>”. From the case-
frames, they derive different types of contextual role
knowledge for resolution, for example, whether an
anaphor and an antecedent candidate can be filled
into co-occurring caseframes, or whether they are
substitutable for each other in their caseframes. Dif-
ferent from their system, our approach aims to find
surface patterns that can directly indicate the coref-
erence relation between two NPs.

Hearst (1998) presents a method to automate the
discovery of WordNet relations, by searching for the
corresponding patterns in large text corpora. She ex-
plores several patterns for the hyponymy relation,
including “X such as Y” “ X and/or other Y”, “ X
including / especially Y” and so on. The use of
Hearst’s style patterns can be seen for the reference
resolution task. Modjeska et al. (2003) explore the
use of the Web to do theother-anaphora resolution.
In their approach, a pattern “X and other Y” is used.
Given an anaphor and a candidate antecedent, the
pattern is instantiated with the two NPs and forms a
query. The query is submitted to the Google search-
ing engine, and the returned hit number is utilized to
compute the semantic relatedness between the two
NPs. In their work, the semantic information is used
as a feature for the learner. Markert et al. (2003) and
Poesio et al. (2004) adopt a similar strategy for the
bridginganaphora resolution.

In (Hearst, 1998), the author also proposes to dis-
cover new patterns instead of using the manually
designed ones. She employs a bootstrapping algo-
rithm to learn new patterns from the word pairs with
a known relation. Based on Hearst’s work, Pan-
tel and Pennacchiotti (2006) further give a method
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which measures the reliability of the patterns based
on the strength of association between patterns and
instances, employing the pointwise mutual informa-
tion (PMI).

3 Framework of Coreference Resolution

Our coreference resolution system adopts the
common learning-based framework as employed
by Soon et al. (2001) and Ng and Cardie (2002).

In the learning framework, a training or testing
instance has the form ofi{NPi, NPj}, in which
NPj is a possible anaphor andNPi is one of its an-
tecedent candidates. An instance is associated with
a vector of features, which is used to describe the
properties of the two noun phrases as well as their
relationships. In our baseline system, we adopt the
common features for coreference resolution such as
lexical property, distance, string-matching, name-
alias, apposition, grammatical role, number/gender
agreement and so on. The same feature set is de-
scribed in (Ng and Cardie, 2002) for reference.

During training, for each encountered anaphor
NPj , one single positive training instance is created
for its closest antecedent. And a group of negative
training instances is created for every intervening
noun phrases betweenNPj and the antecedent.

Based on the training instances, a binary classifier
can be generated using any discriminative learning
algorithm, like C5 in our study. For resolution, an
input document is processed from the first NP to the
last. For each encounteredNPj , a test instance is
formed for each antecedent candidate,NPi

1. This
instance is presented to the classifier to determine
the coreference relationship.NPj will be resolved
to the candidate that is classified as positive (if any)
and has the highest confidence value.

In our study, we augment the common framework
by incorporating non-anaphors into training. We fo-
cus on the non-anaphors that the original classifier
fails to identify. Specifically, we apply the learned
classifier to all the non-anaphors in the training doc-
uments. For each non-anaphor that is classified as
positive, a negative instance is created by pairing the
non-anaphor and its false antecedent. These neg-

1For resolution of pronouns, only the preceding NPs in cur-
rent and previous two sentences are considered as antecedent
candidates. For resolution of non-pronouns, all the preceding
non-pronouns are considered.

ative instances are added into the original training
instance set for learning, which will generate a clas-
sifier with the capability of not only antecedent iden-
tification, but also non-anaphorically identification.
The new classier is applied to the testing document
to do coreference resolution as usual.

4 Patterned Based Semantic Relatedness

4.1 Acquiring the Patterns

To derive patterns to indicate a specific semantic re-
lation, a set of seed NP pairs that have the relation of
interest is needed. As described in the previous sec-
tion, we have a set of training instances formed by
NP pairs with known coreference relationships. We
can just use this set of NP pairs as the seeds. That is,
an instancei{NPi, NPj} will become a seed pair
(Ei:Ej) in which NPi corresponds toEi andNPj

corresponds toEj . In creating the seed, for a com-
mon noun, only the head word is retained while for
a proper name, the whole string is kept. For ex-
ample, instancei{“Bill Clinton”, “the former pres-
ident”} will be converted to a NP pair (“Bill Clin-
ton”:“president”).

We create the seed pair for every training instance
i{NPi, NPj}, except when (1)NPi or NPj is a
pronoun; or (2)NPi andNPj have the same head
word. We denote S+ and S- the set of seed pairs
derived from the positive and the negative training
instances, respectively. Note that a seed pair may
possibly belong to S+ can S- at the same time.

For each of the seed NP pairs (Ei:Ej), we search
in a large corpus for the strings that match the reg-
ular expression “Ei * * * Ej” or “ Ej * * * Ei”,
where * is a wildcard for any word or symbol. The
regular expression is defined as such that all the co-
occurrences ofEi andEj with at most three words
(or symbols) in between are retrieved.

For each retrieved string, we extract a surface pat-
tern by replacing expressionEi with a mark<#t1#>
andEj with <#t2#>. If the string is followed by a
symbol, the symbol will be also included in the pat-
tern. This is to create patterns like “X * * * Y [, . ?]”
whereY, with a high possibility, is the head word,
but not a modifier of another noun phrase.

As an example, consider the pair (“Bill Clin-
ton”:“president”). Suppose that two sentences in a
corpus can be matched by the regular expressions:
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(S1) “ Bill Clinton is electedPresident of the
United States.”

(S2) “The USPresident, Mr Bill Clinton, to-
day advised India to move towards nuclear non-
proliferation and begin a dialogue with Pakistan to
... ”.

The patterns to be extracted for (S1) and (S2), re-
spectively, are

P1:<#t1#> is elected <#t2#>
P2:<#t2#> , Mr <#t1#> ,
We record the number of strings matched by a pat-

ternp instantiated with (Ei:Ej), noted|(Ei, p, Ej)|,
for later use.

For each seed pair, we generate a list of surface
patterns in the above way. We collect all the pat-
terns derived from the positive seed pairs as a set
of reference patterns, which will be scored and used
to evaluate the semantic relatedness for any new NP
pair.

4.2 Scoring the Patterns

4.2.1 Frequency

One possible scoring scheme is to evaluate a pat-
tern based on its commonality to positive seed pairs.
The intuition here is that the more often a pattern is
seen for the positive seed pairs, the more indicative
the pattern is to find positive coreferential NP pairs.
Based on this idea, we score a pattern by calculating
the number of positive seed pairs whose pattern list
contains the pattern. Formally, supposing the pat-
tern list associated with a seed pairs is PList(s), the
frequency score of a patternp is defined as

Freqency(p) = |{s|s ∈ S+, p ∈ PList(s)}| (1)

4.2.2 Reliability

Another possible way to evaluate a pattern is
based on its reliability, i.e., the degree that the pat-
tern is associated with the positive coreferential NPs.
In our study, we use pointwise mutual informa-
tion (Cover and Thomas, 1991) to measure associ-
ation strength, which has been proved effective in
the task of semantic relation identification (Pantel
and Pennacchiotti, 2006). Under pointwise mutual
information (PMI), the strength of association be-
tween two events x and y is defined as follows:

pmi(x, y) = log
P (x, y)

P (x)P (y)
(2)

Thus the association between a patternp and a
positive seed pairs:(Ei:Ej) is:

pmi(p, (Ei : Ej)) = log

|(Ei,p,Ej)|
|(∗,∗,∗)|

|(Ei,∗,Ej)|
|(∗,∗,∗)|

|(∗,p,∗)|
|(∗,∗,∗)|

(3)

where|(Ei,p,Ej)| is the count of strings matched
by patternp instantiated withEi andEj . Asterisk *
represents a wildcard, that is:

|(Ei, ∗, Ej)| =
∑

p∈PList(Ei:Ej)

|(Ei, p, Ej)| (4)

|(∗, p, ∗)| =
∑

(Ei:Ej)∈S+∪S−

|(Ei, p, Ej)| (5)

|(∗, ∗, ∗)| =
∑

(Ei:Ej)∈S+∪S−;p∈Plist(Ei:Ej)

|(Ei, p, Ej)| (6)

The reliability of pattern is the average strength of
association across each positive seed pair:

r(p) =

∑
s∈S+

pmi(p,s)
max pmi

|S + |
(7)

Heremaxpmi is used for the normalization pur-
pose, which is the maximum PMI between all pat-
terns and all positive seed pairs.

4.3 Exploiting the Patterns

4.3.1 Patterns Features

One strategy is to directly use the reference pat-
terns as a set of features for classifier learning and
testing. To select the most effective patterns for
the learner, we rank the patterns according to their
scores and then choose the top patterns (first 100 in
our study) as the features.

As mentioned, the frequency score is based on the
commonality of a pattern to the positive seed pairs.
However, if a pattern also occurs frequently for the
negative seed pairs, it should be not deemed a good
feature as it may lead to many false positive pairs
during real resolution. To take this factor into ac-
count, we filter the patterns based on their accuracy,
which is defined as follows:

Accuracy(p) =
|{s|s ∈ S+, p ∈ PList(s)}|

|{s|s ∈ S + ∪ S−, p ∈ PList(s)}|
(8)

A pattern with an accuracy below threshold 0.5 is
eliminated from the reference pattern set. The re-
maining patterns are sorted as normal, from which
the top 100 patterns are selected as features.
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NWire NPaper BNews
R P F R P F R P F

Normal Features 54.5 80.3 64.9 56.6 76.0 64.9 52.7 75.3 62.0
+ ”X such as Y” proper names 55.1 79.0 64.9 56.8 76.1 65.0 52.6 75.1 61.9

all types 55.1 78.3 64.7 56.8 74.7 64.4 53.0 74.4 61.9
+ “X and other Y” proper names 54.7 79.9 64.9 56.4 75.9 64.7 52.674.9 61.8

all types 54.8 79.8 65.0 56.4 75.9 64.7 52.8 73.3 61.4

+ pattern features (frequency) proper names 58.7 75.8 66.2 57.573.9 64.7 54.0 71.1 61.4
all types 59.7 67.3 63.3 57.4 62.4 59.8 55.9 57.7 56.8

+ pattern features (filtered frequency) proper names 57.8 79.1 66.8 56.9 75.1 64.7 54.1 72.4 61.9
all types 58.1 77.4 66.4 56.8 71.2 63.2 55.0 68.1 60.9

+ pattern features (PMIreliability) proper names 58.8 76.9 66.6 58.1 73.8 65.0 54.3 72.0 61.9
all types 59.6 70.4 64.6 58.7 61.6 60.1 56.0 58.8 57.4

+ single reliability feature proper names 57.4 80.867.1 56.6 76.2 65.0 54.0 74.7 62.7
all types 57.7 76.4 65.7 56.7 75.9 64.9 55.1 69.5 61.5

Table 1: The results of different systems for coreference resolution

Each selected patternp is used as a single fea-
ture, PFp. For an instancei{NPi, NPj}, a list of
patterns is generated for (Ei:Ej) in the same way as
described in Section 4.1. The value of PFp for the
instance is simply|(Ei, p, Ej)|.

The set of pattern features is used together with
the other normal features to do the learning and test-
ing. Thus, the actual importance of a pattern in
coreference resolution is automatically determined
in a supervised learning way.

4.3.2 Semantic Relatedness Feature

Another strategy is to use only one semantic fea-
ture which is able to reflect the reliability that a NP
pair is related in semantics. Intuitively, a NP pair
with strong semantic relatedness should be highly
associated with as many reliable patterns as possi-
ble. Based on this idea, we define the semantic re-
latedness feature (SRel) as follows:

SRel(i{NPi, NPj}) =

1000 ∗
∑

p∈PList(Ei:Ej)

pmi(p, (Ei : Ej)) ∗ r(p) (9)

where pmi(p, (Ei:Ej)) is the pointwise mutual in-
formation between patternp and a NP pair (Ei:Ej),
as defined in Eq. 3.r(p) is the reliability score ofp
(Eq. 7). As a relatedness value is always below 1,
we multiple it by 1000 so that the feature value will
be of integer type with a range from 0 to 1000. Note
that among PList(Ei:Ej), only the reference patterns
are involved in the feature computing.

5 Experiments and Discussion

5.1 Experimental setup

In our study we did evaluation on the ACE-2 V1.0
corpus (NIST, 2003), which contains two data set,
training and devtest, used for training and testing re-
spectively. Each of these sets is further divided by
three domains: newswire (NWire), newspaper (NPa-
per), and broadcast news (BNews).

An input raw text was preprocessed automati-
cally by a pipeline of NLP components, includ-
ing sentence boundary detection, POS-tagging, Text
Chunking and Named-Entity Recognition. Two dif-
ferent classifiers were learned respectively for re-
solving pronouns and non-pronouns. As mentioned,
the pattern based semantic information was only ap-
plied to the non-pronoun resolution. For evaluation,
Vilain et al. (1995)’s scoring algorithm was adopted
to compute the recall and precision of the whole
coreference resolution.

For pattern extraction and feature computing, we
used Wikipedia, a web-based free-content encyclo-
pedia, as the text corpus. We collected the English
Wikipedia database dump in November 2006 (re-
fer to http://download.wikimedia.org/). After all the
hyperlinks and other html tags were removed, the
whole pure text contains about 220 Million words.

5.2 Results and Discussion

Table 1 lists the performance of different coref-
erence resolution systems. The first line of the
table shows the baseline system that uses only
the common features proposed in (Ng and Cardie,
2002). From the table, our baseline system can
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NO Frequency Frequency (Filtered) PMI Reliabilty
1 <#t1> <#t2> <#t2> | | <#t1> | <#t1> : <#t2>
2 <#t2> <#t1> <#t1> ) is a<#t2> <#t2> : <#t1>
3 <#t1> , <#t2> <#t1> ) is an<#t2> <#t1> . the<#t2>
4 <#t2> , <#t1> <#t2> ) is an<#t1> <#t2> ( <#t1> )
5 <#t1> . <#t2> <#t2> ) is a<#t1> <#t1> ( <#t2>
6 <#t1> and<#t2> <#t1> or the<#t2> <#t1> ( <#t2> )
7 <#t2> . <#t1> <#t1> ( the<#t2> <#t1> | | <#t2> |
8 <#t1> . the<#t2> <#t1> . during the<#t2> <#t2> | | <#t1> |
9 <#t2> and<#t1> <#t1> | <#t2> <#t2> , the<#t1>
10 <#t1> , the<#t2> <#t1> , an<#t2> <#t1> , the<#t2>
11 <#t2> . the<#t1> <#t1> ) was a<#t2> <#t2> ( <#t1>
12 <#t2> , the<#t1> <#t1> in the<#t2> - <#t1> , <#t2>
13 <#t2> <#t1> , <#t1> - <#t2> <#t1> and the<#t2>
14 <#t1> <#t2> , <#t1> ) was an<#t2> <#t1> . <#t2>
15 <#t1> : <#t2> <#t1> , many<#t2> <#t1> ) is a<#t2>
16 <#t1> <#t2> . <#t2> ) was a<#t1> <#t1> during the<#t2>
17 <#t2> <#t1> . <#t1> ( <#t2> . <#t1> <#t2> .
18 <#t1> ( <#t2> ) <#t2> | <#t1> <#t1> ) is an<#t2>
19 <#t1> and the<#t2> <#t1> , not the<#t2> <#t2> in <#t1> .
20 <#t2> ( <#t1> ) <#t2> , many<#t1> <#t2> , <#t1>
. . . . . . . . . . . .

Table 2: Top patterns chosen under different scoring schemes

achieve a good precision (above 75%-80%) with a
recall around 50%-60%. The overall F-measure for
NWire, NPaper and BNews is 64.9%, 64.9% and
62.0% respectively. The results are comparable to
those reported in (Ng, 2005) which uses similar fea-
tures and gets an F-measure of about 62% for the
same data set.

The rest lines of Table 1 are for the systems us-
ing the pattern based information. In all the sys-
tems, we examine the utility of the semantic infor-
mation in resolving different types of NP Pairs: (1)
NP Pairs containing proper names (i.e., Name:Name
or Name:Definites), and (2) NP Pairs of all types.

In Table 1 (Line 2-5), we also list the results of
incorporating two commonly used patterns, “X(s)
such as Y” and “X and other Y(s)”. We can find that
neither of the manually designed patterns has signif-
icant impact on the resolution performance. For all
the domains, the manual patterns just achieve slight
improvement in recall (below 0.6%), indicating that
coverage of the patterns is not broad enough.

5.2.1 Pattern Features

In Section 4.3.1 we propose a strategy that di-
rectly uses the patterns as features. Table 2 lists the
top patterns that are sorted based onfrequency, fil-
tered frequency (by accuracy), andPMI reliability,
on the NWire domain for illustration.

From the table, evaluated only based onfre-
quency, the top patterns are those that indicate the
appositive structure like “X, an/a/the Y”. However,
if filtered by accuracy, patterns of such a kind will
be removed. Instead, the top patterns with both high
frequency and high accuracy are those for the copula
structure, like “X is/was/are Y”. Sorted by PMI reli-

ability, patterns for the above two structures can be
seen in the top of the list. These results are consis-
tent with the findings in (Cimiano and Staab, 2004)
that the appositive and copula structures are indica-
tive to find theis-arelation. Also, the two commonly
used patterns “X(s) such as Y” and “X and other
Y(s)” were found in the feature lists (not shown in
the table). Their importance for coreference resolu-
tion will be determined automatically by the learn-
ing algorithm.

An interesting pattern seen in the lists is “X || Y |”,
which represents the cases when Y and X appear in
the same of line of a table in Wikipedia. For exam-
ple, the following text
“American|| United States| Washington D.C.| . . .”
is found in the table “list of empires”. Thus the pair
“American:United States”, which is deemed coref-
erential in ACE, can be identified by the pattern.

The sixth till the eleventh lines of Table 1 list the
results of the system with pattern features. From the
table, adding the pattern features brings the improve-
ment of the recall against the baseline. Take the sys-
tem based onfiltered frequencyas an example. We
can observe that the recall increases by up to 3.3%
(for NWire). However, we see the precision drops
(up to 1.2% for NWire) at the same time. Over-
all the system achieves an F-measure better than the
baseline in NWire (1.9%), while equal (±0.2%) in
NPaper and BNews.

Among the three ranking schemes, simply using
frequencyleads to the lowest precision. By contrast,
usingfiltered frequencyyields the highest precision
with nevertheless the lowest recall. It is reasonable
since the lowaccuracy features prone to false posi-
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NameAlias = 1: ...
NameAlias = 0:
:..Appositive = 1: ...

Appositive = 0:
:..P014 > 0:

:...P003 <= 4: 0 (3)
: P003 > 4: 1 (25)
P014 <= 0:
:..P004 > 0:...

P004 <= 0:
:..P027 > 0: 1 (25/7)

P027 <= 0:
:..P002 > 0: ...

P002 <= 0:
:..P005 > 0: 1 (49/22)

P005 <= 0:
:..String_Match = 1: .

String_Match = 0: .

// p002: <t1> ) is a <t2>
// P003: <t1> ) is an <t2>
// P004: <t2> ) is an <t1>
// p005: <t2> ) is a <t1>
// P014: <t1> ) was an <t2>
// p027: <t1> , ( <t2> ,

Figure 1: The decision tree (NWire domain) for the
system using pattern features (filtered frequency)
(featureString Match records whether the string of anaphor
NP j matches that of a candidate antecedent NPi)

tive NP pairs are eliminated, at the price of recall.
Using PMI Reliability can achieve the highest re-
call with a medium level of precision. However, we
do not find significant difference in the overall F-
measure for all these three schemes. This should be
due to the fact that the pattern features need to be
further chosen by the learning algorithm, and only
those patterns deemed effective by the learner will
really matter in the real resolution.

From the table, the pattern features only work
well for NP pairs containing proper names. Ap-
plied on all types of NP pairs, the pattern features
further boost the recall of the systems, but in the
meanwhile degrade the precision significantly. The
F-measure of the systems is even worse than that
of the baseline. Our error analysis shows that a
non-anaphor is often wrongly resolved to a false an-
tecedent once the two NPs happen to satisfy a pat-
tern feature, which affects precision largely (as an
evidence, the decrease of precision is less significant
when usingfiltered frequencythan usingfrequency).
Still, these results suggest that we just apply the pat-
tern based semantic information in resolving proper
names which, in fact, is more compelling as the se-
mantic information of common nouns could be more
easily retrieved from WordNet.

We also notice that the patterned based semantic
information seems more effective in the NWire do-
main than the other two. Especially for NPaper, the
improvement in F-measure is less than 0.1% for all
the systems tested. The error analysis indicates it
may be because (1) there are less NP pairs in NPa-

per than in NWire that require the external seman-
tic knowledge for resolution; and (2) For many NP
pairs that require the semantic knowledge, no co-
occurrence can be found in the Wikipedia corpus.
To address this problem, we could resort to the Web
which contains a larger volume of texts and thus
could lead to more informative patterns. We would
like to explore this issue in our future work.

In Figure 1, we plot the decision tree learned
with the pattern features for non-pronoun resolution
(NWire domain,filtered frequency), which visually
illustrates which features are useful in the reference
determination. We can find the pattern features oc-
cur in the top of the decision tree, among the features
for namealias, appositionandstring-matchingthat
are crucial for coreference resolution as reported in
previous work (Soon et al., 2001). Most of the pat-
tern features deemed important by the learner are for
the copula structure.

5.2.2 Single Semantic Relatedness Feature

Section 4.3.2 presents another strategy to exploit
the patterns, which uses a single feature to reflect the
semantic relatedness between NP pairs. The last two
lines of Table 1 list the results of such a system.

Observed from the table, the system with the sin-
gle semantic relatedness feature beats those with
other solutions. Compared with the baseline, the
system can get improvement in recall (up to 2.9%
as in NWire), with a similar or even higher preci-
sion. The overall F-measure it produces is 67.1%,
65.0% and 62.7%, better than the baseline in all the
domains. Especially in the NWire domain, we can
see the significant (t-test, p≤ 0.05) improvement of
2.1% in F-measure. When applied on All-Type NP
pairs, the degrade of performance is less significant
as using pattern features. The resulting performance
is better than the baseline or equal. Compared with
the systems using the pattern features, it can still
achieve a higher precision and F-measure (with a lit-
tle loss in recall) .

There are several reasons why the single seman-
tic relatedness feature (SRel) can perform better than
the set of pattern features. Firstly, the feature value
of SReltakes into consideration the information of
all the patterns, instead of only the selected patterns.
Secondly, since theSRelfeature is computed based
on all the patterns, it reduces the risk of false posi-
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NameAlias = 1: ...
NameAlias = 0:
:..Appositive = 1: ...

Appositive = 0:
:..SRel > 28:

:..SRel > 47: ...
: SRel <= 47: ...
SRel <= 28:
:..String_Match = 1: ...

String_Match = 0: ...

Figure 2: The decision tree (Nwire) for the system
using the single semantic relatedness feature

tive when a NP pair happens to satisfy one or several
pattern features. Lastly, from the point of view of
machine learning, using only one semantic feature,
instead of hundreds of pattern features, can avoid
overfitting and thus benefit the classifier learning.

In Figure 2, we also show the decision tree learned
with the semantic relatedness feature. We observe
that the decision tree is simpler than that with pat-
tern features as depicted in Figure 1. After feature
name-aliasand apposite, the classifier checks dif-
ferent ranges of theSRelvalue and make different
resolution decision accordingly. This figure further
illustrates the importance of the semantic feature.

6 Conclusions

In this paper we present a pattern based approach to
coreference resolution. Different from the previous
work which utilizes manually designed patterns, our
approach can automatically discover the patterns ef-
fective for the coreference resolution task. In our
study, we explore how to acquire and evaluate pat-
terns, and investigate how to exploit the patterns to
mine semantic relatedness information for corefer-
ence resolution. The evaluation on ACE data set
shows that the patterned based features, when ap-
plied on NP pairs containing proper names, can ef-
fectively help the performance of coreference res-
olution in the recall (up to 4.3%) and the overall
F-measure (up to 2.1%). The results also indicate
that using the single semantic relatedness feature has
more advantages than using a set of pattern features.

For future work, we intend to investigate our
approach in more difficult tasks like the bridging
anaphora resolution, in which the semantic relations
involved are more complicated. Also, we would like
to explore the approach in technical (e.g., biomedi-
cal) domains, where jargons are frequently seen and
the need for external knowledge is more compelling.
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