
Proceedings of the 45th Annual Meeting of the Association of Computational Linguistics, pages 512–519,
Prague, Czech Republic, June 2007. c©2007 Association for Computational Linguistics

Randomised Language Modelling for Statistical Machine Translation

David Talbot and Miles Osborne
School of Informatics, University of Edinburgh
2 Buccleuch Place, Edinburgh, EH8 9LW, UK

d.r.talbot@sms.ed.ac.uk, miles@inf.ed.ac.uk

Abstract

A Bloom filter (BF) is a randomised data
structure for set membership queries. Its
space requirements are significantly below
lossless information-theoretic lower bounds
but it produces false positives with some
quantifiable probability. Here we explore the
use of BFs for language modelling in statis-
tical machine translation.

We show how a BF containing n-grams can
enable us to use much larger corpora and
higher-order models complementing a con-
ventional n-gram LM within an SMT sys-
tem. We also consider (i) how to include ap-
proximate frequency information efficiently
within a BF and (ii) how to reduce the er-
ror rate of these models by first checking for
lower-order sub-sequences in candidate n-
grams. Our solutions in both cases retain the
one-sided error guarantees of the BF while
taking advantage of the Zipf-like distribution
of word frequencies to reduce the space re-
quirements.

1 Introduction
Language modelling (LM) is a crucial component in
statistical machine translation (SMT). Standard n-
gram language models assign probabilities to trans-
lation hypotheses in the target language, typically as
smoothed trigram models, e.g. (Chiang, 2005). Al-
though it is well-known that higher-order LMs and
models trained on additional monolingual corpora
can yield better translation performance, the chal-

lenges in deploying large LMs are not trivial. In-
creasing the order of an n-gram model can result in
an exponential increase in the number of parameters;
for corpora such as the English Gigaword corpus, for
instance, there are 300 million distinct trigrams and
over 1.2 billion 5-grams. Since a LM may be queried
millions of times per sentence, it should ideally re-
side locally in memory to avoid time-consuming re-
mote or disk-based look-ups.

Against this background, we consider a radically
different approach to language modelling: instead
of explicitly storing all distinct n-grams, we store a
randomised representation. In particular, we show
that the Bloom filter (Bloom (1970); BF), a sim-
ple space-efficient randomised data structure for rep-
resenting sets, may be used to represent statistics
from larger corpora and for higher-order n-grams to
complement a conventional smoothed trigram model
within an SMT decoder. 1

The space requirements of a Bloom filter are quite
spectacular, falling significantly below information-
theoretic error-free lower bounds while query times
are constant. This efficiency, however, comes at the
price of false positives: the filter may erroneously
report that an item not in the set is a member. False
negatives, on the other hand, will never occur: the
error is said to be one-sided.

In this paper, we show that a Bloom filter can be
used effectively for language modelling within an
SMT decoder and present the log-frequency Bloom
filter, an extension of the standard Boolean BF that

1For extensions of the framework presented here to stand-
alone smoothed Bloom filter language models, we refer the
reader to a companion paper (Talbot and Osborne, 2007).

512

takes advantage of the Zipf-like distribution of cor-
pus statistics to allow frequency information to be
associated with n-grams in the filter in a space-
efficient manner. We then propose a mechanism,
sub-sequence filtering, for reducing the error rates
of these models by using the fact that an n-gram’s
frequency is bound from above by the frequency of
its least frequent sub-sequence.

We present machine translation experiments us-
ing these models to represent information regarding
higher-order n-grams and additional larger mono-
lingual corpora in combination with conventional
smoothed trigram models. We also run experiments
with these models in isolation to highlight the im-
pact of different order n-grams on the translation
process. Finally we provide some empirical analysis
of the effectiveness of both the log frequency Bloom
filter and sub-sequence filtering.

2 The Bloom filter
In this section, we give a brief overview of the
Bloom filter (BF); refer to Broder and Mitzenmacher
(2005) for a more in detailed presentation. A BF rep-
resents a set S = {x1, x2, ..., xn} with n elements
drawn from a universe U of size N . The structure is
attractive when N � n. The only significant stor-
age used by a BF consists of a bit array of size m.
This is initially set to hold zeroes. To train the filter
we hash each item in the set k times using distinct
hash functions h1, h2, ..., hk. Each function is as-
sumed to be independent from each other and to map
items in the universe to the range 1 to m uniformly
at random. The k bits indexed by the hash values
for each item are set to 1; the item is then discarded.
Once a bit has been set to 1 it remains set for the life-
time of the filter. Distinct items may not be hashed
to k distinct locations in the filter; we ignore col-
lisons. Bits in the filter can, therefore, be shared by
distinct items allowing significant space savings but
introducing a non-zero probability of false positives
at test time. There is no way of directly retrieving or
ennumerating the items stored in a BF.

At test time we wish to discover whether a given
item was a member of the original set. The filter is
queried by hashing the test item using the same k
hash functions. If all bits referenced by the k hash
values are 1 then we assume that the item was a
member; if any of them are 0 then we know it was

not. True members are always correctly identified,
but a false positive will occur if all k corresponding
bits were set by other items during training and the
item was not a member of the training set. This is
known as a one-sided error.

The probability of a false postive, f , is clearly the
probability that none of k randomly selected bits in
the filter are still 0 after training. Letting p be the
proportion of bits that are still zero after these n ele-
ments have been inserted, this gives,

f = (1− p)k.

As n items have been entered in the filter by hashing
each k times, the probability that a bit is still zero is,

p
′
=

(
1− 1

m

)kn

≈ e−
kn
m

which is the expected value of p. Hence the false
positive rate can be approximated as,

f = (1− p)k ≈ (1− p
′
)k ≈

(
1− e−

kn
m

)k
.

By taking the derivative we find that the number of
functions k∗ that minimizes f is,

k∗ = ln 2 · m
n

.

which leads to the intuitive result that exactly half
the bits in the filter will be set to 1 when the optimal
number of hash functions is chosen.

The fundmental difference between a Bloom fil-
ter’s space requirements and that of any lossless rep-
resentation of a set is that the former does not depend
on the size of the (exponential) universe N from
which the set is drawn. A lossless representation
scheme (for example, a hash map, trie etc.) must de-
pend on N since it assigns a distinct representation
to each possible set drawn from the universe.

3 Language modelling with Bloom filters
In our experiments we make use of both standard
(i.e. Boolean) BFs containing n-gram types drawn
from a training corpus and a novel BF scheme, the
log-frequency Bloom filter, that allows frequency
information to be associated efficiently with items
stored in the filter.

513

Algorithm 1 Training frequency BF
Input: Strain, {h1, ...hk} and BF = ∅
Output: BF
for all x ∈ Strain do

c(x)← frequency of n-gram x in Strain

qc(x)← quantisation of c(x) (Eq. 1)
for j = 1 to qc(x) do

for i = 1 to k do
hi(x)← hash of event {x, j} under hi

BF [hi(x)]← 1
end for

end for
end for
return BF

3.1 Log-frequency Bloom filter
The efficiency of our scheme for storing n-gram
statistics within a BF relies on the Zipf-like distribu-
tion of n-gram frequencies in natural language cor-
pora: most events occur an extremely small number
of times, while a small number are very frequent.

We quantise raw frequencies, c(x), using a loga-
rithmic codebook as follows,

qc(x) = 1 + blogb c(x)c. (1)

The precision of this codebook decays exponentially
with the raw counts and the scale is determined by
the base of the logarithm b; we examine the effect of
this parameter in experiments below.

Given the quantised count qc(x) for an n-gram x,
the filter is trained by entering composite events con-
sisting of the n-gram appended by an integer counter
j that is incremented from 1 to qc(x) into the filter.
To retrieve the quantised count for an n-gram, it is
first appended with a count of 1 and hashed under
the k functions; if this tests positive, the count is in-
cremented and the process repeated. The procedure
terminates as soon as any of the k hash functions hits
a 0 and the previous count is reported. The one-sided
error of the BF and the training scheme ensure that
the actual quantised count cannot be larger than this
value. As the counts are quantised logarithmically,
the counter will be incremented only a small number
of times. The training and testing routines are given
here as Algorithms 1 and 2 respectively.

Errors for the log-frequency BF scheme are one-
sided: frequencies will never be underestimated.

Algorithm 2 Test frequency BF
Input: x, MAXQCOUNT , {h1, ...hk} and BF
Output: Upper bound on qc(x) ∈ Strain

for j = 1 to MAXQCOUNT do
for i = 1 to k do

hi(x)← hash of event {x, j} under hi

if BF [hi(x)] = 0 then
return j − 1

end if
end for

end for

The probability of overestimating an item’s fre-
quency decays exponentially with the size of the
overestimation error d (i.e. as fd for d > 0) since
each erroneous increment corresponds to a single
false positive and d such independent events must
occur together.

3.2 Sub-sequence filtering
The error analysis in Section 2 focused on the false
positive rate of a BF; if we deploy a BF within an
SMT decoder, however, the actual error rate will also
depend on the a priori membership probability of
items presented to it. The error rate Err is,

Err = Pr(x /∈ Strain|Decoder)f.

This implies that, unlike a conventional lossless data
structure, the model’s accuracy depends on other
components in system and how it is queried.

We take advantage of the monotonicity of the n-
gram event space to place upper bounds on the fre-
quency of an n-gram prior to testing for it in the filter
and potentially truncate the outer loop in Algorithm
2 when we know that the test could only return pos-
tive in error.

Specifically, if we have stored lower-order n-
grams in the filter, we can infer that an n-gram can-
not present, if any of its sub-sequences test nega-
tive. Since our scheme for storing frequencies can
never underestimate an item’s frequency, this rela-
tion will generalise to frequencies: an n-gram’s fre-
quency cannot be greater than the frequency of its
least frequent sub-sequence as reported by the filter,

c(w1, ..., wn) ≤ min {c(w1, ..., wn−1), c(w2, ..., wn)}.

We use this to reduce the effective error rate of BF-
LMs that we use in the experiments below.

514

3.3 Bloom filter language model tests
A standard BF can implement a Boolean ‘language
model’ test: have we seen some fragment of lan-
guage before? This does not use any frequency in-
formation. The Boolean BF-LM is a standard BF
containing all n-grams of a certain length in the
training corpus, Strain. It implements the following
binary feature function in a log-linear decoder,

φbool(x) ≥ δ(x ∈ Strain)

Separate Boolean BF-LMs can be included for
different order n and assigned distinct log-linear
weights that are learned as part of a minimum error
rate training procedure (see Section 4).

The log-frequency BF-LM implements a multino-
mial feature function in the decoder that returns the
value associated with an n-gram by Algorithm 2.

φlogfreq(x) ≥ qc(x) ∈ Strain

Sub-sequence filtering can be performed by using
the minimum value returned by lower-order models
as an upper-bound on the higher-order models.

By boosting the score of hypotheses containing n-
grams observed in the training corpus while remain-
ing agnostic for unseen n-grams (with the exception
of errors), these feature functions have more in com-
mon with maximum entropy models than conven-
tionally smoothed n-gram models.

4 Experiments

We conducted a range of experiments to explore the
effectiveness and the error-space trade-off of Bloom
filters for language modelling in SMT. The space-
efficiency of these models also allows us to inves-
tigate the impact of using much larger corpora and
higher-order n-grams on translation quality. While
our main experiments use the Bloom filter models in
conjunction with a conventional smoothed trigram
model, we also present experiments with these mod-
els in isolation to highlight the impact of different
order n-grams on the translation process. Finally,
we present some empirical analysis of both the log-
frequency Bloom filter and the sub-sequence filter-
ing technique which may be of independent interest.

Model EP-KN-3 EP-KN-4 AFP-KN-3
Memory 64M 99M 1.3G
gzip size 21M 31M 481M
1-gms 62K 62K 871K
2-gms 1.3M 1.3M 16M
3-gms 1.1M 1.0M 31M
4-gms N/A 1.1M N/A

Table 1: Baseline and Comparison Models

4.1 Experimental set-up

All of our experiments use publically available re-
sources. We use the French-English section of the
Europarl (EP) corpus for parallel data and language
modelling (Koehn, 2003) and the English Giga-
word Corpus (LDC2003T05; GW) for additional
language modelling.

Decoding is carried-out using the Moses decoder
(Koehn and Hoang, 2007). We hold out 500 test sen-
tences and 250 development sentences from the par-
allel text for evaluation purposes. The feature func-
tions in our models are optimised using minimum
error rate training and evaluation is performed using
the BLEU score.

4.2 Baseline and comparison models

Our baseline LM and other comparison models are
conventional n-gram models smoothed using modi-
fied Kneser-Ney and built using the SRILM Toolkit
(Stolcke, 2002); as is standard practice these models
drop entries for n-grams of size 3 and above when
the corresponding discounted count is less than 1.
The baseline language model, EP-KN-3, is a trigram
model trained on the English portion of the parallel
corpus. For additional comparisons we also trained a
smoothed 4-gram model on this Europarl data (EP-
KN-4) and a trigram model on the Agence France
Press section of the Gigaword Corpus (AFP-KN-3).

Table 1 shows the amount of memory these mod-
els take up on disk and compressed using the gzip
utility in parentheses as well as the number of dis-
tinct n-grams of each order. We give the gzip com-
pressed size as an optimistic lower bound on the size
of any lossless representation of each model.2

2Note, in particular, that gzip compressed files do not sup-
port direct random access as required by our application.

515

Corpus Europarl Gigaword
1-gms 61K 281K
2-gms 1.3M 5.4M
3-gms 4.7M 275M
4-gms 9.0M 599M
5-gms 10.3M 842M
6-gms 10.7M 957M

Table 2: Number of distinct n-grams

4.3 Bloom filter-based models

To create Bloom filter LMs we gathered n-gram
counts from both the Europarl (EP) and the whole
of the Gigaword Corpus (GW). Table 2 shows the
numbers of distinct n-grams in these corpora. Note
that we use no pruning for these models and that
the numbers of distinct n-grams is of the same or-
der as that of the recently released Google Ngrams
dataset (LDC2006T13). In our experiments we cre-
ate a range of models referred to by the corpus used
(EP or GW), the order of the n-gram(s) entered into
the filter (1 to 10), whether the model is Boolean
(Bool-BF) or provides frequency information (Freq-
BF), whether or not sub-sequence filtering was used
(FTR) and whether it was used in conjunction with
the baseline trigram (+EP-KN-3).

4.4 Machine translation experiments

Our first set of experiments examines the relation-
ship between memory allocated to the BF and BLEU
score. We present results using the Boolean BF-
LM in isolation and then both the Boolean and log-
frequency BF-LMS to add 4-grams to our baseline
3-gram model.Our second set of experiments adds
3-grams and 5-grams from the Gigaword Corpus to
our baseline. Here we constrast the Boolean BF-
LM with the log-frequency BF-LM with different
quantisation bases (2 = fine-grained and 5 = coarse-
grained). We then evaluate the sub-sequence fil-
tering approach to reducing the actual error rate of
these models by adding both 3 and 4-grams from the
Gigaword Corpus to the baseline. Since the BF-LMs
easily allow us to deploy very high-order n-gram
models, we use them to evaluate the impact of dif-
ferent order n-grams on the translation process pre-
senting results using the Boolean and log-frequency
BF-LM in isolation for n-grams of order 1 to 10.

Model EP-KN-3 EP-KN-4 AFP-KN-3
BLEU 28.51 29.24 29.17
Memory 64M 99M 1.3G
gzip size 21M 31M 481M

Table 3: Baseline and Comparison Models

4.5 Analysis of BF extensions

We analyse our log-frequency BF scheme in terms
of the additional memory it requires and the error
rate compared to a non-redundant scheme. The non-
redundant scheme involves entering just the exact
quantised count for each n-gram and then searching
over the range of possible counts at test time starting
with the count with maximum a priori probability
(i.e. 1) and incrementing until a count is found or
the whole codebook has been searched (here the size
is 16).

We also analyse the sub-sequence filtering
scheme directly by creating a BF with only 3-grams
and a BF containing both 2-grams and 3-grams and
comparing their actual error rates when presented
with 3-grams that are all known to be negatives.

5 Results

5.1 Machine translation experiments

Table 3 shows the results of the baseline (EP-KN-
3) and other conventional n-gram models trained on
larger corpora (AFP-KN-3) and using higher-order
dependencies (EP-KN-4). The larger models im-
prove somewhat on the baseline performance.

Figure 1 shows the relationship between space al-
located to the BF models and BLEU score (left) and
false positive rate (right) respectively. These experi-
ments do not include the baseline model. We can see
a clear correlation between memory / false positive
rate and translation performance.

Adding 4-grams in the form of a Boolean BF or a
log-frequency BF (see Figure 2) improves on the 3-
gram baseline with little additional memory (around
4MBs) while performing on a par with or above
the Europarl 4-gram model with around 10MBs;
this suggests that a lossy representation of the un-
pruned set of 4-grams contains more useful informa-
tion than a lossless representation of the pruned set.3

3An unpruned modified Kneser-Ney 4-gram model on the
Eurpoparl data scores slightly higher - 29.69 - while taking up
489MB (132MB gzipped).

516

 29

 28

 27

 26

 25
 10 8 6 4 2

 1

 0.8

 0.6

 0.4

 0.2

 0

B
LE

U
 S

co
re

F
al

se
 p

os
iti

ve
 r

at
e

Memory in MB

Europarl Boolean BF 4-gram (alone)

BLEU Score Bool-BF-EP-4
False positive rate

Figure 1: Space/Error vs. BLEU Score.

 30.5

 30

 29.5

 29

 28.5

 28
 9 7 5 3 1

B
LE

U
 S

co
re

Memory in MB

EP-Bool-BF-4 and Freq-BF-4 (with EP-KN-3)

EP-Bool-BF-4 + EP-KN-3
EP-Freq-BF-4 + EP-KN-3

EP-KN-4 comparison (99M / 31M gzip)
EP-KN-3 baseline (64M / 21M gzip)

Figure 2: Adding 4-grams with Bloom filters.

As the false positive rate exceeds 0.20 the perfor-
mance is severly degraded. Adding 3-grams drawn
from the whole of the Gigaword corpus rather than
simply the Agence France Press section results in
slightly improved performance with signficantly less
memory than the AFP-KN-3 model (see Figure 3).

Figure 4 shows the results of adding 5-grams
drawn from the Gigaword corpus to the baseline. It
also contrasts the Boolean BF and the log-frequency
BF suggesting in this case that the log-frequency BF
can provide useful information when the quantisa-
tion base is relatively fine-grained (base 2). The
Boolean BF and the base 5 (coarse-grained quan-
tisation) log-frequency BF perform approximately
the same. The base 2 quantisation performs worse

 30.5

 30

 29.5

 29

 28.5

 28

 27.5

 27
 1 0.8 0.6 0.4 0.2 0.1

B
LE

U
 S

co
re

Memory in GB

GW-Bool-BF-3 and GW-Freq-BF-3 (with EP-KN-3)

GW-Bool-BF-3 + EP-KN-3
GW-Freq-BF-3 + EP-KN-3

AFP-KN-3 + EP-KN-3

Figure 3: Adding GW 3-grams with Bloom filters.

 30.5

 30

 29.5

 29

 28.5

 28
 1 0.8 0.6 0.4 0.2 0.1

B
LE

U
 S

co
re

Memory in GB

GW-Bool-BF-5 and GW-Freq-BF-5 (base 2 and 5) (with EP-KN-3)

GW-Bool-BF-5 + EP-KN-3
GW-Freq-BF-5 (base 2) + EP-KN-3
GW-Freq-BF-5 (base 5) + EP-KN-3

AFP-KN-3 + EP-KN-3

Figure 4: Comparison of different quantisation rates.

for smaller amounts of memory, possibly due to the
larger set of events it is required to store.

Figure 5 shows sub-sequence filtering resulting in
a small increase in performance when false positive
rates are high (i.e. less memory is allocated). We
believe this to be the result of an increased a pri-
ori membership probability for n-grams presented
to the filter under the sub-sequence filtering scheme.

Figure 6 shows that for this task the most useful
n-gram sizes are between 3 and 6.

5.2 Analysis of BF extensions

Figure 8 compares the memory requirements of
the log-frequencey BF (base 2) and the Boolean

517

 31

 30

 29

 28
 1 0.8 0.6 0.4 0.2

B
LE

U
 S

co
re

Memory in MB

GW-Bool-BF-3-4-FTR and GW-Bool-BF-3-4 (with EP-KN-3)

GW-Bool-BF-3-4-FTR + EP-KN-3
GW-Bool-BF-3-4 + EP-KN-3

Figure 5: Effect of sub-sequence filtering.

 27

 26

 25

 24
 10 9 8 7 6 5 4 3 2 1

B
LE

U
 S

co
re

N-gram order

EP-Bool-BF and EP-Freq-BF with different order N-grams (alone)

EP-Bool-BF
EP-Freq-BF

Figure 6: Impact of n-grams of different sizes.

BF for various order n-gram sets from the Giga-
word Corpus with the same underlying false posi-
tive rate (0.125). The additional space required by
our scheme for storing frequency information is less
than a factor of 2 compared to the standard BF.

Figure 7 shows the number and size of frequency
estimation errors made by our log-frequency BF
scheme and a non-redundant scheme that stores only
the exact quantised count. We presented 500K nega-
tives to the filter and recorded the frequency of over-
estimation errors of each size. As shown in Section
3.1, the probability of overestimating an item’s fre-
quency under the log-frequency BF scheme decays
exponentially in the size of this overestimation er-
ror. Although the non-redundant scheme requires

 0

 10

 20

 30

 40

 50

 60

 70

 80

 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

F
re

qu
en

cy
 (

K
)

Size of overestimation error

Frequency Estimation Errors on 500K Negatives

Log-frequency BF (Bloom error = 0.159)
Non-redundant scheme (Bloom error = 0.076)

Figure 7: Frequency estimation errors.

 0

 100

 200

 300

 400

 500

 600

 700

 1 2 3 4 5 6 7

M
em

or
y

(M
B

)

N-gram order (Gigaword)

Memory requirements for 0.125 false positive rate

Bool-BF
Freq-BF (log base-2 quantisation)

Figure 8: Comparison of memory requirements.

fewer items be stored in the filter and, therefore, has
a lower underlying false positive rate (0.076 versus
0.159), in practice it incurs a much higher error rate
(0.717) with many large errors.

Figure 9 shows the impact of sub-sequence filter-
ing on the actual error rate. Although, the false pos-
itive rate for the BF containing 2-grams, in addition,
to 3-grams (filtered) is higher than the false positive
rate of the unfiltered BF containing only 3-grams,
the actual error rate of the former is lower for mod-
els with less memory. By testing for 2-grams prior
to querying for the 3-grams, we can avoid perform-
ing some queries that may otherwise have incurred
errors using the fact that a 3-gram cannot be present
if one of its constituent 2-grams is absent.

518

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.5 1 1.5 2 2.5 3 3.5

E
rr

or
 r

at
e

Memory (MB)

Error rate with sub-sequence filtering

Filtered false positive rate
Unfiltered false pos rate / actual error rate

Filtered actual error rate

Figure 9: Error rate with sub-sequence filtering.

6 Related Work

We are not the first people to consider building very
large scale LMs: Kumar et al. used a four-gram
LM for re-ranking (Kumar et al., 2005) and in un-
published work, Google used substantially larger n-
grams in their SMT system. Deploying such LMs
requires either a cluster of machines (and the over-
heads of remote procedure calls), per-sentence fil-
tering (which again, is slow) and/or the use of some
other lossy compression (Goodman and Gao, 2000).
Our approach can complement all these techniques.

Bloom filters have been widely used in database
applications for reducing communications over-
heads and were recently applied to encode word
frequencies in information retrieval (Linari and
Weikum, 2006) using a method that resembles the
non-redundant scheme described above. Exten-
sions of the BF to associate frequencies with items
in the set have been proposed e.g., (Cormode and
Muthukrishn, 2005); while these schemes are more
general than ours, they incur greater space overheads
for the distributions that we consider here.

7 Conclusions

We have shown that Bloom Filters can form the ba-
sis for space-efficient language modelling in SMT.
Extending the standard BF structure to encode cor-
pus frequency information and developing a strat-
egy for reducing the error rates of these models by
sub-sequence filtering, our models enable higher-

order n-grams and larger monolingual corpora to be
used more easily for language modelling in SMT.
In a companion paper (Talbot and Osborne, 2007)
we have proposed a framework for deriving con-
ventional smoothed n-gram models from the log-
frequency BF scheme allowing us to do away en-
tirely with the standard n-gram model in an SMT
system. We hope the present work will help estab-
lish the Bloom filter as a practical alternative to con-
ventional associative data structures used in compu-
tational linguistics. The framework presented here
shows that with some consideration for its workings,
the randomised nature of the Bloom filter need not
be a significant impediment to is use in applications.

References
B. Bloom. 1970. Space/time tradeoffs in hash coding with

allowable errors. CACM, 13:422–426.

A. Broder and M. Mitzenmacher. 2005. Network applications
of bloom filters: A survey. Internet Mathematics, 1(4):485–
509.

David Chiang. 2005. A hierarchical phrase-based model for
statistical machine translation. In Proceedings of the 43rd
Annual Meeting of the Association for Computational Lin-
guistics (ACL’05), pages 263–270, Ann Arbor, Michigan.

G. Cormode and S. Muthukrishn. 2005. An improved data
stream summary: the count-min sketch and its applications.
Journal of Algorithms, 55(1):58–75.

J. Goodman and J. Gao. 2000. Language model size reduction
by pruning and clustering. In ICSLP’00, Beijing, China.

Philipp Koehn and Hieu Hoang. 2007. Factored translation
models. In Proc. of the 2007 Conference on Empirical Meth-
ods in Natural Language Processing (EMNLP/Co-NLL).

P. Koehn. 2003. Europarl: A multilingual corpus for eval-
uation of machine translation philipp koehn, draft. Available
at:http://people.csail.mit.edu/ koehn/publications/europarl.ps.

S. Kumar, Y. Deng, and W. Byrne. 2005. Johns Hopkins Uni-
versity - Cambridge University Chinese-English and Arabic-
English 2005 NIST MT Evaluation Systems. In Proceedings
of 2005 NIST MT Workshop, June.

Alessandro Linari and Gerhard Weikum. 2006. Efficient peer-
to-peer semantic overlay networks based on statistical lan-
guage models. In Proceedings of the International Workshop
on IR in Peer-to-Peer Networks, pages 9–16, Arlington.

Andreas Stolcke. 2002. SRILM – An extensible language mod-
eling toolkit. In Proc. of the Intl. Conf. on Spoken Lang.
Processing, 2002.

David Talbot and Miles Osborne. 2007. Smoothed Bloom fil-
ter language models: Tera-scale LMs on the cheap. In Pro-
ceedings of the 2007 Conference on Empirical Methods in
Natural Language Processing (EMNLP/Co-NLL), June.

519

