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Abstract

Motivated by psycholinguistic findings that
eye gaze is tightly linked to human lan-
guage production, we developed an unsuper-
vised approach based on translation models
to automatically learn the mappings between
words and objects on a graphic display dur-
ing human machine conversation. The ex-
perimental results indicate that user eye gaze
can provide useful information to establish
such mappings, which have important impli-
cations in automatically acquiring and inter-
preting user vocabularies for conversational
systems.

Introduction

rongjinj@se. nsu. edu

neering (e.g., manually created lexicons) or super-
vised learning from annotated data. In this paper,
we describe an unsupervised approach that relies
on naturally co-occurred eye gaze and spoken utter-
ances during human machine conversation to auto-
matically acquire and interpret vocabularies.

Motivated by psycholinguistic studies (Just and
Carpenter, 1976; Griffin and Bock, 2000; Tenenhaus
et al., 1995) and recent investigations on computa-
tional models for language acquisition and ground-
ing (Siskind, 1995; Roy and Pentland, 2002; Yu
and Ballard, 2004), we are particularly interested in
two unique questions related to multimodal conver-
sational systems: (1) In a multimodal conversation
that involves more complex tasks (e.g., both user
initiated tasks and system initiated tasks), is there
a reliable temporal alignment between eye gaze and

To facilitate effective human machine conversatiorsPoken references so that the coupled inputs can be
it is important for a conversational system to havélsed for automated vocabulary acquisition and inter-
knowledge about user vocabularies and understaRéetation? (2) If such an alignment exists, how can
how these vocabularies are mapped to the internle model this alignment and automatically acquire
entities for which the system has representationgdnd interpret the vocabularies?

For example, in a multimodal conversational system To address the first question, we conducted an
that allows users to converse with a graphic interempirical study to examine the temporal relation-
face, the system needs to know what vocabularieships between eye fixations and their correspond-
users tend to use to describe objects on the graphity spoken references. As shown later in section 4,
display and what (type of) object(s) a user is attendalthough a larger variance (compared to the find-
ing to when a particular word is expressed. Herdngs from psycholinguistic studies) exists in terms of
we useacquisitionto refer to the process of acquir- how eye gaze is linked to speech production during
ing relevant vocabularies describing internal entitiejuman machine conversation, eye fixations and the
andinterpretationto refer to the process of automat-corresponding spoken references still occur in a very
ically identifying internal entities given a particular close vicinity to each other. This natural coupling
word. Both acquisition and interpretation have beehetween eye gaze and speech provides an opportu-
traditionally approached by either knowledge enginity to automatically learn the mappings between
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words and objects without any human supervision.Studies have also shown that eye gaze has a poten-
Because of the larger variance, it is difficult totial to improve resolution of underspecified referring
apply rule-based approaches to quantify this aligrexpressions in spoken dialog systems (Campana et
ment. Therefore, to address the second question,, 2001) and to disambiguate speech input (Tanaka,
we developed an approach based on statistical trard399). In contrast to these earlier studies, our work
lation models to explore the co-occurrence patterrfocuses on a different goal of using eye gaze for au-
between eye fixated objects and spoken referencégmated vocabulary acquisition and interpretation.
Our preliminary experiment results indicate that the The third area of research that influenced our
translation model can reliably capture the mappingwsork is computational modeling of language acqui-
between the eye fixated objects and the corresporsition and grounding. Recent studies have shown
ing spoken references. Given an object, this modéhat multisensory information (e.g., through vision
can provide possible words describing this objectind language processing) can be combined to effec-
which represents the acquisition process; given tively acquire words to their perceptually grounded
word, this model can also provide possible objectsbjects in the environment (Siskind, 1995; Roy and
that are likely to be described, which represents thieentland, 2002; Yu and Ballard, 2004). Especially in
interpretation process. (Yu and Ballard, 2004), an unsupervised approach
In the following sections, we first review some re-based on a generative correspondence model was
lated work and introduce the procedures used to calleveloped to capture the mapping between spoken
lect eye gaze and speech data during human machiwerds and the occurring perceptual features of ob-
conversation. We then describe our empirical studjgcts. This approach is most similar to the transla-
and the unsupervised approach based on translatio®n model used in our work. However, compared
models. Finally, we present experiment results aniw this work where multisensory information comes
discuss their implications in natural language profrom vision and language processing, our work fo-

cessing applications. cuses on a different aspect. Here, instead of applying
vision processing on objects, we are interested in eye
2 Related Work gaze behavior when users interact with a graphic dis-

play. Eye gaze is an implicit and subconscious input
Our work is motivated by previous work in the fol- modality during human machine interaction. Eye
lowing three areas: psycholinguistics studies, multigaze data inevitably contain a significant amount of
modal interactive systems, and computational mogoise. Therefore, it is the goal of this paper to exam-
eling of language acquisition and grounding. ine whether this modality can be utilized for vocab-

Previous psycholinguistics studies have showplary acquisition for conversational systems.
that the direction of gaze carries information about

the focus of the user’s attention (Just and Carpente§, Data Collection
1976). Specifically, in human language processing
tasks, eye gaze is tightly linked to language produdA/e used aimplifiedmultimodal conversational sys-
tion. The perceived visual context influences spaem to collect synchronized speech and eye gaze
ken word recognition and mediates syntactic prodata. A room interior scene was displayed on a com-
cessing (Tenenhaus et al., 1995). Additionally, beputer screen, as shown in Figure 1. While watching
fore speaking a word, the eyes usually move to thghe graphical display, users were asked to communi-
objects to be mentioned (Griffin and Bock, 2000)cate with the system on topics about the room dec-
These psycholinguistics findings have provided arations. A total of 28 objects (e.g., multiple lamps
foundation for our investigation. and picture frames, a bed, two chairs, a candle, a
In research on multimodal interactive systems, redresser, etc., as marked in Figure 1) are explicitly
cent work indicates that the speech and gaze interodeled in this scene. The systemsimplifiedin
gration patterns can be modeled reliably for indithe sense that it only supports 14 tasks during human
vidual users and therefore be used to improve mutmachine interaction. These tasks are designed to
timodal system performances (Kaur et al.,, 2003cover both open-ended utterances (e.g., the system
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measure the length of time gap between a user’s eye
fixation falling on an object and the corresponding
spoken reference being uttered (which we refer to
as “length of time gap” for brevity). Also, we can
count the number of times that user fixations hap-
pen to change their target objects during this time
gap (which we refer to as “number of fixated object
changes” for brevity). The nine most frequently oc-
curred spoken references in utterances from all users
(as shown in Table 1) are chosen for this empirical
study. For each of those spoken references, we use

Figure 1: The room interior scene for user studiedlUMman judgment to decide which object is referred

For easy reference, we give each objectan ID. The&g Then, from both before and after the onset of
IDs are hidden from the system users. the spoken reference, we find the closest occurrence

of the fixation falling on that particular object. Al-

together we have 96 such speech-gaze pairs. In 54
asks users to describe the room) and more restrictggirs, the eye gaze fixation occurred before the cor-
utterances (e.g., the system asks the user whethggponding speech reference was uttered; and in the
he/she likes the bed) that are commonly supported ther 42 pairs, the eye fixation occurred after the
conversational systems. Seven human subjects paérresponding speech reference was uttered. This
ticipated in our study. observation suggests that in human machine conver-

User speech inputs were recorded using the Agation, eye fixation on an object does not necessarily

dacity softwaré, with each utterance time-stampedalways proceed the utterance of the corresponding
Eye movements were recorded using an EyeLink Bpeech reference.

eye tracker sampled at 250Hz. The eye tracker au- Further, we computed the averaggsolutdength
tomatically _sav_ed two—dimensional_ coordinates of &¢ the time gap and the average number of fixated
user's eye fixations as well as the time-stamps Whehiect changes, as well as their variances for each of
the fixations occurred. _ _ 5 selected usetsis shown in Table 1. From Table 1,
The collected raw gaze data is extremely noisy js easy to observe thagt) A spoken reference al-
To refine the gaze data, we further eliminated iNyvays appears within a short period of time (usually
valid and saccadic gaze points (known as “saccadic» secondspefore or afterthe corresponding eye
suppression” in vision studies). Since eyes do nQfye fixation. But, the exact length of the period is
stay still but rather make small, frequent jerky mover, from constant(11) It is not necessary for a user
ments, we also smoothed the data by averaging yer the corresponding spoken refereiroene-
nearby gaze locations to identify fixations. diately before or after the eye gaze fixation falls on
that particular object. Eye gaze fixations may move
back and forth. Between the time an object is fixated
and the corresponding spoken reference is uttered, a

Based on the data collected, we investigated the te4Ser's eye gaze may fixate on a few other objects
poral alignment between co-occurred eye gaze afteflected by the average number of eye fixated ob-
spoken utterances. In particular, we examined tHgCt changes shown in the tablejlil) There is a

temporal alignment between eye gaze fixations arf@'9€ variance in both the length of time gap and the
the corresponding spoken references (i.e., the Spla,umber of fixated object changes in terms of 1) the

ken words that are used to refer to the objects on tff@me user and the same spoken reference at differ-
graphic display). ent time-stamps, 2) the same user but different spo-

According to the time-stamp information, we can

4 Empirical Study on Speech-Gaze
Alignment

- The other two users are not selected because the nine se-
http://audacity.sourceforge.net/ lected words do not appear frequently in their utterances.
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Spoken| Average Absolute L ength of Time Gap (in seconds) Average Number of Eye Fixated Object Changes

Referencd User 1 User 2 User 3 User 4 User5 User 1 User 2 User 3 User 4 User5
bed|1.27 £1.40 1.02+£0.65 0.32+0.21 0.59+0.77 2.57+3.25[2.1+£3.2 21+22 04+05 1.4+£22 53+£79
tree - 0.24+0.24 - - - - 0.0+0.0 - - -

window - 0.67+£0.74 - - 1.95 £ 3.20 - 0.0+0.0 - - 33+5.9
mirror - 1.04£1.36 - - - - 1.0+14 - - -
candle - - 3.64+0.59 - - - 8.5+2.1
waterfall| 1.80 £ 1.12 - - -15.564+4.9 - -
painting| 0.10 + 0.10 - - - -10.24+0.4 - - - -
lamp| 0.74 £0.54 1.70+0.99 0.26 £0.35 1.984+1.72 2.84 +2.42|1.3+1.3 1.8+1.5 0.3+0.6 4.8+4.3 2.7+22
door| 2.47 + 0.84 - - 249+1.90 6.36+2.29|5.0+2.6 - - 6.7+£5.5 13.3+6.7

Table 1. The average absolute length of time and the number of eye fixgted cilanges within the time
gap of eye gaze and corresponding spoken references. Variarealso listed. Some of the entries are not
available because the spoken references were never or rarelpyegicorresponding users.

ken references, and 3) the same spoken reference betestablished between them.
different users. We believe this is due to the different

dialog scenarios and user language habits.

To summarize our empirical studv. we find that5 Translation Models for Vocabulary
) o - Ly, we Acquisition and I nterpretation

in human machine conversation, there still exists a
natural temporal coupling between user speech and _
eye gaze, i.e. the spoken reference and the corfg?mally, we d](\a[note the set of observations by
sponding eye fixation happen within a close vicinity? {wi,0:},=, where w; and o; refers to

of each other. However, a large variance is also o€ ¢-th speech utterance (i.e., a list of words
served in terms of these temporal vicinities, whictpf SPoken references) and theh corresponding
indicates an intrinsically more complex gaze-speecfy® 9aze pattern (i.e., a list of eye fixated ob-
pattern. Therefore, it is hard to directly quantifyleCts) respectively. ~ When we study the prob-
the temporal or ordering relationship between spdem Of mapping given objects to words (for vo-
ken references and corresponding eye fixated objeG@oulary acquisition), the parameter spade =
(for example, through rules). {Pr(wjlog),1 < j <m",1 <k <m°} consists of

To better handle the complexity in the gaze-the mapping propabllltles of anwarbltrari/ wore
0 an arbitrary objecb,, wherem™ andm?® repre-

s_peech pattern_, We propose to use statistical transLaént the total number of unique words and objects
tion models. Given a time window of enough length

. . ) fespectively. Those mapping probabilities are sub-
a speech input that contains a list of spoken refer- P y pping p

. . ect to constraint§"""; Pr(w;|or) = 1. Note that
ences (e.g., definite noun phrases) is always accoiy- . J .
panied by a list of naturally occurred eye fixations r(wjlox) =0 |f_the correspondln_g Wor.d]j andoy,
. : i ___hever co-occur in any observed list péiv;, o;).
and therefore a list of objects receiving those fixa- )
tions. All those pairs of speech references and cor- Lt [’ and 7 denote the length of lists/; and
responding fixated objects could be vieweghagal-  ©i respectively. To dIStI.nQUISh Wlth the no_tatlons
lel, i.e. theyco-occur within the time windowThis ~ @; @ndoy, whose subscripts are indices fonique
situation is very similar to the training process ofVords and objects respectively, we usg; to de-
translation models in statistical machine translatioROt€ the word in thg-th position of the listw; and
(Brown etal., 1993), where parallel corpus is used tfi.+ 0 denote the object in the-th position of the
find the mappings between words from different lanliSt 0:- In translation models, we assume that any
guages by exploiting their co-occurrence patterng/ord in the listw; is mapped to an object in the cor-
The same idea can be borrowed here: by explorifgSPonding lisio; or anull object (we reserve the
the co-occurrence statistics, we hope to uncover th@sition0 for it in every object list). To denote all
exact mapping between those eye fixated objects aHf Word-object mappings in theth list pair, we in-
spoken references. The intuition is that, the more offoduce an alignment vectas;, whose element; ;
ten a fixation is found to exclusively co-occur with af@kes the valué if the wordw; ; is mapped t@; .
spoken reference, the more likely a mapping should Then, the likelihood of the observations given the
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parameters can be computed as follows 6 Experiments

N N We experimented our proposed statistical translation
P = P i|0; ) ) :
H r(wiloi) = ] > Pr(wi ailo; model on the collected data mentioned in Section 3.

=1 a;
Pr(l¥ 6.1 Preprocessin
SIpaETY  CHEN Bl .
i=1 a; (1 +1 The main purpose of preprocessing is to create a

w “parallel corpus” for training a translation model.
H MZ Hpr W; j|0a; ;) Here, the “parallel corpus” refers to a series of
i Gies 1) a; j=1 ! speech-gaze pairs, each of them consisting of a list
Note that the following equation holds: of words from the spoken references in the user ut-
terances and a list of objects that are fixated upon
5 within the same time window.
i.d Specifically, we first transcribed the user speech
into scripts by automatic speech recognition soft-
where the right-hand side is actually the expansiofare and then refined them manually. A time-stamp
of > a, H Pr(w”|oa ). Therefore, the likelihood was associated with each word in the speech script.
can be S|mpI|f|ed as Further, we detected long pauses in the speech script
N as splitting points to create time windows, since a
Pr(D;©) = H ’01 H Zpr Wi 16i.x) long pause usually marks the start of a sentence
(lo + D5 that indicates a user’s attention shift. In our exper-

v 2 Ui Ut
H ZPr W;j|0i 1) Z Z HPr(u?i,j

7=1k=0 a;1=1 ai,lwzljzl

iment, we set the threshold of judging a long pause
, o bel second. From all the data gathered from 7
‘ Pl«(llv|oZ “J users, we ges57 such time windows (which typi-
Pr(D; ©)= H Lo 11y H [Z Pr(w;lox)o; ] cally contain 10-20 spoken words and 5-10 fixated
J=t =0 object changes).
whereo;’; = 1if w;; € w; andd;’; = 0 otherwise,  Gjyen a time window, we then found the objects

Switching to the notations; ando;,, we have

andoy;, = 1if 0, € o; anddy;, = 0 otherwise. being fixated upon by eye gaze (represented by their
FlnaIIy, the translation model can be formalizeqps a5 shown in Figure 1). Considering that eye gaze
as the following optimization problem fixation could occur during the pauses in speech, we
argmaxg log Pr(D; ©) expanded each time window by a fixed length at both

mw its start and end to find the fixations. In our experi-

s.t. Z Pr(wjlox) = 1,VEk ments, the expansion length is sedtb seconds.

j=1 Finally, we applied a part-of-speech tagger to
This optimization problem can be solved by the EMach sentence in the user script and only singled out
algorithm (Brown et al., 1993). nouns as potential spoken references in the word list.

The above model is developed in the conThe Porter stemming algorithm was also used to get

text of mapping given objects to words, i.e., itshe normalized forms of those nouns.

solution yields a set of conditional probabilities The translation model was trained based on this
{Pr(w;|oy),Vj} for each objecty, indicating how preprocessed parallel data.

likely every word is mapped to it. Similarly, we . i
can develop the model in the context of mappin§-2 Evaluation Metrics

given words to objects (for vocabulary interpretaAs described in Section 5, by using a statistical
tion), whose solution leads to another set of probiranslation model we can get a set of translation
abilities { Pr(ox|w;), Vk} for each wordw; indicat-  probabilities, either from any given spoken word to

ing how likely every object is mapped to it. In ourall the objects, or from any given object to all the

experiments, both models are implemented and wepoken words. To evaluate the two sets of trans-
will present the results later. lation probabilities, we userecisionandrecall as
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#Rank | Precision Recall || #Rank | Precision Recall

the sake of statistical significance, our evaluation is
0.6667 0.2593 6] 0.2302 0.5370 9

1 : .

2| 04524 03519 7| 02041 0.5556 done on21 objects that were mentioned at ledst

3| 0.3810 0.444 8| 0.1905 0.5926 times by the users.

4| 0.3095 0.4815 9| 0.1799 0.6296 ; - N
c| 02657 05180 10| 01619 06296 Table 2 gives the average precision/recall evalu

ated at the top 10 ranks. As we can see, if we use
Table 2: Average precision/recall of mapping giverihe most probable word acquired for each object,

objects to words (i.e., acquisition) about66.67% of them are appropriate. With the
#Rank | Precision Recall || #Rank | Precision Recall rank increasing, more and more appropriate words
0.7826 0371 61 03043 0.7500 can be acquired. Abou.96% of all the appropri-
0.5870 0.482 7| 0.2671 0.7679 ate words are included within the top 10 probable
0.4638 0.571 8| 0.2446 0.8036

0.3804 0.625 ol 02293 08393 words fpund. The results |nd|gate that by using a
0.3478 0.714 10| 0.2124 0.8571 translation model, we can obtain the words that are

_ ~used by the users to describe the objects with rea-
Table 3: Average precision/recall of mapping giveryonaple accuracy.

G WN

words to objects.(i.e., interpretation) Table 4 presents the tapmost probable words
found for each object. It shows that although there
evaluation metrics. may be more than one word appropriate to describe

Specifically, for a given objecb, the trans- a given object, those words with highest probabil-
lation model will yield a set of probabilities ities always suggest the most popular way of de-
{Pr(wjlog),Vj}. We can sort the probabilities andscribing the corresponding object among the users.
get a ranked list. Let us assume that we have ttfeor example, for the object with 126, the word
ground truth about all the spoken words to whicltandl e gets a higher probability than the word
the given object should be mapped. Then, at a givasand| est i ck, which is in accordance with our
numbem of top ranked words, therecisionof map- observation that in our user study, on most occasions
ping the given object;, to words is defined as users tend to use the wooandl e rather than the

# words thaby, is correctly mapped to wordcandl estick. _

# words thaby, is mapped to _ Vocabulary mj[erpretgtlon is the process of find-
ing the appropriate object(s) for any given spoken
word. Out of 176 nouns in the user vocabulary,

# words thaby, is correctly mapped to we only evaluate those used at least three times for

# words thab;, should be mapped to statistical significance concerns. Further, abstract
All the counting above is done within the tafrank.  words (such aseason, posi ti on)and general
Therefore, we can get different precision/recall awords (such asoom f urni ture) are not eval-
different ranks. At each rank, the overall perforuated since they do not refer to any particular objects
mance can be evaluated by averaging the predn the scene. Finally23 nouns remain for evalua-
sion/recall for all the given objects. Human judg-tion.
ment is used to decide whether an object-word map- We manually enumerated all the object(s) that
ping is correct or not, as ground truth for evaluationthose23 nouns refer to as the ground truth in our

Similarly, based on the set of probabilities of mapevaluation. Note that a given noun can possibly
ping a given object with spoken words, we carbe used to refer to multiple objects, suchl @,
find a ranked list of objects for a given word, i.e.since we have several lamps (with objecti[3, 17,
{Pr(ox|w;),Vk}. Thus, at a given rank thereci- and 23) in the experiment setting, arued, since
sionandrecall of mapping a given wordv; to ob- bed frame, bed spread, and pillows (with object ID
jects can be measured. 19, 21, and 20 respectively) are all part of a bed.
Also, an object can be referred to by multiple nouns.
For example, the wordpai nti ng, picture,
Vocabulary acquisition is the process of finding or wat erfal | can all be used to refer to the ob-
the appropriate word(s) for any given object. Foject with ID 15.
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Object Rank 1 Rank 2 Rank 3 Word Rank 1 Rank 2 Rank 3 Rank 4

1 paint (0.254) * wall (0.191) left (0.150) curtain| 6 (0.305)* 5(0.305)* 7(0.133)  1(0.121)
2| pictur (0.305) * girl (0.122) niagara (0.095) * candlestick 25 (0.147) * 28(0.135) 24 (0.131) 22 (0.117)
3 wall (0.109) lamp (0.093) * floor (0.084) lamp| 22 (0.126) 12(0.094) 17(0.093)* 25(0.093)
4 upsid (0.174) * left (0.151) * paint (0.149) * dresser 12 (0.298) * 9(0.294) * 13(0.173)* 7 (0.104)
5| pictur (0.172)  window (0.157) * wall (0.116) queen| 20 (0.187) * 21(0.182)* 22(0.136) 19 (0.136) *
6| window (0.287)* curtain (0.115) pictur (0.076) door| 22 (0.200) * 27(0.124) 25(0.108) 24 (0.106)
7 chair (0.287) * tabl (0.088) bird (0.083) tabl| 9(0.152)* 12 (0.125)* 13(0.112)* 22(0.107)
9| mirror (0.161) * dresser (0.137) bird (0.098) * mirror | 9(0.251)* 12 (0.238) 8(0.109) 13(0.081)
12 room (0.131) lamp (0.127) left (0.069) girl| 2(0.173) 22(0.128) 16(0.099) 10 (0.074)
14 hang (0.104)  favourit (0.085) natur (0.064) chair| 22 (0.132) 25 (0.099) * 28(0.085) 24 (0.082)
15 thing (0.066) size (0.059) queen (0.057) waterfal| 6 (0.226) 5(0.215) 1(0.118) 9 (0.083)
16 paint (0.211) *  pictur (0.116) * forest (0.076) * candl| 19 (0.156) 22 (0.139) 28(0.134) 24 (0.131)
17 lamp (0.354) * end (0.154) tabl (0.097) niagara] 4(0.359)* 2(0.262)* 1(0.226) 7 (0.045)
18 | bedroom (0.158) side (0.128) bed (0.104) plant| 27 (0.230) * 22(0.181) 23(0.131) 28(0.117)
19 bed (0.576)*  room (0.059) candl (0.049) tree| 27 (0.352) * 22(0.218) 26 (0.100) 13 (0.062)
20 bed (0.396) *  queen (0.211) * size (0.176) upsid| 4(0.204)* 12(0.188) 9(0.153) 1(0.104) *
21 bed (0.180) * chair (0.097) orang (0.078) bird| 9(0.142)* 10(0.138) 12(0.131) 7(0.121)
22 bed (0.282) door (0.235) * chair (0.128) desk| 12 (0.170)* 9(0.141)* 19(0.118) 8(0.118)
25 chair (0.215) * bed (0.162)  candlestick (0.124) bed| 19 (0.207) * 22(0.141) 20(0.111)* 28 (0.090)
26 candl (0.145) * chair (0.114)  candlestick (0.092) * upsidedowr] 4 (0.243)* 3(0.219) 6 (0.203) 5(0.188)
27 tree (0.246) *  chair (0.107) floor (0.096) paint| 4(0.188)* 16(0.148)* 1(0.137)* 15(0.118)*

window | 6(0.305)* 5(0.290)* 3(0.085) 22 (0.065)

lampshad 3(0.223)* 7(0.137) 11(0.137) 10(0.137)

Table 4: Words found for given objects. Each rowable 5: Objects found for given words. Each row
lists the top 3 most probable spoken words (beirigts the 4 most probable object IDs for the corre-
stemmed) for the corresponding given object, wittponding given words (being stemmed), with the
the mapping probabilities in parentheses. Asterisksapping probabilities in parentheses. Asterisks in-
indicate correctly identified spoken words. Notdicate correctly identified objects. Note that some
that some objects are heavily overlapped, so the cobjects are heavily overlapped, such as the candle
responding words are considered correct for all tifevith object ID 26) and the chair (with object ID
overlapping objects, such &gd being considered 25), and both were considered correct for the re-
correct for objects with ID 19, 20, and 21. spective spoken words.

Table 3 gives the average precision/recall evaldially due to the relatively small scale of our exper-
ated at the top 10 ranks. As we can see, if we use tliment data. For example, with only 7 users’ speech
most probable object found for each speech wordiata on 14 conversational tasks, some words were
about78.26% of them are appropriate. With the rankonly spoken a few times to refer to an object, which
increasing, more and more appropriate objects camevented them from getting a significant portion of
be found. AbouB5.71% of all the appropriate ob- probability mass among all the words in the vocab-
jects are included within the top 10 probable objectalary. This degrades both precision and recall. We
found. The results indicate that by using a transselieve that in large scale experiments or real-world
lation model, we can predict the objects from useapplications, the performance will be improved.
spoken words with reasonable accuracy.

Table 5 lists the tod probable objects found for

each spoken word being evaluated. A close ook "Srevious psycholinguistic findings have shown that

e gaze is tightly linked with human language pro-
ction. During human machine conversation, our
gtudy shows that although a larger variance is ob-

veals that in general, the top ranked objects tend E
gather around the correct object for a given spoke
word. This is consistent with the fact that eye gaz
tends to move back and forth. It also indicates th%t
the mappings established by the translation modg
can effectively find the approximate area of the cor-
responding fixated object, even if it cannot find th
object due to the noisy and jerky nature of eye gaz

7 Discussion and Conclusion

Frved on how eye fixations are exactly linked with
orresponding spoken references (compared to the
é)sycholinguistic findings), eye gaze in general is
Closely coupled with corresponding referring ex-
%Tessions in the utterances. This close coupling na-

The precision/recall in vocabulary acquisition isture between eye gaze and speech utterances pro-
not as high as that in vocabulary interpretation, pasxides an opportunity for the system to automatically
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this idea, we developed a novel unsupervised ap-
proach using statistical translation models.
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