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Abstract

While the average performance of statisti-
cal parsers gradually improves, they still at-
tach to many sentences annotations of rather
low quality. The number of such sentences
grows when the training and test data are
taken from different domains, which is the
case for major web applications such as in-
formation retrieval and question answering.

In this paper we present Sample Ensem-
ble Parse Assessment (SERAgorithm for
detecting parse quality. We use a function
of the agreement among several copies of
a parser, each of which trained on a differ-
ent sample from the training data, to assess
parse quality. We experimented with both
generative and reranking parsers (Collins,
Charniak and Johnson respectively). We
show superior results over several baselines,
both when the training and test data are from
the same domain and when they are from
different domains. For a test setting used by
previous work, we show an error reduction
of 31% as opposed to their 20%.
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Ari Rappoport
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data are taken from different domains (tparser
adaptationscenario) the ratio of such low quality
parses becomes even higher. Figure 1 demonstrates
these phenomena for two leading models, Collins
(1999) model 2, a generative model, and Charniak
and Johnson (2005), a reranking model. The parser
adaptation scenario is the rule rather than the excep-
tion for QA and IE systems, because these usually
operate over the highly variable Web, making it very
difficult to create a representative corpus for manual
annotation. Medium quality parses may seriously
harm the performance of such systems.

In this paper we address the problem of assess-
ing parse quality, using &ample Ensemble Parse
Assessment (SEPA)gorithm. We use the level of
agreement among several copies of a parser, each of
which trained on a different sample from the training
data, to predict the quality of a parse. The algorithm
does not assume uniformity of training and test data,
and is thus suitable to web-based applications such
as QA and IE.

Generative statistical parsers compute a probabil-
ity p(a, s) for each sentence annotation, so the im-
mediate technique that comes to mind for assess-
ing parse quality is to simply ug&a, s). Another
seemingly trivial method is to assume that shorter
sentences would be parsed better than longer ones.

Many algorithms for major NLP applications suchHowever, these techniques produce results that are
as information extraction (IE) and question answeifar from optimal. In Section 5 we show the superi-
ing (QA) utilize the output of statistical parsersority of our method over these and other baselines.
(see (Yates et al., 2006)). While the average per- Surprisingly, as far as we know there is only one
formance of statistical parsers gradually improvegrevious work explicitly addressing this problem
the quality of many of the parses they produce i§Yates et al., 2006). ThemwoODWARD algorithm

too low for applications. When the training and tesfilters out high quality parses by performing seman-
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1 ——Collins, ID tic information obtained from the Web. Measuring
. errors using filter f-score (see Section 3) and using
— Charniak,Adap. the Collins generative modelyOODWARD reduces
errors by 67% on a set of TREC questions and by
20% on a set of a 100 WSJ sentences. Section 5
: provides a detailed comparison with our algorithm.
03 . o e Rer_anking algorithms (Koo and Collins_, 2005;
F score Charniak and Johnson, 2005) search the list of best
parses output by a generative parser to find a parse of
Figure 1: F-score vs. the fraction of parses whosgigher quality than the parse selected by the genera-
f-score is at least that f-score. For the in-domaifye parser. Thus, these algorithms in effect assess
scenario, the parsers are tested on sec 23 of the W{%ﬂ'se quality using syntactic and lexical features.
Penn Treebank. For the parser adaptation scenarighe Sepa algorithm does not use such features, and
they are tested on the Brown test section. In boty g,,ccessful in detecting high quality parses even
cases they are trained on sections 2-21 of WSJ.  \yhen working on the output of a reranker. Rerank-

ing and SEPA are thus relatively independent.

tic analysis. The present paper provides a detailed Bagging (Breiman, 1996) uses an ensemble of in-
comparison between the two algorithms, showingtances of a model, each trained on a sample of the
both that SEPA produces superior results and thiiining data. Bagging was suggested in order to
it operates under less restrictive conditions. enhance classifiers; the classification outcome was
We experiment with both the generative parsin§letermined using a majority vote among the mod-
model number 2 of Collins (1999) and the reranking!s- In NLP, bagging was used for active learning
parser of Charniak and Johnson (2005), both whef" text classification (Argamon-Engelson and Da-
the training and test data belong to the same doma§in, 1999; McCallum and Nigam, 1998). Specif-
(the in-domainscenario) and in the parser adaptaically in parsing, (Henderson and Brill, 2000) ap-
tion scenario. In all four cases, we show substanti®@li€d a constituent level voting scheme to an en-
improvement over the baselines. The present pape@mble of bagged models to increase parser perfor-
is the first to use a reranking parser and the first thance, and (Becker and Osborne, 2005) suggested
address the adaptation scenario for this problem. an active learning technique in which the agreement
Section 2 discusses relevant previous work, Se@mongan ensemble of bagged parsers is used to pre-
tion 3 describes the SEPA algorithm, Sections 4 arfiCt €xamples valuable for human annotation. They
5 present the experimental setup and results, akgported experiments with small training sets only
Section 6 discusses certain aspects of these resdi® 10 5,000 sentences), and their agreement func-
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and compares SEPA {@OODWARD. tion is very different from ours. Both works experi-
mented with generative parsing models only.
2 Related Work Ngai and Yarowsky (2000) used an ensemble

based on bagging and partitioning for active learning
The only previous work we are aware of that explictgr pase NP chunking. They select top items with-
itly addressed the problem of detecting high quality ¢ any graded assessment, and their f-complement
parses in the output of statistical parsers is (Yates gfnction. which slightly resembles ol F (see the
al., 2006). Based on the observation that incorreglayt section), is applied to the output of a classifier,
parses often result in implausible semantic interpreynile our function is applied to structured output.
tations of sentences, they designedW®@oDWARD  p survey of several papers dealing with mapping
filtering system. It first maps the parse produced by
the parser to a logic-based representation (relational *Each sample is created by sampling, with replacemént,

conjunction (RC)) and then employs four method§xamples from the training pool, whetes the size of the train-
ing pool. Conversely, each of our samples is smaller than the

for S_emantlcally analyzing whether _a conjunctin th?raining set, and is created by sampling without replacement.
RC is likely to be reasonable. The filters use semarsee Section 3 (‘regardingf) for a discussion of this issue.
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predictors in classifiers’ output to posterior probaa highly similar) parse even if the training data is
bilities is given in (Caruana and Niculescu-Mizil, somewhat changed. In other words, we rely on the
2006). As far as we know, the application of a samstability of the parameters of statistical parsers. Al-
ple based parser ensemble for assessing parse qulasugh this is not always the case, our results con-
ity is novel. firm that strong correlation between agreement and
Many IE and QA systems rely on the output ofparse quality does exist.
parsers (Kwok et al., 2001; Attardi et al., 2001; We explored several agreement functions. The
Moldovan et al., 2003). The latter tries to addressene that showed the best resultsM&an F-score
incorrect parses using complex relaxation methodéVIF)?, defined as follows. Denote the models by
Knowing the quality of a parse could greatly im-m; ... my, and the parse provided by, for sen-
prove the performance of such systems. tences asm;(s). We randomly choose a model;,

and compute
3 The Sample Ensemble Par se Assessment

(SEPA) Algorithm MF(s) = — S Fscore(mimy) (1)

In this section we detail our parse assessment algo- i€[L...N]iZl

rithm. Its input consists of a parsing algorithdnan We use two measures to evaluate the quality of

annotated training sét R, and an unannotated testSEPA grades. Both measures are defined using a
setT'E. The output provides, for each test Sentenc?hreshold parameteF, addressing only sentences
the parse generated for it by when trained on the '

e . whose SEPA grades are not smaller tiiarwe refer
full training set, and a grade assessing the pars

S
: . 96 these sentences asentences.
quality, on a continuous scale betweeto 100. Ap- : .

L The first measure is the average f-score of the

plications are then free to select a sentence subset

: . . parses of T-sentences. Note that we compute the

that suits their needs using our grades, e.g. by keeP-

ina onlv high-quality parses. or by removing low-1 Sc°"€ of each of the selected sentences and then

g only high-q Y parses, y glo average the results. This stands in contrast to the

quality parses and keeping the rest. The algorithm : N .
has the following stages: way f-score is ordinarily calculated, by computing
g stages. the labeled precision and recall of the constituents

in the whole set and using these as the arguments of
h-the f-score equation. The ordinary f-score is com-
puted that way mostly in order to overcome the fact
that sentences differ in length. However, for appli-
2. Train N copies of the parsing algorithmd, cations such as IE and QA, which work at the single

each with one of the samples. sentence level and which might reach erroneous de-

_ cision due to an inaccurate parse, normalizing over

3. Parse the test set with each of temodels.  sentence lengths is less of a factor. For this reason,

in this paper we present detailed graphs for the aver-
4. For each test sentence, compute the value of an .
. age f-score. For completeness, Table 4 also provides

agreement functior’ between the models.

some of the results using the ordinary f-score.
5. Sort the test set according fs value. The second measure is a generalization of the fil-
ter f-score measure suggested by Yates et al. (2006).
The algorithm uses the level of agreement amonghey defin€filter precisionas the ratio of correctly
several copies of a parser, each trained on a differeparsed sentences in thikered set(the set the algo-
sample from the training data, to predict the qualrithm choose) to total sentences in the filtered set and
ity of a parse. The higher the agreement, the highéilter recall as the ratio of correctly parsed sentences
the quality of the parse. Our approach assumes thatthe filtered set to correctly parsed sentences in the

if the parameters of the model are well designed to—_ ———— o
P 9 ?Recall that sentence f-score is defined fis= 22XF,

_ar?no_tate a sentence with a_ high quality parse, thefhere p and R are the labeled precision and recall of the con-
it is likely that the model will output the same (or stituents in the sentence relative to another parse.
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whole set of sentences parsed by the pargefil{ “
tered sebr test set Correctly parsed sentences are
sentences whose parse got f-score of 100%.

Since requiring a 100% may be too restrictive, we
generalize this measure fitier f-score with param-
eterk. In our measure, the filter recall and precision *
are calculated with regard to sentences that get ai |

=100
=100
o
=]

)
IN)

Average f score
ecall, k

Filter f score, k

Filter re

54 6 35
15 20 0 5 15 2

f-score ofk or more, rather than to correctly parsed — * e Smates % Nurberfodes -
sentences. Filtered f-score is thus a special case of
our filtered f-score, with parameter 100. Figure 2: The effect of the number of modé{son

We now discuss the effect of the number of modSEPA (Collins” model). The scenario is in-domain,
els N and the sample siz& The discussion is based S2MPle sizeS = 33,000 andT" = 100. We see:
on experiments (using development data, see Se%\(erage_ f-sc_ore of T-sentgnces (left, solid curve and
tion 4) in which all the parameters are fixed excep€t y-axis), filter f-score withk = 100 (left, dashed

for the parameter in question, using our developmefft've and right y-axis), filter recall with = 100
sections. (right, solid curve and left y-axis), and filter preci-

sion with & = 100 (right, dashed curve and right

RegardingN (see Figure 2): As the number of axis)

models increases, the number of T-sentences 36
lected by SEPA decreases and their quality im-

proves, in terms of both average f-score and filteflecreases. The larger T-set size leads to increase in
f-score (withk = 100). The fact that more mod- filter recall, while the lower average quality leads
els trained on different samples of the training datg decrease in filter precision. Since the increase in
agree on the syntactic annotation of a sentence ifitter recall is sharper than the decrease in filter pre-
plies that this syntactic pattern is less sensitive tgision, the result is that filter f-score increases with
perturbations in the training data. The number ofhe sample sizé.

such sentences is small and it is likely the parser will Thjs discussion demonstrates the importance of
Corl’ectly annotate them. The smaller T-set size Iea%ing both average f-score and filter f_Score’ since
to a decrease in filter reca”, while the better qualltYhe two measures reflect characteristics of the se-

leads to an increase in filter preCiSion. Since the ”]ected Sample that are not necessarily h|gh|y (or pos-
crease in filter precision is sharper than the decreaggely) correlated.

in filter recall, filter f-score increases with the num-
ber of modelsV. 4 Experimental Setup

RegardingS®: As the sample size increases, the . , )
number of T-sentences increases, and their quaf/e Performed experiments with two parsing mod-
ity degrades in terms of average f-score but imels, the Collins _(1999) generative model numb_er
proves in terms of filter f-score (again, with param# and the Charniak and Johnson (2005) reranking
eterk = 100). The overlap among smaller sam-model. For the first we gsed a re_lmplementatlon
ples is small and the data they supply is sparse. {f)- We performed experiments with each model
several models trained on such samples attach td"atWo Scenarios, in-domain and parser adaptation.
sentence the same parse, this syntactic pattern mifs°0th experiments the training data are sections
be very prominent in the training data. The num92-21 of the WSJ PennTreebank (about 40K sen-
ber of such sentences is small and it is likely thaf€nCces)- In the in-domain experiment the test data
the parser will correctly annotate them. Thereford® Section 23 (2416 sentences) of WSJ and in the
smaller sample size leads to smaller T-sets with high2Ser adaptation scenario the test data is Br(_)wn test
average f-score. As the sample size increases, theSection (2424 sentences). Development sections are

set becomes larger but the average f-score of a parde>J section 00 for the in-domain scenario (1981
sentences) and Brown development section for the

3Graphs are not shown due to lack of space. adaptation scenario (2424 sentences). Following
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(Gildea, 2001), the Brown test and development seshown for reference.

tions consist of 10% of Brown sentences (the 9th and Readers of this section may get confused between

10th of each 10 consecutive sentences in the devéfie agreement threshold paraméfeand the param-

opment and test sections respectively). eterk of the filter f-score measure. Please note: as to
We performed experiments with many configu-’, SEPA sorts the test set by the values of the agree-

rations of the parametemd (number of models), ment function. One can then select only sentences

S (sample size) ané (agreement function). Due whose agreement score is at le&st”s values are

to space limitations we describe only experimentgn a continuous scale from 0 to 100. Askahe fil-

where the values of the paramet&sS andF are ter f-score measure gives a grade. This grade com-

fixed (F is MF, N and S are given in Section 5) bines three values: (1) the number of sentences in

and the threshold parametEris changed. the set (selected by an algorithm) whose f-score rel-
ative to the gold standard parse is at |dasf2) the
5 Results size of the selected set, and (3) the total number of

sentences with such a parse in the whole test set. We

We first explore the quality of the selected set intlid not introduce separate notations for these values.
terms of average f-score. In Section 3 we reported Figure 3 (top) shows average f-score results where
that the quality of a selected T-set of parses increas8&PA is applied to Collins’ generative model in the
as the number of modely increases and samplein-domain (left) and adaptation (middle) scenarios.
size S decreases. We therefore show the results f@EPA outperforms the baselines for all values of the
relatively highV' (20) and relatively lowS (13,000, agreement threshold paramefer Furthermore, as
which is about a third of the training set). Denotel" increases, not only does the SEPA set quality in-
the cardinality of the set selected by SEPA/bYit  crease, but the quality differences between this set
is actually a function of but we omit thel’ in order and the baseline sets increases as well. The graphs
to simplify notations). on the right show the number of sentences in the sets

We use several baseline models. The ficepfi- selected by SEPA for each value. As expected,
dence baseline (CBrontains the: sentences hav- this number decreasesAsncreases.
ing the highest parser assigned probability (when Figure 3 (bottom) shows the same pattern of re-
trained on the whole training set). The secomih- sults for the Charniak reranking parser in the in-
imum length (ML) contains the: shortest sentences domain (left) and adaptation (middle) scenarios. We
in the test set. Since many times it is easier to parsee that the effects of the reranker and SEPA are rel-
short sentences, a trivial way to increase the aveatively independent. Even after some of the errors of
age f-score measure of a set is simply to select shdhte generative model were corrected by the reranker
sentences. The third, following (Yates et al., 2006}y selecting parses of higher quality among the 50-
is maximum recall (MRMMR simply predicts thatall best, SEPA can detect parses of high quality from
test set sentences should be contained in the selectbd set of parsed sentences.
T-set. The output set of this model gets filter recall of To explore the quality of the selected set in terms
1 for anyk value, but its precision is lower. The MR of filter f-score, we recall that the quality of a se-
baseline is not relevant to the average f-score mekected set of parses increases as both the number of
sure, because it selects all of the sentences in a s@ipdelsN and the sample siz& increase, and with
which leads to the same average as a random seld¢- Therefore, folk = 85...100 we show the value
tion (see below). In order to minimize visual clutter,of filter f-score with parametet when the parame-
for the filter f-score measure we use the maximurters configuration is a relatively high' (20), rela-
recall (MR) baseline rather than the minimum lengttiively high S (33,000, which are about 80% of the
(ML) baseline, since the former outperforms the lattraining set), and the highe%t(100).
ter. Thus, ML is only shown for the average f-score Figure 4 (top) shows filter f-score results for
measure. We have also experimented with a rando@ollins’ generative model in the in-domain (left)
baseline model (containingrandomly selected test and adaptation (middle) scenarios. As these graphs
sentences), whose results are the worst and whichshow, SEPA outperforms CB and random for all val-
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ues of the filter f-score parametér and outper- E[tggrzzfﬁre S
forms the MR baseline where the valuekok 95 or  vaijue 195 197 T 100 | 95 = 97 T 100
more. Although for smalk values MR gets a higher [ Coll. MR | 3.5 | 20.1| 29.2 | 22.8 | 29.8 | 33.6
f-score than SEPA, the filter precision of SEPA is gﬁg-rCMBR 113;2 i;g 2-3444 ;‘11'529 2-09 ;-245
much higher (right, shown for adaptation. The int=r2r cs T519 1681 119 [ 25 202 [ 162
domain pattern is similar and not shown). This stems
from the definition of the MR baseline, which sim-Table 1: Error reduction in the filter f-score mea-
ply predicts any sentence to be in the selected séure obtained by SEPA with Collins’ (top two lines)
Furthermore, since the selected set is meant to lb&d Charniak’s (bottom two lines) model, in the
the input for systems that require high quality parse§ywo scenarios (in-domain and adaptation), vs. the
what matters most is that SEPA outperforms the MR1aximum recall (MR lines 1 and 3) and confi-
baseline at the high ranges. dence (CB, lines 2 and 4) baselines, usiNg=
Figure 4 (bottom) shows the same pattern of re20, 7" = 100 and .S = 33,000. Shown are pa-
sults for the Charniak reranking parser in the infameter valuess = 95,97,100. Error reduction
domain (left) and adaptation (middle) scenarios. ABumbers were computed B90 x ( fscoreSEPA—
for the average f-score measure, it demonstrates thitcorebaseline) /(1 — fscorebaseline).

the effects of the reranker and SEPA algorithm are

relatively independent. Average f-score _
. . B In-domain Adaptation
Tables 1 and 2 show the error reduction achievedr o5 197 100 195 197 100

by SEPA for the filter f-score measure with paramf Coll. ML [ 32.6 | 37.2[ 60.8 | 46.8 | 52.7 [ 70.7
etersk = 95,97,100 (Table 1) and for the aver- | COll. CB | 26.5| 31.4] 53.9] 46.9 | 536 | 70
. Char. ML | 25.1[ 33.2 | 585 46.9 | 58.4 | 77.1
age f-score measure with several SEPA agreemergnar cB 1204130 |52 | 444 555 735
threshold {") values (Table 2). The error reductions
achieved by SEPA for both measures are substantidgble 2: Error reduction in the average f-score mea-

Table 3 compares SEPA ambODWARD on the Sure obtained by SEPA with Collins (top two lines)
exact same test set used by (Yates et al., 200@51d Charniak (bottom two lines) model, in the two
(taken from WSJ sec 23). SEPA achieves error r&cenarios (in-domain and adaptation), vs. the min-
duction of 31% over the MR baseline on this setmum length (ML lines 1 and 3) and confidence
compared to only 20% achieved hyoopwarp. (CB, lines 2 and 4) baselines, usidg = 20 and
Not shown in the table, in terms of ordinary f-score® = 13,000. Shown are agreement threhsold pa-
WOODWARD achieves error reduction of 37% whilefameter values” = 95,97,100. Error reduction
SEPA achieves 43%. These numbers were the orfigmbers were computed B90 x (fscoreSEPA—
ones reported in (Yates et al., 2006). [scorebaseline) /(1 — fscorebaseline).

For completeness of reference, Table 4 shows the
superiority of SEPA over CB in terms of the usual f-
score measure used by the parsing community (num-
bers are counted for constituents first). Results forable 3: Error reduction compared to the MR base-
other baselines are even more impressive. The coime, measured by filter f-score with parameter 100.

SEPA WOODWARD| CB
ER 31% 20% -31%

figuration is similar to that of Figure 3. The data is the WSJ sec 23 test set usd by (Yates
et al., 2006). All three methods use Collins’ model.
6 Discussion SEPA usesV = 20, S = 33,000, T = 100.

In this paper we introduced SEPA, a novel algorithm

for assessing parse quality in the output of a statistive model. woODWARD, the only previously sug-

tical parser. SEPA is the first algorithm shown tgyested algorithm for this problem, was tested with

be successful when a reranking parser is considerggipllins’ generative model only. Furthermore, this is

even though such models use a reranker to detebe first time that an algorithm for this problem suc-

and fix some of the errors made by the base genareeds in a domain adaptation scenario, regardless of
413
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the parsing model. In the Web environment this is For future work, integrating SEPA into the rerank-
the common situation. ing process seems a promising direction for enhanc-
The WSJ and Brown experiments performed witfing overall parser performance.

SEPA are much broader than those performed Wit,ﬂcknowledgement. We would like to thank Dan
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