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Abstract

Non-verbal modalities such as gesture can
improve processing of spontaneous spoken
language. For example, similar hand ges-
tures tend to predict semantic similarity, so
features that quantify gestural similarity can
improve semantic tasks such as coreference
resolution. However, not all hand move-
ments are informative gestures; psycholog-
ical research has shown that speakers are
more likely to gesture meaningfully when
their speech is ambiguous. Ideally, one
would attend to gesture only in such cir-
cumstances, and ignore other hand move-
ments. We presentconditional modality
fusion, which formalizes this intuition by
treating the informativeness of gesture as a
hidden variable to be learned jointly with
the class label. Applied to coreference
resolution, conditional modality fusion sig-
nificantly outperforms both early and late
modality fusion, which are current tech-
niques for modality combination.

1 Introduction

Non-verbal modalities such as gesture and prosody
can increase the robustness of NLP systems to the
inevitable disfluency of spontaneous speech. For ex-
ample, consider the following excerpt from a dia-
logue in which the speaker describes a mechanical
device:

“So this moves up, and it – everything moves up.
And this top one clears this area here, and goes all
the way up to the top.”

The references in this passage are difficult to
disambiguate, but the gestures shown in Figure 1
make the meaning more clear. However, non-verbal
modalities are often noisy, and their interactions
with speech are complex (McNeill, 1992). Ges-
ture, for example, is sometimes communicative, but
other times merely distracting. While people have
little difficulty distinguishing between meaningful
gestures and irrelevant hand motions (e.g., self-
touching, adjusting glasses) (Goodwin and Good-
win, 1986), NLP systems may be confused by such
seemingly random movements. Our goal is to in-
clude non-verbal features only in the specific cases
when they are helpful and necessary.

We present a model that learns in an unsupervised
fashion when non-verbal features are useful, allow-
ing it to gate the contribution of those features. The
relevance of the non-verbal features is treated as a
hidden variable, which is learned jointly with the
class label in a conditional model. We demonstrate
that this improves performance on binary corefer-
ence resolution, the task of determining whether a
noun phrases refers to a single semantic entity. Con-
ditional modality fusion yields a relative increase of
73% in the contribution of hand-gesture features.
The model is not specifically tailored to gesture-
speech integration, and may also be applicable to
other non-verbal modalities.

2 Related work

Most of the existing work on integrating non-verbal
features relates to prosody. For example, Shriberg
et al. (2000) explore the use of prosodic features for
sentence and topic segmentation. The first modal-
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And this top one clears this area here, and goes
all the way up to the top...

2

So this moves up. And it – everything moves up.
1

Figure 1: An example where gesture helps to disambiguate meaning.

ity combination technique that they consider trains a
single classifier with all modalities combined into a
single feature vector; this is sometimes called “early
fusion.” Shriberg et al. also consider training sepa-
rate classifiers and combining their posteriors, either
through weighted addition or multiplication; this is
sometimes called “late fusion.” Late fusion is also
employed for gesture-speech combination in (Chen
et al., 2004). Experiments in both (Shriberg et al.,
2000) and (Kim et al., 2004) find no conclusive win-
ner among early fusion, additive late fusion, and
multiplicative late fusion.

Toyama and Horvitz (2000) introduce a Bayesian
network approach to modality combination for
speaker identification. As in late fusion, modality-
specific classifiers are trained independently. How-
ever, the Bayesian approach also learns to predict
the reliability of each modality on a given instance,
and incorporates this information into the Bayes
net. While more flexible than the interpolation tech-
niques described in (Shriberg et al., 2000), training
modality-specific classifiers separately is still sub-
optimal compared to training them jointly, because
independent training of the modality-specific classi-
fiers forces them to account for data that they can-
not possibly explain. For example, if the speaker is
not gesturing meaningfully, it is counterproductive
to train a gesture-modality classifier on the features
at this instant; doing so can lead to overfitting and
poor generalization.

Our approach combines aspects of both early and
late fusion. As in early fusion, classifiers for all
modalities are trained jointly. But as in Toyama and

Horvitz’s Bayesian late fusion model, modalities can
be weighted based on their predictive power for spe-
cific instances. In addition, our model is trained to
maximize conditional likelihood, rather than joint
likelihood.

3 Conditional modality fusion

The goal of our approach is to learn to weight the
non-verbal featuresxnv only when they are rele-
vant. To do this, we introduce a hidden variable
m ∈ {−1, 1}, which governs whether the non-
verbal features are included.p(m) is conditioned on
a subset of featuresxm, which may belong to any
modality;p(m|xm) is learned jointly with the class
labelp(y|x), with y ∈ {−1, 1}. For our coreference
resolution model,y corresponds to whether a given
pair of noun phrases refers to the same entity.

In a log-linear model, parameterized by weights
w, we have:

p(y|x;w) =
∑
m

p(y,m|x;w)

=
∑

m exp(ψ(y,m,x;w))∑
y′,m exp(ψ(y′,m,x;w))

.

Here,ψ is a potential function representing the
compatibility between the labely, the hidden vari-
ablem, and the observationsx; this potential is pa-
rameterized by a vector of weights,w. The numera-
tor expresses the compatibility of the labely and ob-
servationsx, summed over all possible values of the
hidden variablem. The denominator sums over both
m and all possible labelsy′, yielding the conditional
probability p(y|x;w). The use of hidden variables
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in a conditionally-trained model follows (Quattoni
et al., 2004).

This model can be trained by a gradient-based
optimization to maximize the conditional log-
likelihood of the observations. The unregularized
log-likelihood and gradient are given by:

l(w) =
X

i

ln(p(yi|xi;w)) (1)

=
X

i

ln

P
m exp(ψ(yi,m,xi;w))P

y′,m exp(ψ(y′,m,xi;w))
(2)

∂li
∂wj

=
X
m

p(m|yi,xi;w)
∂

∂wj
ψ(yi,m,xi;w)

−
X
y′,m

p(m, y′|xi;w)
∂

∂wj
ψ(y′,m,xi;w)

The form of the potential functionψ is where our
intuitions about the role of the hidden variable are
formalized. Our goal is to include the non-verbal
featuresxnv only when they are relevant; conse-
quently, the weight for these features should go to
zero for some settings of the hidden variablem. In
addition,verbal language is different when used in
combination with meaningful non-verbal commu-
nication than when it is used unimodally (Kehler,
2000; Melinger and Levelt, 2004). Thus, we learn
a different set of feature weights for each case:wv,1

when the non-verbal features are included, andwv,2

otherwise. The formal definition of the potential
function for conditional modality fusion is:

ψ(y,m,x;w) ≡{
y(wT

v,1xv + wT
nvxnv) + wT

mxm m = 1
ywT

v,2xv −wT
mxm m = −1.

(3)

4 Application to coreference resolution

We apply conditional modality fusion to corefer-
ence resolution – the problem of partitioning the
noun phrases in a document into clusters, where all
members of a cluster refer to the same semantic en-
tity. Coreference resolution on text datasets is well-
studied (e.g., (Cardie and Wagstaff, 1999)). This
prior work provides the departure point for our in-
vestigation of coreference resolution on spontaneous
and unconstrained speech and gesture.

4.1 Form of the model

The form of the model used in this application is
slightly different from that shown in Equation 3.
When determining whether two noun phrases core-
fer, the features at each utterance must be consid-
ered. For example, if we are to compare the simi-
larity of the gestures that accompany the two noun
phrases, it should be the case that gesture is relevant
duringbothtime periods.

For this reason, we create two hidden variables,
m1 and m2; they indicate the relevance of ges-
ture over the first (antecedent) and second (anaphor)
noun phrases, respectively. Since gesture similarity
is only meaningful if the gesture is relevant during
both NPs, the gesture features are included only if
m1 = m2 = 1. Similarly, the linguistic feature
weightswv,1 are used whenm1 = m2 = 1; oth-
erwise the weightswv,2 are used. This yields the
model shown in Equation 4.

The vector of meta featuresxm1 includes all
single-phrase verbal and gesture features from Ta-
ble 1, computed at the antecedent noun phrase;
xm2 includes the single-phrase verbal and gesture
features, computed at the anaphoric noun phrase.
The label-dependent verbal featuresxv include both
pairwise and single phrase verbal features from the
table, while the label-dependent non-verbal features
xnv include only the pairwise gesture features. The
single-phrase non-verbal features were not included
because they were not thought to be informative as
to whether the associated noun-phrase would partic-
ipate in coreference relations.

4.2 Verbal features

We employ a set of verbal features that is similar
to the features used by state-of-the-art coreference
resolution systems that operate on text (e.g., (Cardie
and Wagstaff, 1999)). Pairwise verbal features in-
clude: several string-match variants; distance fea-
tures, measured in terms of the number of interven-
ing noun phrases and sentences between the candi-
date NPs; and some syntactic features that can be
computed from part of speech tags. Single-phrase
verbal features describe the type of the noun phrase
(definite, indefinite, demonstrative (e.g.,this ball),
or pronoun), the number of times it appeared in
the document, and whether there were any adjecti-
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ψ(y,m1,m2,x;w) ≡

{
y(wT

v,1xv + wT
nvxnv) +m1wT

mxm1 +m2wT
mxm2 , m1 = m2 = 1

ywT
v,2xv +m1wT

mxm1 +m2wT
mxm2 , otherwise.

(4)

val modifiers. The continuous-valued features were
binned using a supervised technique (Fayyad and
Irani, 1993).

Note that some features commonly used for coref-
erence on the MUC and ACE corpora are not appli-
cable here. For example, gazetteers listing names of
nations or corporations are not relevant to our cor-
pus, which focuses on discussions of mechanical de-
vices (see section 5). Because we are working from
transcripts rather than text, features dependent on
punctuation and capitalization, such as apposition,
are also not applicable.

4.3 Non-verbal features

Our non-verbal features attempt to capture similar-
ity between the speaker’s hand gestures; similar ges-
tures are thought to suggest semantic similarity (Mc-
Neill, 1992). For example, two noun phrases may
be more likely to corefer if they are accompanied by
identically-located pointing gestures. In this section,
we describe features that quantify various aspects of
gestural similarity.

The most straightforward measure of similarity is
the Euclidean distance between the average hand po-
sition during each noun phrase – we call this the
FOCUS-DISTANCE feature. Euclidean distance cap-
tures cases in which the speaker is performing a ges-
tural “hold” in roughly the same location (McNeill,
1992).

However, Euclidean distance may not correlate
directly with semantic similarity. For example,
when gesturing at a detailed part of a diagram,
very small changes in hand position may be se-
mantically meaningful, while in other regions posi-
tional similarity may be defined more loosely. Ide-
ally, we would compute a semantic feature cap-
turing the object of the speaker’s reference (e.g.,
“the red block”), but this is not possible in gen-
eral, since a complete taxonomy of all possible ob-
jects of reference is usually unknown. Instead, we
use a hidden Markov model (HMM) to perform a
spatio-temporal clustering on hand position and ve-
locity. TheSAME-CLUSTER feature reports whether

the hand positions during two noun phrases were
usually grouped in the same cluster by the HMM.
JS-DIV reports the Jensen-Shannon divergence, a
continuous-valued feature used to measure the simi-
larity in cluster assignment probabilities between the
two gestures (Lin, 1991).

The gesture features described thus far capture the
similarity between static gestures; that is, gestures
in which the hand position is nearly constant. How-
ever, these features do not capture the similarity be-
tween gesture trajectories, which may also be used
to communicate meaning. For example, a descrip-
tion of two identical motions might be expressed
by very similar gesture trajectories. To measure the
similarity between gesture trajectories, we use dy-
namic time warping (Huang et al., 2001), which
gives a similarity metric for temporal data that is
invariant to speed. This is reported in the DTW-
DISTANCE feature.

All features are computed from hand and body
pixel coordinates, which are obtained via computer
vision; our vision system is similar to (Deutscher et
al., 2000). The feature set currently supports only
single-hand gestures, using the hand that is farthest
from the body center. As with the verbal feature set,
supervised binning was applied to the continuous-
valued features.

4.4 Meta features

The role of the meta features is to determine whether
the gesture features are relevant at a given point in
time. To make this determination, both verbal and
non-verbal features are applied; the only require-
ment is that they be computable at a single instant
in time (unlike features that measure the similarity
between two NPs or gestures).

Verbal meta features Meaningful gesture has
been shown to be more frequent when the associated
speech is ambiguous (Melinger and Levelt, 2004).
Kehler finds that fully-specified noun phrases are
less likely to receive multimodal support (Kehler,
2000). These findings lead us to expect that pro-
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Pairwise verbal features
edit-distance a numerical measure of the string simi-

larity between the two NPs
exact-match true if the two NPs have identical sur-

face forms
str-match true if the NPs are identical after re-

moving articles
nonpro-str true if i andj are not pronouns, and str-

match is true
pro-str true if i and j are pronouns, and str-

match is true
j-substring-i true if the anaphorj is a substring of

the antecedenti
i-substring-j true if i is a substring ofj
overlap true if there are any shared words be-

tweeni andj
np-dist the number of noun phrases betweeni

andj in the document
sent-dist the number of sentences betweeni and

j in the document
both-subj true if bothi andj precede the first verb

of their sentences
same-verb true if the first verb in the sentences for

i andj is identical
number-match true if i andj have the same number

Single-phrase verbal features
pronoun true if the NP is a pronoun
count number of times the NP appears in the

document
has-modifiers true if the NP has adjective modifiers
indef-np true if the NP is an indefinite NP (e.g.,

a fish)
def-np true if the NP is a definite NP (e.g.,the

scooter)
dem-np true if the NP begins withthis, that,

these, or those
lexical features lexical features are defined for the most

common pronouns:it, that, this, and
they

Pairwise gesture features
focus-distance the Euclidean distance in pixels be-

tween the average hand position during
the two NPs

DTW-agreement a measure of the agreement of the hand-
trajectories during the two NPs, com-
puted using dynamic time warping

same-cluster true if the hand positions during the two
NPs fall in the same cluster

JS-div the Jensen-Shannon divergence be-
tween the cluster assignment likeli-
hoods

Single-phrase gesture features
dist-to-rest distance of the hand from rest position
jitter sum of instantaneous motion across NP
speed total displacement over NP, divided by

duration
rest-cluster true if the hand is usually in the cluster

associated with rest position
movement-cluster true if the hand is usually in the cluster

associated with movement

Table 1: The feature set

nouns should be likely to co-occur with meaningful
gestures, while definite NPs and noun phrases that
include adjectival modifiers should be unlikely to do
so. To capture these intuitions, all single-phrase ver-
bal features are included as meta features.

Non-verbal meta features Research on gesture
has shown that semantically meaningful hand mo-
tions usually take place away from “rest position,”
which is located at the speaker’s lap or sides (Mc-
Neill, 1992). Effortful movements away from these
default positions can thus be expected to predict that
gesture is being used to communicate. We iden-
tify rest position as the center of the body on the
x-axis, and at a fixed, predefined location on the y-
axis. TheDIST-TO-REST feature computes the av-
erage Euclidean distance of the hands from the rest
position, over the duration of the NP.

As noted in the previous section, a spatio-
temporal clustering was performed on the hand po-
sitions and velocities, using an HMM. TheREST-
CLUSTER feature takes the value “true” iff the most
frequently occupied cluster during the NP is the
cluster closest to rest position. In addition, pa-
rameter tying in the HMM forces all clusters but
one to represent static hold, with the remaining
cluster accounting for the transition movements be-
tween holds. Only this last cluster is permitted to
have an expected non-zero speed; if the hand is
most frequently in this cluster during the NP, then
the MOVEMENT-CLUSTER feature takes the value
“true.”

4.5 Implementation

The objective function (Equation 1) is optimized
using a Java implementation of L-BFGS, a quasi-
Newton numerical optimization technique (Liu and
Nocedal, 1989). Standard L2-norm regulariza-
tion is employed to prevent overfitting, with cross-
validation to select the regularization constant. Al-
though standard logistic regression optimizes a con-
vex objective, the inclusion of the hidden variable
renders our objective non-convex. Thus, conver-
gence to a global minimum is not guaranteed.

5 Evaluation setup

Dataset Our dataset consists of sixteen short dia-
logues, in which participants explained the behavior
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of mechanical devices to a friend. There are nine
different pairs of participants; each contributed two
dialogues, with two thrown out due to recording er-
rors. One participant, the “speaker,” saw a short
video describing the function of the device prior
to the dialogue; the other participant was tested on
comprehension of the device’s behavior after the di-
alogue. The speaker was given a pre-printed dia-
gram to aid in the discussion. For simplicity, only
the speaker’s utterances were included in these ex-
periments.

The dialogues were limited to three minutes in du-
ration, and most of the participants used the entire
allotted time. “Markable” noun phrases – those that
are permitted to participate in coreference relations
– were annotated by the first author, in accordance
with the MUC task definition (Hirschman and Chin-
chor, 1997). A total of 1141 “markable” NPs were
transcribed, roughly half the size of the MUC6 de-
velopment set, which includes 2072 markable NPs
over 30 documents.

Evaluation metric Coreference resolution is of-
ten performed in two phases: a binary classifi-
cation phase, in which the likelihood of corefer-
ence for each pair of noun phrases is assessed;
and a partitioning phase, in which the clusters of
mutually-coreferring NPs are formed, maximizing
some global criterion (Cardie and Wagstaff, 1999).
Our model does not address the formation of noun-
phrase clusters, but only the question of whether
each pair of noun phrases in the document corefer.
Consequently, we evaluate only the binary classifi-
cation phase, and report results in terms of the area
under the ROC curve (AUC). As the small size of
the corpus did not permit dedicated test and devel-
opment sets, results are computed using leave-one-
out cross-validation, with one fold for each of the
sixteen documents in the corpus.

Baselines Three types of baselines were compared
to our conditional modality fusion (CMF) technique:

• Early fusion. The early fusion baseline in-
cludes all features in a single vector, ignor-
ing modality. This is equivalent to standard
maximum-entropy classification. Early fusion
is implemented with a conditionally-trained

linear classifier; it uses the same code as the
CMF model, but always includes all features.

• Late fusion. The late fusion baselines train
separate classifiers for gesture and speech, and
then combine their posteriors. The modality-
specific classifiers are conditionally-trained lin-
ear models, and again use the same code as the
CMF model. For simplicity, a parameter sweep
identifies the interpolation weights that maxi-
mize performance on the test set. Thus, it is
likely that these results somewhat overestimate
the performance of these baseline models. We
report results for both additive and multiplica-
tive combination of posteriors.

• No fusion. These baselines include the fea-
tures from only a single modality, and again
build a conditionally-trained linear classifier.
Implementation uses the same code as the CMF
model, but weights on features outside the tar-
get modality are forced to zero.

Although a comparison with existing state-of-the-
art coreference systems would be ideal, all such
available systems use verbal features that are inap-
plicable to our dataset, such as punctuation, capital-
ization, and gazetteers. The verbal features that we
have included are a representative sample from the
literature (e.g., (Cardie and Wagstaff, 1999)). The
“no fusion, verbal features only” baseline thus pro-
vides a reasonable representation of prior work on
coreference, by applying a maximum-entropy clas-
sifier to this set of typical verbal features.

Parameter tuning Continuous features are
binned separately for each cross-validation fold,
using only the training data. The regularization
constant is selected by cross-validation within each
training subset.

6 Results

Conditional modality fusion outperforms all other
approaches by a statistically significant margin (Ta-
ble 2). Compared with early fusion, CMF offers an
absolute improvement of 1.20% in area under the
ROC curve (AUC).1 A paired t-test shows that this

1AUC quantifies the ranking accuracy of a classifier. If the
AUC is 1, all positively-labeled examples are ranked higher than
all negative-labeled ones.
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model AUC

Conditional modality fusion .8226
Early fusion .8109
Late fusion, multiplicative .8103
Late fusion, additive .8068
No fusion (verbal features only) .7945
No fusion (gesture features only).6732

Table 2: Results, in terms of areas under the ROC
curve
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Figure 2: Conditional modality fusion is robust to
variations in the regularization constant.

result is statistically significant (p < .002, t(15) =
3.73). CMF obtains higher performance on fourteen
of the sixteen test folds. Both additive and multi-
plicative late fusion perform on par with early fu-
sion.

Early fusion with gesture features is superior to
unimodal verbal classification by an absolute im-
provement of 1.64% AUC (p < 4 ∗ 10−4, t(15) =
4.45). Thus, while gesture features improve coref-
erence resolution on this dataset, their effectiveness
is increased by a relative 73% when conditional
modality fusion is applied. Figure 2 shows how per-
formance varies with the regularization constant.

7 Discussion

The feature weights learned by the system to deter-
mine coreference largely confirm our linguistic in-
tuitions. Among the textual features, a large pos-
itive weight was assigned to the string match fea-
tures, while a large negative weight was assigned to
features such as number incompatibility (i.e., sin-

pronoun def dem indef "this" "it" "that" "they"modifiers
−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4
Weights learned with verbal meta features

Figure 3: Weights for verbal meta features

gular versus plural). The system also learned that
gestures with similar hand positions and trajectories
were likely to indicate coreferring noun phrases; all
of our similarity metrics were correlated positively
with coreference. A chi-squared analysis found that
the EDIT DISTANCE was the most informative ver-
bal feature. The most informative gesture feature
was DTW-AGREEMENT feature, which measures
the similarity between gesture trajectories.

As described in section 4, both textual and gestu-
ral features are used to determine whether the ges-
ture is relevant. Among textual features, definite
and indefinite noun phrases were assigned nega-
tive weights, suggesting gesture would not be use-
ful to disambiguate coreference for such NPs. Pro-
nouns were assigned positive weights, with “this”
and the much less frequently used “they” receiving
the strongest weights. “It” and “that” received lower
weights; we observed that these pronouns were fre-
quently used to refer to the immediately preceding
noun phrase, so multimodal support was often un-
necessary. Last, we note that NPs with adjectival
modifiers were assigned negative weights, support-
ing the finding of (Kehler, 2000) that fully-specified
NPs are less likely to receive multimodal support. A
summary of the weights assigned to the verbal meta
features is shown in Figure 3. Among gesture meta
features, the weights learned by the system indicate
that non-moving hand gestures away from the body
are most likely to be informative in this dataset.
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8 Future work

We have assumed that the relevance of gesture to
semantics is dependent only on the currently avail-
able features, and not conditioned on prior history.
In reality, meaningful gestures occur over contigu-
ous blocks of time, rather than at randomly dis-
tributed instances. Indeed, the psychology literature
describes a finite-state model of gesture, proceed-
ing from “preparation,” to “stroke,” “hold,” and then
“retraction” (McNeill, 1992). These units are called
movement phases. The relevance of various gesture
features may be expected to depend on the move-
ment phase. During strokes, the trajectory of the
gesture may be the most relevant feature, while dur-
ing holds, static features such as hand position and
hand shape may dominate; during preparation and
retraction, gesture features are likely to be irrelevant.

The identification of these movement phases
should be independent of the specific problem of
coreference resolution. Thus, additional labels for
other linguistic phenomena (e.g., topic segmenta-
tion, disfluency) could be combined into the model.
Ideally, each additional set of labels would transfer
performance gains to the other labeling problems.

9 Conclusions

We have presented a new method for combining
multiple modalities, which we feel is especially rel-
evant to non-verbal modalities that are used to com-
municate only intermittently. Our model treats the
relevance of the non-verbal modality as a hidden
variable, learned jointly with the class labels. Ap-
plied to coreference resolution, this model yields a
relative increase of 73% in the contribution of the
gesture features. This gain is attained by identify-
ing instances in which gesture features are especially
relevant, and weighing their contribution more heav-
ily. We next plan to investigate models with a tem-
poral component, so that the behavior of the hidden
variable is governed by a finite-state transducer.
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