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Abstract

Historically, unsupervised learning tech-
nigues have lacked a principled technique
for selecting the number of unseen compo-
nents. Research into non-parametric priors,
such as the Dirichlet process, has enabled in-
stead the use affinite modelsin which the
number of hidden categories is not fixed, but
can grow with the amount of training data.
Here we develop thmfinite tree a new infi-
nite model capable of representing recursive
branching structure over an arbitrarily large
set of hidden categories. Specifically, we
develop three infinite tree models, each of
which enforces different independence as-
sumptions, and for each model we define a
simpledirect assignmergampling inference
procedure. We demonstrate the utility of
our models by doing unsupervised learning
of part-of-speech tags from treebank depen-
dency skeleton structure, achieving an accu-
racy of 75.34%, and by doing unsupervised
splitting of part-of-speech tags, which in-
creases the accuracy of a generative depen-
dency parser from 85.11% to 87.35%.

Introduction

manni ng}@s. st anf ord. edu

Teh et al. (2006) proposed the hierarchical Dirich-
let process (HDP) as a way of applying the Dirichlet
process (DP) to more complex model forms, so as to
allow multiple, group-specific, infinite mixture mod-
els tosharetheir mixture components. The closely
relatedinfinite hidden Markov modds an HMM
in which the transitions are modeled using an HDP,
enabling unsupervised learning of sequence models
when the number of hidden states is unknown (Beal
et al., 2002; Teh et al., 2006).

We extend this work by introducing thefinite
tree model which represents recursive branching
structure over a potentially infinite set of hidden
states. Such models are appropriate for the syntactic
dependency structure of natural language. The hid-
den states represent word categories (“tags”), the ob-
servations they generate represent the words them-
selves, and the tree structure represents syntactic de-
pendencies between pairs of tags.

To validate the model, we test unsupervised learn-
ing of tags conditioned on a given dependency tree
structure. This is useful, because coarse-grained
syntactic categories, such as those used in the Penn
Treebank (PTB), make insufficient distinctions to be
the basis of accurate syntactic parsing (Charniak,
1996). Hence, state-of-the-art parsers either supple-
ment the part-of-speech (POS) tags with the lexical
forms themselves (Collins, 2003; Charniak, 2000),
manually split the tagset into a finer-grained one

Model-based unsupervised learning techniques ha(élein and Manning, 2003a), or learn finer grained
historically lacked good methods for choosing thdag distinctions using a heuristic learning procedure
number of unseen components. For example, (Petrov et al., 2006). We demonstrate that the tags
means or EM clustering require advance specificdearned with our model are correlated with the PTB
tion of the number of mixture components. ButPOS tags, and furthermore that they improve the ac-
the introduction of nonparametric priors such as theuracy of an automatic parser when used in training.
Dirichlet procesgFerguson, 1973) enabled develop- .
ment ofinfinite mixture modelsin which the num- 2 Finite Trees

ber of hidden components is not fixed, but emergéd/e begin by presenting thrdiaite tree models, each
naturally from the training data (Antoniak, 1974). with different independence assumptions.
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Each multinomial over childrefy, is distributed ac-
cording to a Dirichlet distribution with parameter

7| p ~ Dirichlet(p, ..., p)

This model is presented graphically in Figure 1.

2.2 Simultaneous Children

The independent child model adopts strong indepen-
Figure 1: A graphical representation of tfisite ~dence assumptions, and we may instead want mod-
Bayesian tree model with independent children. Thels in which the children are conditioned on more
plate (rectangle) indicates that there is one copy dthan just the parent's state. Our second model thus
the model parameter variables for each state C.  generates the states of all of the childrg¢t) simul-

taneously:
2.1 Independent Children P P P —
In the first model, children are generated indepen- () = Pl@e]2)P((z )y ety 1) Ht’EC(t) or(t)

dently of each other, conditioned on the parent. L&khere (=), indicates the list of tags of the chil-
¢ denote both the tree and its root nodg) the list  gren oft. To parameterize this model, we replace the

: th i e TRl dl e . .
of children oft, ¢;(t) the:"* child of , andp(t) the  itinomial distributionr, over states with a multi-
parent of.. Each tree has a hidden statg (inasyn-  nomial distribution),, over lists of state$.

tax tree, the tag) and an observation(the word)?!

The probability of a tree is given by the recursive2.3 Markov Children

- .. 2
definition: ) The very large domain size of the child lists in the
Py (t) = P(2|2t) Ht,@(t) P(zp]20) P (t) simultaneous child model may cause problems of

To make the model Bayesian, we must define rarfParse estimation. Another alternative is to use a

dom variables to represent each of the model's p&rst-order Markov process to generate children, in
rameters, and specify prior distributions for themWhich each child’s state is conditioned on the previ-

Let each of the hidden state variables havpossi- ©US child's state:

ble values which we will index witlk. Each staté: lc(®) /
has a distinct distribution over observations, paraml?”(t) = Plzi]z) H Pze, e v 20)Per ()
eterized byg;,, which is distributed according to a For this model, we augment all child lists with a dis-
prior distribution over the parametefs. tinguishedstart node ¢((¢), which has as its state
op|H ~ H a distinguishedstart state allowing us to capture

the unique behavior of the first (observed) child. To
parameterize this model, note that we will need to
corresponding hidden state. If F'(¢x)s are multi- defineC'(C' + 1) multlnomlals, one for eqch parent
nomials, then a natural choice fdf would be a state and preceding child state (or a distinguished
Dirichlet distribution? start state).

The hidden state, of each child is distributed
according to a multinomial distribution,, specific

We generate each observationfrom some distri-
bution F'(¢.,) parameterized by,, specific to its

3 To Infinity, and Beyond ...

to the hidden state; of the parent: This section reviews needed background material
2|z ~ F(¢s,) for our approach to making our tree models infinite.
2|z ~ Multinomial(r, ) 3.1 The Dirichlet Process

To model length, every child list ends with adistinguishedSuppose we model a document abaa of words

stop nodewhich has as its state a distinguishedp state ; ;
2\We also define a distinguished nadewhich generates the prOduced by a mixture model, where the mixture

root of the entire tree, anB (z+,|z¢,) = 1. components might b&picssuch as business, pol-

3A Dirichlet distributionis a distribution over the possible itics, sports, etc. Using this model we can generate a
parameters of a multinomial distributions, and is distinom
the Dirichletprocess 4This requires stipulating a maximum list length.
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7|ag ~ GEM(aw)

P(x, = "profit’) 0 o

LG
OO
OEG

P(x, = "game") ¢k|H ~ H
Figure 2: Plot of the density function of a Dirich- afm o~
; v vilzi, @ ~ F(¢;)

let distribution H (the surface) as well as a draw
G (the vertical lines, orstickg from a Dirichlet @) (b)
process DRyy, H) which hasH as a base mea-

Both distributi defined ~ Figure 3: A graphical representation of a simple
sure.  Both distributions are defined over a SiMpyiiopiet process mixture model (left) and a hierar-

plex in which each point corresponds to a IO""rtiCUI""éhical Dirichlet process model (right). Note that we

multinomial distribution over three possible wordsig, .\ thestick-breakingrepresentations of the mod-

“Emﬁt. ,kga_lmg", andf “elec:]ion(;._ T.T)e P(')";‘;em%m of els, in which we have factore@ ~ DP(«ay, H) into
the sticks is drawn from the distributiof, and is o <ots of variablesr ando.

independent of their lengths, which is drawn from a

stick-breakingprocess with paramete. ics (i.e., the location of the sticks in the figure). To
generater we first generate an infinite sequence of

document by first generating a distribution over topvariablesr’ = ()72, each of which is distributed

ics 7, and then for each positianin the document, according to the Beta distribution:

generating a topnzi_f_rom_ ™ an_d then a word; oo ~ Beta(1, ag)

from the topic specific distributiow,,. The word

distributions ¢, for each topick are drawn from a
istributi i k—1

base distribution. In Section 2, we sampl€’ = WZH. (1)

multinomials ¢, from H. In the infinite mixture _ _ i=1 _

model we sample an infinite number of multinomi-Following Pitman (2002) we refer to this process as

als from H, using the Dirichlet process. 7 ~ GEM(ay). It should be noted thgt",” | 7, =

Formally, given a base distributioF and a con- 1> and P(i) = m;. Then, according to the DP,
centration parameter, (loosely speaking, this con- £(#:) = mi. The complete model, is shown graphi-
trols the relative sizes of the topics), a Dirichlet proCally in Figure 3(a).
cess DRag, H) is the distribution of a discrete ran- 10 build intuition, we walk through the process of
dom probability measuré over the same (possibly generating from the infinite mlxture model for t_he
continuous) space thf is defined over; thuitis a  document example, whete; is the word at posi-
measure over measures Figure 2, the sticks (ver- 10N ¢, andz; is its topic. I is a multinomial dis-
tical lines) show a draw& from a Dirichlet process ribution parameterized by, and H is a Dirichlet
where the base measufgis a Dirichlet distribution distribution. Instead of generating all of the infinite

over 3 words. A draw comprises of an infinite num Mixture componentgr )i, at once, we can build

ber of sticks, and each corresponding topic. them up incrementally. If there as& known top-
ics, we represent only the known elemefits) X,

We factor@ into two coindexed distributionssr, and represent the remaining probability mags—
a distribution over the integers, where the integer P gp y

represents the index of a particular topic (i.e., the °Thisis called thestick-breakingconstruction: we start with

i ; ; ;  stick of unit length, representing the entire probabititgss,
helght of the sticks in the flgure represent the prObé:\nd successively break bits off the end of the stick, wheee th

bility of the topic indexed by that stick) andl, rep-  proportional amount broken off is representedsyand the
resenting the word distribution of each of the topabsolute amount is representedsy
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o1 b Pz da O5 P 7 - stick, and elements of the upper stick may be sam-
NEERTRET pled multiple times or not at all; on average, larger
i elements will be sampled more often. Each element
»\W B, as well as all elements of; that were sampled
from it, corresponds to a particulay,. Critically,
™ | H———+H— several distinctr; can be sampled from the same
B, and hence sharg;; this is how components are
Figure 4: A graphical representation®f, a broken shared among groups.
stick, which is distributed according to a DP with a For concreteness, we show how to generate a cor-
broken stick3 as a base measure. Eaghcorre- pus of documents from the HDP, generating one
sponds to @j. document at a time, and incrementally construct-
ing our infinite objects. Initially we havg, = 1,
1 — (X ). Initially we haver, = 1 and ¢ = (), andr;, = 1 for all j. We start with the
¢ = (). first position of the first document and draw a local
For theith position in the document, we first drawtopic 1,1 ~ 1, which will return« with probabil-
atopicz; ~ m. If z; # u, then we find the coin- ity 1. Becausej;; = v we must make a draw from
dexed topice,,. If z; = u, the unseen topic, we the base measurg, which, because this is the first
make a draw ~ Betd1, o) and setrx1 = bmr,  document, will also returm with probability 1. We
and7,*” = (1 — b)m,. Then we draw a parame- must now breal@, into 4, ands¢¥, and breakr,,

ter i1 ~ H for the new topic, resulting iar =  into 17 and7}¢" in the same manner presented for
(T1y. .y TR41, ) and g = (¢1,...,0Kx+1).- A the DP. Sincer;; now corresponds to global topic
word is then drawn from this topic and emitted byl, we sample the word;; ~ Multinomial(¢;). To
the document. sample each subsequent wardve first sample the

. ) N local topicy; ~ m. If yi; # u, andmy,,, corre-
3.2 The Hierarchical Dirichlet Process sponds tg3;, in the global stick, then we sample the

Let's generalize our previous example to a corpugord z1; ~ Multinomial(¢,). Once the first docu-

of documents. As before, we have a set of shargient has been sampled, subsequent documents are

topics, but now each document hasatsn charac- Sampled in a similar manner; initialky;,, = 1 for

teristic distributionover these topics. We representdocumentj, while 3 continues to grow as more doc-

topic distributions both locally (for each documentjuments are sampled.

and globally (across all documents) by use of a hier- .

archical Dirichlet process (HDP), which has a locaft  Infinite Trees

DP for each document, in whithe base measure is We now use the techniques from Section 3 to create

itself a draw from another, global, DP. infinite versions of each tree model from Section 2.
The complete HDP model is represented graphi- _

cally in Figure 3(b). Like the DP, it has global bro-4-1 Independent Children

ken stick@ = (8x)7>; and topic specific word dis- The changes required to make the Bayesian inde-

tribution parameterg = (¢;):>,, Which are coin- pendent children model infinite don’t affect its ba-

dexed. It differs from the DP in that it also has lo-sic structure, as can be witnessed by comparing the

cal broken sticksr; for each groupj (in our case graphical depiction of the infinite model in Figure 5

documents). While the global stigk ~ GEM(y) with that of the finite model in Figure 1. The in-

is generated as before, the local stieksare dis- stance variables; andx; are parameterized as be-

tributed according to a DP with base measgre fore. The primary change is that the number of

7 ~ DP(a, B). copies of the state plate is infinite, as are the number
We illustrate this generation process in Figure 4of variablesw;, andgy,.

The upper unit line represent$ where the size of Note also that each distribution over possible

segmentk represents the value of element, and child statesr;, must also be infinite, since the num-

the lower unit line represents; ~ DP(«, 3) for a  ber of possible child states is potentially infinite. We

particular groupj. Each element of the lower stick achieve this by representing each of thevariables

was sampled from a particular element of the uppeas a broken stick, and adopt the same approach of
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@_ Bly ~ GEM(%) Thus, we augment the basic model given in the pre-

’ ... Tklao, B ~ DP(ao, B) vious section with the variables L, and)\:
o Ly|m), ~ Deterministic, as described above

Akl¢, L ~ DP(¢, Ly;)
Ct|>\k: ~ Ak

An important consequence of definidg, locally

(instead of globally, usingg instead of ther,s) is

that the model captures not only what sequences of

children a state prefers, but also the individual chil-

Figure 5: A graphical representation of timdinite ~ dren that state prefers; if a state gives high proba-

independent child model. bility to some particular sequence of children, then
it is likely to also give high probability to other se-

sampling eachr,, from a DP with base measu/e  guénces containing those same states, or a subset

For the dependency tree applicatia, is a vector thereof.
representing the parameters of a multinomial OVef 3 Markov Children

words, andH is a Dirichlet distribution. ] ]
The infinite hidden Markov model (IHMM) or In the Markov children model, more copies of the
HDP-HMM (Beal et al., 2002; Teh et al., 2006) isvariable7r are needed, because each child state must

a model of sequence data with transitions modelel?Je conditioned bOth on th_e parent state and on the
by an HDP® The iHMM can be viewed as aspecialstate of the preceding child. We use a new set of

case of this model, where each state (except the styp/iaPlesmr:, wheren is determined by the par-
state) produces exactly one child. ent statek and the state of the preceding siblifhg

Each of thery,; is distributed asr;, was in the basic
model: 7w; ~ DP(ayg, 3).

4.2 Simultaneous Children

The key problem in the definition of the simulta-5 Inference

neous children model is that of defining a distribury goal in inference is to draw a sample from the
tion over the lists of children produced by each statg,qsterior over assignments of states to observations.
since each child in the list has as its domain the poSjye present an inference procedure for the infinite
tive integers, representing the infinite set of possiblg.a that is based on Gibbs sampling in thesct
states. Our solution is to construct a distributibp assignmentepresentation, so named because we di-
over lists of states from the distribution over i”diVid'rectIy assign global state indices to observatibns.
ual statesr,. The obvious approach is to sample the  gefore we present the procedure, we define a few
states at each position i.i.d.: count variables. Recall from Figure 4 that each state
. . k has a local stickr, each element of which cor-
P()vecwlm) = 1] Plarlm) = ] =, responds to an element Bt In our sampling pro-
cedure, we only keep elements#of and 3 which
However, we want our model to be able to repeorrespond to states observed in the data. We define
resent the fact that some child lists,, are more the variablem ; to be the number of elements of the
or less probable than the product of the individuafinite observed portion af;, which correspond tg;
child probabilities would indicate. To address thisandn ; to be the number of observations with state
we can sample a state-conditional distribution ovet whose parent’s state js
child lists \;, from a DP withL;, as a base measure. We also need a few model-specific counts. For the
simultaneous children model we neggl, which is

t'ec(t) t'ec(t)

®The original iIHMM paper (Beal et al., 2002) predates, an
was the motivation for, the work presented in Teh et al. (3006  "We adapt one of the sampling schemes mentioned by Teh
and is the origin of the ternmierarchical Dirichlet process et al. (2006) for use in the iIHMM. This paper suggests two
However, they used the term to mean something slightly diffe sampling schemes for inference, but does not explicitlggne
ent than the HDP presented in Teh et al. (2006), and presantethem. Upon discussion with one of the authors (Y. W. Teh,
sampling scheme for inference that was a heuristic appr@xim 2006, p.c.), it became clear that inference using the autgden
tion of a Gibbs sampler. representation is much more complicated than initiallytitd.
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the number of times the state sequenceccurred

as the children of statg. For the Markov chil-

dren model we need the count varialilg; which

. . . DT NN IN DT NN VBD PRP$ NN TO VB NN EOS

is the number of observations for a node with staterhe man in the comer taught his dachshund to play golf EOS

k W’hose parent's state jsand whose previous sib- rjgyre 6: An example of a syntactic dependency tree
ling's state isi. In all cases we represent marginalyhere the dependencies are between tags (hidden

counts using dot-notation, e.@.,. is the total nUm-  gtate5). and each tag generates a word (observation).
ber of nodes with statk, regardless of parent.

Our procedure alternates between three distingi,rkov child model:
sampling stages: (1) sampling the state assignments
z, (2) sampling the countsu;i, and (3) sampling P (z,¢) = kl2e, 1) = 4,2t = j) =
the global stick3. The only modification of the pro-
cedure that is required for the different tree mod-P R sl p
els is the method for computing the probability m((2)vec|2t) = Hi:l m(Zei(t) Zeia (1) 21)
of the child state sequence given the parent stateFinally, we give the posterior probability of an ob-
P((21)rec)|2t), defined separately for each modelservation, given thak'(¢y) is Multinomial(¢y,), and

Sampling z. In this stage we sample a state forthatH is Dirichlet(p, ..., p). Let IV be the vocab-

each tree node. The probability of notlbeing as- ul_ary size andhy, Pe the number of observations
. L ) with statek. Then:
signed state is given by:

ik + 0B
ﬁji. + g

ng+ Np
P(z)vecwlze = k) - £ (21) Sampling m. We use the following procedure,
wheres(t) denotes the set of siblings of f; () which slightly modifies one from (Y. W. Teh, 2006,
denotes the posterior probability of observation P-C-). t0 sample eacty.:
given all other observations assigned to statand saMPLEM (5, k)
z~t denotes all state assignments excgptn other 1 if nji =0
words, the probability is proportional to the product2  then m;, =0
of three terms: the probability of the statest@nd 3 else m;, =1

—xt

P(z = k|2~ 8) < P(z = k, (20 )wea(n) |2p(0)) fe ™ () =

its siblings given its parent,,, the probability of 4 for i «— 2tonj
the states of the childres{t) given z;, and the pos- 5 doif rand) < ;-=f9—
terior probability of observation:; given z;. Note 6 then my, - m, + 1

that if we samplez; to be a previously unseen state,7  return m

we will need to exteng as discussed in Section 3.2. _ _ _
Now we give the equations faP((z¢)yce =) Sampling 5. Lastly, we sample3 using the Di-

for each of the models. In the independent childichlet distribution:

model the probability of generating each child is: (B1,..., Bk, Bu) ~ Dirichlet(m.1, ..., m.x, o)

njk + oS

Pina(2¢, (1) = klzt = j) = 6 Experiments

n;. + Qg

Pg((21 )weun |2 = §) = H We demonstrate_ infinite tree modells on two dis-
ind\\ 2" )i/ €e(t) 1%t = J t'ec(t) tinct syntax learning tasks: unsupervised POS learn-

For the simultaneous child model, the probability ofng conditioned on untagged dependency trees and

generating a sequence of children takes into ac- learning a split of an existing tagset, which improves

count how many times that sequence has been gdhe accuracy of an automatic syntactic parser.

erated, along with the likelihood of regenerating it: ~For both tasks, we use a simple modification of
_ . the basic model structure, to allow the trees to gen-
N Nz + (Pina(z]2: = j)

Poim((20 )y ecry = 2l2e =J) >~ erate dependents on the left and the right with dif-
nj.+ ¢ ferent distributions — as is useful in modeling natu-
Recall that{ denotes the concentration parameteral language. The madification of the independent
for the sequence generating DP. Lastly, we have thahild tree is trivial: we have two copies of each of
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the variablesr,, one each for the left and the right. [ Model p__ | #Classes| Acc. | MI | F1

: o indep. | 0.01 943 67.89 | 2.00 | 48.29
Generation of dependents on the right is completely 0001 | 1744 | 7361 | 2.23 | 4080
independent of that for the left. The modifications of 0.0001| 2437 | 74.64| 2.27 | 39.47
the other models are similar, but now there are sepa- Simul. | 0.01 183 21.36| 0.31 | 21.57

0.001 430 15.77 | 0.09 | 13.80

ratesetsof m;, variables for the Markov child model, 0.0001 549 1668 | 012 | 14.29
and separaté; and )\ variables for the simultane- warkov T 0.01 613 | 68531 2.12 | 49.82
ous child model, for each of the left and right. 0.001 894 75.34 | 2.31 | 48.73

For both experiments, we used dependency tredable 1: Results of part unsupervised POS tagging
extracted from the Penn Treebank (Marcus et algn the different models, using a greedy accuracy
1993) using the head rules and dependency extrageasure.
tor from Yamada and Matsumoto (2003). As is stan-
dard, we used WSJ sections 2-21 for training, setrodel are far more spiked, potentially due to double
tion 22 for development, and section 23 for testing.counting of tags, since the sequence probabilities are

_ _ already based on the local probabilities.
6.1 Unsupervised POS Learning For comparison, Haghighi and Klein (2006) re-
In the first experiment, we do unsupervised part-ofport an unsupervised baseline of 41.3%, and a best
speech learning conditioned on dependency treeesult of 80.5% from using hand-labeled prototypes
To be clear, the input to our algorithm is the deand distributional similarity. However, they train on
pendency structure skeleton of the corpus, but nég¢ss data, and learn fewer word classes.
the POS tags, and the output is a labeling of each ) o
of the words in the tree for word class. Since th&-2 Unsupervised POS Splitting
model knows nothing about the POS annotation, thie the second experiment we use the infinite tree
new classes have arbitrary integer names, and aredels to learn a refinement of the PTB tags. We
not guaranteed to correlate with the POS tag defnitialize the set of hidden states to the set of PTB
initions. We found that the choice af, and 5 tags, and then, during inference, constrain the sam-
(the concentration parameters) did not affect the oupling distribution over hidden state at each node
put much, while the value ob (the parameter for to include only states that are a refinement of the an-
the base Dirichlet distribution) made a much largenotated PTB tag at that position. The output of this
difference. For all reported experiments, we sdraining procedure is a new annotation of the words
ap = = 10 and variedp. in the PTB with the learned tags. We then compare

We use several metrics to evaluate the worthe performance of a generative dependency parser
classes. First, we use the standard approach toéined on the new refined tags with one trained on
greedily assigning each of the learned classes to thiee base PTB tag set. We use the generative de-
POS tag with which it has the greatest overlap, angendency parser distributed with the Stanford fac-
then computing tagging accuracy (Smith and Eisnetored parser (Klein and Manning, 2003b) for the
2005; Haghighi and Klein, 2006) Additionally, we comparison, since it performs simultaneous tagging
compute the mutual information of the learned clusand parsing during testing. In this experiment, un-
ters with the gold tags, and we compute the clustdabeled, directed, dependency parsing accuracy for
F-score (Ghosh, 2003). See Table 1 for results dfie best model increased from 85.11% to 87.35%, a
the different models, parameter settings, and met5% error reduction. See Table 2 for the full results
rics. Given the variance in the number of classesver all models and parameter settings.
learned it is a little difficult to interpret these results,
but it is clear that the Markov child model is the? Related Work

best; it achieves superior performance to the inderhe HDP-PCFG (Liang et al., 2007), developed at
pendent child model on all metrics, while learninghe same time as this work, aims to learn state splits
fewer word classes. The poor performance of thy a binary-branching PCFG. It is similar to our
simultaneous model warrants further investigationsimyltaneous child model, but with several impor-
but we observed that the distributions learned by th@fnt distinctions. As discussed in Section 4.2, in our
5The advantage of this metric is that it's comprehensibleM0del €ach state has a DP over sequences, with a
The disadvantage is that it's easy to inflate by adding ctasse base distribution that is defined over the local child
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