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Abstract

Motivated by psycholinguistic findings that
eye gaze is tightly linked to human lan-
guage production, we developed an unsuper-
vised approach based on translation models
to automatically learn the mappings between
words and objects on a graphic display dur-
ing human machine conversation. The ex-
perimental results indicate that user eye gaze
can provide useful information to establish
such mappings, which have important impli-
cations in automatically acquiring and inter-
preting user vocabularies for conversational
systems.

1 Introduction

To facilitate effective human machine conversation,
it is important for a conversational system to have
knowledge about user vocabularies and understand
how these vocabularies are mapped to the internal
entities for which the system has representations.
For example, in a multimodal conversational system
that allows users to converse with a graphic inter-
face, the system needs to know what vocabularies
users tend to use to describe objects on the graphic
display and what (type of) object(s) a user is attend-
ing to when a particular word is expressed. Here,
we useacquisitionto refer to the process of acquir-
ing relevant vocabularies describing internal entities,
andinterpretationto refer to the process of automat-
ically identifying internal entities given a particular
word. Both acquisition and interpretation have been
traditionally approached by either knowledge engi-

neering (e.g., manually created lexicons) or super-
vised learning from annotated data. In this paper,
we describe an unsupervised approach that relies
on naturally co-occurred eye gaze and spoken utter-
ances during human machine conversation to auto-
matically acquire and interpret vocabularies.

Motivated by psycholinguistic studies (Just and
Carpenter, 1976; Griffin and Bock, 2000; Tenenhaus
et al., 1995) and recent investigations on computa-
tional models for language acquisition and ground-
ing (Siskind, 1995; Roy and Pentland, 2002; Yu
and Ballard, 2004), we are particularly interested in
two unique questions related to multimodal conver-
sational systems: (1) In a multimodal conversation
that involves more complex tasks (e.g., both user
initiated tasks and system initiated tasks), is there
a reliable temporal alignment between eye gaze and
spoken references so that the coupled inputs can be
used for automated vocabulary acquisition and inter-
pretation? (2) If such an alignment exists, how can
we model this alignment and automatically acquire
and interpret the vocabularies?

To address the first question, we conducted an
empirical study to examine the temporal relation-
ships between eye fixations and their correspond-
ing spoken references. As shown later in section 4,
although a larger variance (compared to the find-
ings from psycholinguistic studies) exists in terms of
how eye gaze is linked to speech production during
human machine conversation, eye fixations and the
corresponding spoken references still occur in a very
close vicinity to each other. This natural coupling
between eye gaze and speech provides an opportu-
nity to automatically learn the mappings between
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words and objects without any human supervision.
Because of the larger variance, it is difficult to

apply rule-based approaches to quantify this align-
ment. Therefore, to address the second question,
we developed an approach based on statistical trans-
lation models to explore the co-occurrence patterns
between eye fixated objects and spoken references.
Our preliminary experiment results indicate that the
translation model can reliably capture the mappings
between the eye fixated objects and the correspond-
ing spoken references. Given an object, this model
can provide possible words describing this object,
which represents the acquisition process; given a
word, this model can also provide possible objects
that are likely to be described, which represents the
interpretation process.

In the following sections, we first review some re-
lated work and introduce the procedures used to col-
lect eye gaze and speech data during human machine
conversation. We then describe our empirical study
and the unsupervised approach based on translation
models. Finally, we present experiment results and
discuss their implications in natural language pro-
cessing applications.

2 Related Work

Our work is motivated by previous work in the fol-
lowing three areas: psycholinguistics studies, multi-
modal interactive systems, and computational mod-
eling of language acquisition and grounding.

Previous psycholinguistics studies have shown
that the direction of gaze carries information about
the focus of the user’s attention (Just and Carpenter,
1976). Specifically, in human language processing
tasks, eye gaze is tightly linked to language produc-
tion. The perceived visual context influences spo-
ken word recognition and mediates syntactic pro-
cessing (Tenenhaus et al., 1995). Additionally, be-
fore speaking a word, the eyes usually move to the
objects to be mentioned (Griffin and Bock, 2000).
These psycholinguistics findings have provided a
foundation for our investigation.

In research on multimodal interactive systems, re-
cent work indicates that the speech and gaze inte-
gration patterns can be modeled reliably for indi-
vidual users and therefore be used to improve mul-
timodal system performances (Kaur et al., 2003).

Studies have also shown that eye gaze has a poten-
tial to improve resolution of underspecified referring
expressions in spoken dialog systems (Campana et
al., 2001) and to disambiguate speech input (Tanaka,
1999). In contrast to these earlier studies, our work
focuses on a different goal of using eye gaze for au-
tomated vocabulary acquisition and interpretation.

The third area of research that influenced our
work is computational modeling of language acqui-
sition and grounding. Recent studies have shown
that multisensory information (e.g., through vision
and language processing) can be combined to effec-
tively acquire words to their perceptually grounded
objects in the environment (Siskind, 1995; Roy and
Pentland, 2002; Yu and Ballard, 2004). Especially in
(Yu and Ballard, 2004), an unsupervised approach
based on a generative correspondence model was
developed to capture the mapping between spoken
words and the occurring perceptual features of ob-
jects. This approach is most similar to the transla-
tion model used in our work. However, compared
to this work where multisensory information comes
from vision and language processing, our work fo-
cuses on a different aspect. Here, instead of applying
vision processing on objects, we are interested in eye
gaze behavior when users interact with a graphic dis-
play. Eye gaze is an implicit and subconscious input
modality during human machine interaction. Eye
gaze data inevitably contain a significant amount of
noise. Therefore, it is the goal of this paper to exam-
ine whether this modality can be utilized for vocab-
ulary acquisition for conversational systems.

3 Data Collection

We used asimplifiedmultimodal conversational sys-
tem to collect synchronized speech and eye gaze
data. A room interior scene was displayed on a com-
puter screen, as shown in Figure 1. While watching
the graphical display, users were asked to communi-
cate with the system on topics about the room dec-
orations. A total of 28 objects (e.g., multiple lamps
and picture frames, a bed, two chairs, a candle, a
dresser, etc., as marked in Figure 1) are explicitly
modeled in this scene. The system issimplifiedin
the sense that it only supports 14 tasks during human
machine interaction. These tasks are designed to
cover both open-ended utterances (e.g., the system
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Figure 1: The room interior scene for user studies.
For easy reference, we give each object an ID. These
IDs are hidden from the system users.

asks users to describe the room) and more restricted
utterances (e.g., the system asks the user whether
he/she likes the bed) that are commonly supported in
conversational systems. Seven human subjects par-
ticipated in our study.

User speech inputs were recorded using the Au-
dacity software1, with each utterance time-stamped.
Eye movements were recorded using an EyeLink II
eye tracker sampled at 250Hz. The eye tracker au-
tomatically saved two-dimensional coordinates of a
user’s eye fixations as well as the time-stamps when
the fixations occurred.

The collected raw gaze data is extremely noisy.
To refine the gaze data, we further eliminated in-
valid and saccadic gaze points (known as “saccadic
suppression” in vision studies). Since eyes do not
stay still but rather make small, frequent jerky move-
ments, we also smoothed the data by averaging
nearby gaze locations to identify fixations.

4 Empirical Study on Speech-Gaze
Alignment

Based on the data collected, we investigated the tem-
poral alignment between co-occurred eye gaze and
spoken utterances. In particular, we examined the
temporal alignment between eye gaze fixations and
the corresponding spoken references (i.e., the spo-
ken words that are used to refer to the objects on the
graphic display).

According to the time-stamp information, we can

1http://audacity.sourceforge.net/

measure the length of time gap between a user’s eye
fixation falling on an object and the corresponding
spoken reference being uttered (which we refer to
as “length of time gap” for brevity). Also, we can
count the number of times that user fixations hap-
pen to change their target objects during this time
gap (which we refer to as “number of fixated object
changes” for brevity). The nine most frequently oc-
curred spoken references in utterances from all users
(as shown in Table 1) are chosen for this empirical
study. For each of those spoken references, we use
human judgment to decide which object is referred
to. Then, from both before and after the onset of
the spoken reference, we find the closest occurrence
of the fixation falling on that particular object. Al-
together we have 96 such speech-gaze pairs. In 54
pairs, the eye gaze fixation occurred before the cor-
responding speech reference was uttered; and in the
other 42 pairs, the eye fixation occurred after the
corresponding speech reference was uttered. This
observation suggests that in human machine conver-
sation, eye fixation on an object does not necessarily
always proceed the utterance of the corresponding
speech reference.

Further, we computed the averageabsolutelength
of the time gap and the average number of fixated
object changes, as well as their variances for each of
5 selected users2 as shown in Table 1. From Table 1,
it is easy to observe that:(I) A spoken reference al-
ways appears within a short period of time (usually
1-2 seconds)before or afterthe corresponding eye
gaze fixation. But, the exact length of the period is
far from constant.(II) It is not necessary for a user
to utter the corresponding spoken referenceimme-
diatelybefore or after the eye gaze fixation falls on
that particular object. Eye gaze fixations may move
back and forth. Between the time an object is fixated
and the corresponding spoken reference is uttered, a
user’s eye gaze may fixate on a few other objects
(reflected by the average number of eye fixated ob-
ject changes shown in the table).(III) There is a
large variance in both the length of time gap and the
number of fixated object changes in terms of 1) the
same user and the same spoken reference at differ-
ent time-stamps, 2) the same user but different spo-

2The other two users are not selected because the nine se-
lected words do not appear frequently in their utterances.
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Spoken Average Absolute Length of Time Gap (in seconds) Average Number of Eye Fixated Object Changes
Reference User 1 User 2 User 3 User 4 User 5 User 1 User 2 User 3 User 4 User 5

bed 1.27± 1.40 1.02± 0.65 0.32± 0.21 0.59± 0.77 2.57± 3.25 2.1± 3.2 2.1± 2.2 0.4± 0.5 1.4± 2.2 5.3± 7.9

tree - 0.24± 0.24 - - - - 0.0± 0.0 - - -
window - 0.67± 0.74 - - 1.95± 3.20 - 0.0± 0.0 - - 3.3± 5.9

mirror - 1.04± 1.36 - - - - 1.0± 1.4 - - -
candle - - 3.64± 0.59 - - - - 8.5± 2.1 - -

waterfall 1.80± 1.12 - - - - 5.5± 4.9 - - - -
painting 0.10± 0.10 - - - - 0.2± 0.4 - - - -

lamp 0.74± 0.54 1.70± 0.99 0.26± 0.35 1.98± 1.72 2.84± 2.42 1.3± 1.3 1.8± 1.5 0.3± 0.6 4.8± 4.3 2.7± 2.2

door 2.47± 0.84 - - 2.49± 1.90 6.36± 2.29 5.0± 2.6 - - 6.7± 5.5 13.3± 6.7

Table 1: The average absolute length of time and the number of eye fixated object changes within the time
gap of eye gaze and corresponding spoken references. Variances are also listed. Some of the entries are not
available because the spoken references were never or rarely usedby the corresponding users.

ken references, and 3) the same spoken reference but
different users. We believe this is due to the different
dialog scenarios and user language habits.

To summarize our empirical study, we find that
in human machine conversation, there still exists a
natural temporal coupling between user speech and
eye gaze, i.e. the spoken reference and the corre-
sponding eye fixation happen within a close vicinity
of each other. However, a large variance is also ob-
served in terms of these temporal vicinities, which
indicates an intrinsically more complex gaze-speech
pattern. Therefore, it is hard to directly quantify
the temporal or ordering relationship between spo-
ken references and corresponding eye fixated objects
(for example, through rules).

To better handle the complexity in the gaze-
speech pattern, we propose to use statistical transla-
tion models. Given a time window of enough length,
a speech input that contains a list of spoken refer-
ences (e.g., definite noun phrases) is always accom-
panied by a list of naturally occurred eye fixations
and therefore a list of objects receiving those fixa-
tions. All those pairs of speech references and cor-
responding fixated objects could be viewed asparal-
lel, i.e. theyco-occur within the time window. This
situation is very similar to the training process of
translation models in statistical machine translation
(Brown et al., 1993), where parallel corpus is used to
find the mappings between words from different lan-
guages by exploiting their co-occurrence patterns.
The same idea can be borrowed here: by exploring
the co-occurrence statistics, we hope to uncover the
exact mapping between those eye fixated objects and
spoken references. The intuition is that, the more of-
ten a fixation is found to exclusively co-occur with a
spoken reference, the more likely a mapping should

be established between them.

5 Translation Models for Vocabulary
Acquisition and Interpretation

Formally, we denote the set of observations by
D = {wi,oi}

N
i=1

where wi and oi refers to
the i-th speech utterance (i.e., a list of words
of spoken references) and thei-th corresponding
eye gaze pattern (i.e., a list of eye fixated ob-
jects) respectively. When we study the prob-
lem of mapping given objects to words (for vo-
cabulary acquisition), the parameter spaceΘ =
{Pr(wj |ok), 1 ≤ j ≤ mw, 1 ≤ k ≤ mo} consists of
the mapping probabilities of an arbitrary wordwj

to an arbitrary objectok, wheremw andmo repre-
sent the total number of unique words and objects
respectively. Those mapping probabilities are sub-
ject to constraints

∑mw

j=1
Pr(wj |ok) = 1. Note that

Pr(wj |ok) = 0 if the corresponding wordwj andok

never co-occur in any observed list pair(wi,oi).

Let lwi and loi denote the length of listswi and
oi respectively. To distinguish with the notations
wj andok whose subscripts are indices forunique
words and objects respectively, we usew̃i,j to de-
note the word in thej-th position of the listwi and
õi,k to denote the object in thek-th position of the
list oi. In translation models, we assume that any
word in the listwi is mapped to an object in the cor-
responding listoi or a null object (we reserve the
position0 for it in every object list). To denote all
the word-object mappings in thei-th list pair, we in-
troduce an alignment vectorai, whose elementai,j

takes the valuek if the wordw̃i,j is mapped tõoi,k.

Then, the likelihood of the observations given the
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parameters can be computed as follows

Pr(D;Θ) =
N
∏

i=1

Pr(wi|oi) =
N
∏

i=1

∑

ai

Pr(wi,ai|oi)

=
N
∏

i=1

∑

ai

Pr(lwi |oi)

(loi + 1)lw
i

lw
i

∏

j=1

Pr(w̃i,j |õai,j
)

=
N
∏

i=1

Pr(lwi |oi)

(loi + 1)lw
i

∑

ai

lw
i

∏

j=1

Pr(w̃i,j |õai,j
)

Note that the following equation holds:

lw
i

∏

j=1

lo
i

∑

k=0

Pr(w̃i,j |õi,k) =

lo
i

∑

ai,1=1

· · ·

lo
i

∑

ai,lw
i

=1

lw
i

∏

j=1

Pr(w̃i,j |õai,j
)

where the right-hand side is actually the expansion

of
∑

ai

∏lw
i

j Pr(w̃i,j |õai,j
). Therefore, the likelihood

can be simplified as

Pr(D;Θ) =
N
∏

i=1

Pr(lwi |oi)

(loi + 1)lw
i

lw
i

∏

j=1

lo
i

∑

k=0

Pr(w̃i,j |õi,k)

Switching to the notationswj andok, we have

Pr(D;Θ)=
N
∏

i=1

Pr(lwi |oi)

(loi + 1)lw
i

mw
∏

j=1

[

mo
∑

k=0

Pr(wj |ok)δ
o
i,k

]δw
i,j

whereδw
i,j = 1 if w̃i,j ∈ wi andδw

i,j = 0 otherwise,
andδo

i,k = 1 if õi,k ∈ oi andδo
i,k = 0 otherwise.

Finally, the translation model can be formalized
as the following optimization problem

arg maxΘ log Pr(D;Θ)

s.t.

mw
∑

j=1

Pr(wj |ok) = 1,∀k

This optimization problem can be solved by the EM
algorithm (Brown et al., 1993).

The above model is developed in the con-
text of mapping given objects to words, i.e., its
solution yields a set of conditional probabilities
{Pr(wj |ok),∀j} for each objectok, indicating how
likely every word is mapped to it. Similarly, we
can develop the model in the context of mapping
given words to objects (for vocabulary interpreta-
tion), whose solution leads to another set of prob-
abilities{Pr(ok|wj),∀k} for each wordwj indicat-
ing how likely every object is mapped to it. In our
experiments, both models are implemented and we
will present the results later.

6 Experiments

We experimented our proposed statistical translation
model on the collected data mentioned in Section 3.

6.1 Preprocessing

The main purpose of preprocessing is to create a
“parallel corpus” for training a translation model.
Here, the “parallel corpus” refers to a series of
speech-gaze pairs, each of them consisting of a list
of words from the spoken references in the user ut-
terances and a list of objects that are fixated upon
within the same time window.

Specifically, we first transcribed the user speech
into scripts by automatic speech recognition soft-
ware and then refined them manually. A time-stamp
was associated with each word in the speech script.
Further, we detected long pauses in the speech script
as splitting points to create time windows, since a
long pause usually marks the start of a sentence
that indicates a user’s attention shift. In our exper-
iment, we set the threshold of judging a long pause
to be1 second. From all the data gathered from 7
users, we get357 such time windows (which typi-
cally contain 10-20 spoken words and 5-10 fixated
object changes).

Given a time window, we then found the objects
being fixated upon by eye gaze (represented by their
IDs as shown in Figure 1). Considering that eye gaze
fixation could occur during the pauses in speech, we
expanded each time window by a fixed length at both
its start and end to find the fixations. In our experi-
ments, the expansion length is set to0.5 seconds.

Finally, we applied a part-of-speech tagger to
each sentence in the user script and only singled out
nouns as potential spoken references in the word list.
The Porter stemming algorithm was also used to get
the normalized forms of those nouns.

The translation model was trained based on this
preprocessed parallel data.

6.2 Evaluation Metrics

As described in Section 5, by using a statistical
translation model we can get a set of translation
probabilities, either from any given spoken word to
all the objects, or from any given object to all the
spoken words. To evaluate the two sets of trans-
lation probabilities, we useprecisionand recall as
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#Rank Precision Recall #Rank Precision Recall
1 0.6667 0.2593 6 0.2302 0.5370
2 0.4524 0.3519 7 0.2041 0.5556
3 0.3810 0.4444 8 0.1905 0.5926
4 0.3095 0.4815 9 0.1799 0.6296
5 0.2667 0.5185 10 0.1619 0.6296

Table 2: Average precision/recall of mapping given
objects to words (i.e., acquisition)

#Rank Precision Recall #Rank Precision Recall
1 0.7826 0.3214 6 0.3043 0.7500
2 0.5870 0.4821 7 0.2671 0.7679
3 0.4638 0.5714 8 0.2446 0.8036
4 0.3804 0.6250 9 0.2293 0.8393
5 0.3478 0.7143 10 0.2124 0.8571

Table 3: Average precision/recall of mapping given
words to objects.(i.e., interpretation)

evaluation metrics.
Specifically, for a given objectok the trans-

lation model will yield a set of probabilities
{Pr(wj |ok),∀j}. We can sort the probabilities and
get a ranked list. Let us assume that we have the
ground truth about all the spoken words to which
the given object should be mapped. Then, at a given
numbern of top ranked words, theprecisionof map-
ping the given objectok to words is defined as

# words thatok is correctly mapped to
# words thatok is mapped to

and therecall is defined as
# words thatok is correctly mapped to
# words thatok should be mapped to

All the counting above is done within the topn rank.
Therefore, we can get different precision/recall at
different ranks. At each rank, the overall perfor-
mance can be evaluated by averaging the preci-
sion/recall for all the given objects. Human judg-
ment is used to decide whether an object-word map-
ping is correct or not, as ground truth for evaluation.

Similarly, based on the set of probabilities of map-
ping a given object with spoken words, we can
find a ranked list of objects for a given word, i.e.
{Pr(ok|wj),∀k}. Thus, at a given rank thepreci-
sion andrecall of mapping a given wordwj to ob-
jects can be measured.

6.3 Experiment Results

Vocabulary acquisition is the process of finding
the appropriate word(s) for any given object. For

the sake of statistical significance, our evaluation is
done on21 objects that were mentioned at least3
times by the users.

Table 2 gives the average precision/recall evalu-
ated at the top 10 ranks. As we can see, if we use
the most probable word acquired for each object,
about66.67% of them are appropriate. With the
rank increasing, more and more appropriate words
can be acquired. About62.96% of all the appropri-
ate words are included within the top 10 probable
words found. The results indicate that by using a
translation model, we can obtain the words that are
used by the users to describe the objects with rea-
sonable accuracy.

Table 4 presents the top3 most probable words
found for each object. It shows that although there
may be more than one word appropriate to describe
a given object, those words with highest probabil-
ities always suggest the most popular way of de-
scribing the corresponding object among the users.
For example, for the object with ID26, the word
candle gets a higher probability than the word
candlestick, which is in accordance with our
observation that in our user study, on most occasions
users tend to use the wordcandle rather than the
wordcandlestick.

Vocabulary interpretation is the process of find-
ing the appropriate object(s) for any given spoken
word. Out of 176 nouns in the user vocabulary,
we only evaluate those used at least three times for
statistical significance concerns. Further, abstract
words (such asreason, position) and general
words (such asroom, furniture) are not eval-
uated since they do not refer to any particular objects
in the scene. Finally,23 nouns remain for evalua-
tion.

We manually enumerated all the object(s) that
those23 nouns refer to as the ground truth in our
evaluation. Note that a given noun can possibly
be used to refer to multiple objects, such aslamp,
since we have several lamps (with object ID3, 8, 17,
and 23) in the experiment setting, andbed, since
bed frame, bed spread, and pillows (with object ID
19, 21, and20 respectively) are all part of a bed.
Also, an object can be referred to by multiple nouns.
For example, the wordspainting, picture,
or waterfall can all be used to refer to the ob-
ject with ID 15.
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Object Rank 1 Rank 2 Rank 3
1 paint (0.254) * wall (0.191) left (0.150)
2 pictur (0.305) * girl (0.122) niagara (0.095) *
3 wall (0.109) lamp (0.093) * floor (0.084)
4 upsid (0.174) * left (0.151) * paint (0.149) *
5 pictur (0.172) window (0.157) * wall (0.116)
6 window (0.287) * curtain (0.115) pictur (0.076)
7 chair (0.287) * tabl (0.088) bird (0.083)
9 mirror (0.161) * dresser (0.137) bird (0.098) *

12 room (0.131) lamp (0.127) left (0.069)
14 hang (0.104) favourit (0.085) natur (0.064)
15 thing (0.066) size (0.059) queen (0.057)
16 paint (0.211) * pictur (0.116) * forest (0.076) *
17 lamp (0.354) * end (0.154) tabl (0.097)
18 bedroom (0.158) side (0.128) bed (0.104)
19 bed (0.576) * room (0.059) candl (0.049)
20 bed (0.396) * queen (0.211) * size (0.176)
21 bed (0.180) * chair (0.097) orang (0.078)
22 bed (0.282) door (0.235) * chair (0.128)
25 chair (0.215) * bed (0.162) candlestick (0.124)
26 candl (0.145) * chair (0.114) candlestick (0.092) *
27 tree (0.246) * chair (0.107) floor (0.096)

Table 4: Words found for given objects. Each row
lists the top 3 most probable spoken words (being
stemmed) for the corresponding given object, with
the mapping probabilities in parentheses. Asterisks
indicate correctly identified spoken words. Note
that some objects are heavily overlapped, so the cor-
responding words are considered correct for all the
overlapping objects, such asbed being considered
correct for objects with ID 19, 20, and 21.

Word Rank 1 Rank 2 Rank 3 Rank 4
curtain 6 (0.305) * 5 (0.305) * 7 (0.133) 1 (0.121)

candlestick 25 (0.147) * 28 (0.135) 24 (0.131) 22 (0.117)
lamp 22 (0.126) 12 (0.094) 17 (0.093) * 25 (0.093)

dresser 12 (0.298) * 9 (0.294) * 13 (0.173) * 7 (0.104)
queen 20 (0.187) * 21 (0.182) * 22 (0.136) 19 (0.136) *
door 22 (0.200) * 27 (0.124) 25 (0.108) 24 (0.106)
tabl 9 (0.152) * 12 (0.125) * 13 (0.112) * 22 (0.107)

mirror 9 (0.251) * 12 (0.238) 8 (0.109) 13 (0.081)
girl 2 (0.173) 22 (0.128) 16 (0.099) 10 (0.074)

chair 22 (0.132) 25 (0.099) * 28 (0.085) 24 (0.082)
waterfal 6 (0.226) 5 (0.215) 1 (0.118) 9 (0.083)

candl 19 (0.156) 22 (0.139) 28 (0.134) 24 (0.131)
niagara 4 (0.359) * 2 (0.262) * 1 (0.226) 7 (0.045)

plant 27 (0.230) * 22 (0.181) 23 (0.131) 28 (0.117)
tree 27 (0.352) * 22 (0.218) 26 (0.100) 13 (0.062)

upsid 4 (0.204) * 12 (0.188) 9 (0.153) 1 (0.104) *
bird 9 (0.142) * 10 (0.138) 12 (0.131) 7 (0.121)
desk 12 (0.170) * 9 (0.141) * 19 (0.118) 8 (0.118)
bed 19 (0.207) * 22 (0.141) 20 (0.111) * 28 (0.090)

upsidedown 4 (0.243) * 3 (0.219) 6 (0.203) 5 (0.188)
paint 4 (0.188) * 16 (0.148) * 1 (0.137) * 15 (0.118) *

window 6 (0.305) * 5 (0.290) * 3 (0.085) 22 (0.065)
lampshad 3 (0.223) * 7 (0.137) 11 (0.137) 10 (0.137)

Table 5: Objects found for given words. Each row
lists the 4 most probable object IDs for the corre-
sponding given words (being stemmed), with the
mapping probabilities in parentheses. Asterisks in-
dicate correctly identified objects. Note that some
objects are heavily overlapped, such as the candle
(with object ID 26) and the chair (with object ID
25), and both were considered correct for the re-
spective spoken words.

Table 3 gives the average precision/recall evalu-
ated at the top 10 ranks. As we can see, if we use the
most probable object found for each speech word,
about78.26% of them are appropriate. With the rank
increasing, more and more appropriate objects can
be found. About85.71% of all the appropriate ob-
jects are included within the top 10 probable objects
found. The results indicate that by using a trans-
lation model, we can predict the objects from user
spoken words with reasonable accuracy.

Table 5 lists the top4 probable objects found for
each spoken word being evaluated. A close look re-
veals that in general, the top ranked objects tend to
gather around the correct object for a given spoken
word. This is consistent with the fact that eye gaze
tends to move back and forth. It also indicates that
the mappings established by the translation model
can effectively find the approximate area of the cor-
responding fixated object, even if it cannot find the
object due to the noisy and jerky nature of eye gaze.

The precision/recall in vocabulary acquisition is
not as high as that in vocabulary interpretation, par-

tially due to the relatively small scale of our exper-
iment data. For example, with only 7 users’ speech
data on 14 conversational tasks, some words were
only spoken a few times to refer to an object, which
prevented them from getting a significant portion of
probability mass among all the words in the vocab-
ulary. This degrades both precision and recall. We
believe that in large scale experiments or real-world
applications, the performance will be improved.

7 Discussion and Conclusion

Previous psycholinguistic findings have shown that
eye gaze is tightly linked with human language pro-
duction. During human machine conversation, our
study shows that although a larger variance is ob-
served on how eye fixations are exactly linked with
corresponding spoken references (compared to the
psycholinguistic findings), eye gaze in general is
closely coupled with corresponding referring ex-
pressions in the utterances. This close coupling na-
ture between eye gaze and speech utterances pro-
vides an opportunity for the system to automatically
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acquire different words related to different objects
without any human supervision. To further explore
this idea, we developed a novel unsupervised ap-
proach using statistical translation models.

Our experimental results have shown that this ap-
proach can reasonably uncover the mappings be-
tween words and objects on the graphical display.
The main advantages of this approach include: 1) It
is an unsupervised approach with minimum human
inference; 2) It does not need any prior knowledge to
train a statistical translation model; 3) It yields prob-
abilities that indicate the reliability of the mappings.

Certainly, our current approach is built upon sim-
plified assumptions. It is quite challenging to in-
corporate eye gaze information since it is extremely
noisy with large variances. Recent work has shown
that the effect of eye gaze in facilitating spoken lan-
guage processing varies among different users (Qu
and Chai, 2007). In addition, visual properties of
the interface also affect user gaze behavior and thus
influence the predication of attention (Prasov et al.,
2007) based on eye gaze. Our future work will de-
velop models to address these variations.

Nevertheless, the results from our current work
have several important implications in building ro-
bust conversational interfaces. First of all, most
conversational systems are built with static knowl-
edge space (e.g., vocabularies) and can only be up-
dated by the system developers. Our approach can
potentially allow the system to automatically ac-
quire knowledge and vocabularies based on the nat-
ural interactions with the users without human in-
tervention. Furthermore, the automatically acquired
mappings between words and objects can also help
language interpretation tasks such as reference res-
olution. Given the recent advances in eye track-
ing technology (Duchowski, 2002), integrating non-
intrusive and high performance eye trackers with
conversational interfaces becomes feasible. The
work reported here can potentially be integrated in
practical systems to improve the overall robustness
of human machine conversation.
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