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Abstract supervised case. The fully supervised case mod-

els the following scenario. We have access to a

We describe an approach to domain adapta- large, annotated corpus of data from a source do-
tion that is appropriate exactly in the case  main. In addition, we spend a little money to anno-
when one has enough “target” data to do tate a small corpus in the target domain. We want to

slightly better than just using only “source”  |everage both annotated datasets to obtain a model
data. Our approach is incredibly simple,  that performs well on the target domain. The semi-
easy to implement as a preprocessing step supervised case is similar, but instead of having a

(10 lines of Perl!) and outperforms state-  small annotated target corpus, we have a large but
of-the-art approaches on a range of datasets. unannotatedarget corpus. In this paper, we focus

Moreover, it is trivially extended to a multi- exclusively on the fully supervised case.
domain adaptation problem, where one has  One particularly nice property of our approach
data from a variety of different domains. is that it is incredibly easy to implement: the Ap-
_ pendix provides a0 line, 194 character Perl script
1 Introduction for performing the complete transformation (avail-

The task of domain adaptation is to develop learrPI€ atht tp: //hal 3. nane/ easyadapt . pl . gz). In

ing algorithms that can be easily ported from On@ddition to this simplicity, our algorithm performs as
domain to another—say, from newswire to biomedWell as (or, in some cases, better than) current state

ical documents. This problem is particularly inter—Of the art techniques.

esting in NLP because we are often in the sitL_JatiOQ Problem Formalization and Prior Work

that we have a large collection of labeled data in one

“source” domain (say, newswire) but truly desire ao facilitate discussion, we first introduce some no-

model that performs well in a second “target” do-tation. Denote by’ the input space (typically either

main. The approach we present in this paper is basedeal vector or a binary vector), and bythe output

on the idea of transforming the domain adaptatiospace. We will writeD® to denote the distribution

learning problem into a standard supervised learmver source examples arf¥ to denote the distri-

ing problem to which any standard algorithm majybution over target examples. We assume access to

be applied (eg., maxent, SVMs, etc.). Our transfora samplesD® ~ D* of source examples from the

mation is incredibly simple: we augment the featurgource domain, and samplé¥ ~ D! of target ex-

space of both the source and target data and use #aples from the target domain. We will assume that

result as input to a standard learning algorithm.  D# is a collection of N examples and)? is a col-
There are roughly two varieties of the domairlection of M examples (where, typicallyy > M).

adaptation problem that have been addressed in tBair goal is to learn a functioh : X — Y with

literature: the fully supervised case and the semlew expected loss with respect to the target domain.
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For the purposes of discussion, we will suppose thé more general. In particular, for many learning
X = R¥ and thaty = {-1,+1}. However, most algorithms (maxent, SVMs, averaged perceptron,
of the techniques described in this section (as weflaive Bayes, etc.), onegularizesthe weight vec-
as our own technique) are more general. tor toward zero. In other words, all of these algo-
There are several “obvious” ways to attack th&ithms contain a regularization term on the weights
domain adaptation problem without developing newv of the form A \|w|\§. In the generalized ROR
algorithms. Many of these are presented and evalmodel, we simply replace this regularization term
ated by Daura Il and Marcu (2006). with \ [|w — w?||3, wherew?® is the weight vector
The SRCONLY baseline ignores the target data andfamed in the 8CONLY model* In this way, the
trains a single model, only on the source data.model trained on the target data “prefers” to have
, . : weights that are similar to the weights from the-S
The TGTONLY baseline trains a single model only .
cONLY model, unless the data demands otherwise.
on the target data.

Daurrg 11l and Marcu (2006) provide empirical evi-

The ALL baseline simply trains a standard learningjence on four datasets that theiBr model outper-
algorithm on the union of the two datasets.  5rms the baseline approaches.

A potential problem with the AL baseline is that  More recently, Daura Il and Marcu (20086) pre-
if N> M, thenD*® may “wash out” any affect sented an algorithm for domain adaptation for max-
D" might have. We will discuss this problem inimum entropy classifiers. The key idea of their ap-
more detail later, but one potential solution isproach is to learthreeseparate models. One model
to re-weight examples fronb*. For instance, captures “source specific” information, one captures
if N =10 x M, we may weight each example “target specific” information and one captures “gen-
from the source domain by.1. The next base- eral” information. The distinction between these
line, WEIGHTED, is exactly this approach, with three sorts of information is made orpar-example
the weight chosen by cross-validation. basis. In this way, each source example is consid-

The PRED baseline is based on the idea of usingred either source specific or general, while each
the output of the source classifier as a feature i{arget example is considered either target specific or
the target classifier. Specifically, we first train general. Daur@lll and Marcu (2006) present an EM
SRCONLY model. Then we run ther&ONLY  algorithm for training their model. This model con-
model on the target data (training, developmersistently outperformed all the baseline approaches
and test). We use the predictions made bgs well as the RIOR model. Unfortunately, despite
the RCONLY model as additional features andthe empirical success of this algorithm, it is quite
train a second model on the target data, augomplex to implement and is roughly to 15 times
mented with this new feature. slower than training the ®or model.

In the LININT baseline, we linearly interpolate . .
the predictions of the CONLY a)r/1d thep'b- 3 Adaptation by Feature Augmentation

TONLY models. The interpolation parameter i, thjs section, we describe our approach to the do-
adjusted based on target development data. main adaptation problem. Essentially, all we are go-

These baselines are actually surprisingly difficult"d t© dois take each_feature_ln the original pro_blem
to beat. To date, there are two models that ha\)%nd make three versions of it: a general version, a
successfully defeated them on a handful of datase&?urce’SpeCiﬁC versionand a t'arget-specific version.
The first model, which we shall refer to as theiBR The augmented source data will contain only general
model, was first introduced by Chelba and Acergnd source-specific versions. The augmented target

(2004). The idea of this model is to use th&-S = 15 the maximum entropy, SVM and naive Bayes learn-

cONLY model as grior on the weights for a sec- ing algorithms, modifying the regularization term is simple be-

ond model, trained on the target data. Chelba arf@use it appears explicitly. For the perceptron algorithm, one

. . s can obtain an equivalent regularization by performing standard
Acero (2004) describe this approach within the conserceptron updates, but usitg + w*) ' 2 for making predic-

text of a maximum entropy classifier, but the ideaions rather than simplw " x.
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data contains general and target-specific versions.that. Moreover, the first case has the nice property
To state this more formally, first recall the notathat it is straightforward to generalize it to the multi-
tion from Section 2: X and ) are the input and domain adaptation problem: when there are more
output spaces, respectivelyp® is the source do- than two domains. In general, fdf domains, the
main data set and! is the target domain data set.augmented feature space will consisfo#-1 copies
Suppose for simplicity thatt = R for some of the original feature space.
F > 0. We will define our augmented input space
by X = R3F. Then, define mapping®®, ®' : 3.1 AKernelized Version
X — 2? for mapping the source and target datat is straightforward to derive a kernelized version of
respectively. These are defined by Eq (1), wheréde above approach. We do not exploit this property
0= (0,0,...,0) € RF is the zero vector. in our experiments—all are conducted with a simple
linear kernel. However, by deriving the kernelized
version, we gain some insight into the method. For
®%(x) = (z,xz,0), ®'(x)=(x,0,z) (1) thisreason, we sketch the derivation here.
Suppose that the data pointsare drawn from a
Before we proceed with a formal analysis of thigeproducing kernel Hilbert space with kernel K :
transformation, let us consider why it might be ex-¥ x X — R, with K positive semi-definite. Then,
pected to work. Suppose our task is part of speedd can be written as the dot product () of two
tagging, our source domain is the Wall Street Journgperhaps infinite-dimensional) vector& (z, z') =
and our target domain is a collection of reviews of ®(z), ®(z')) v. Define®® and®’ in terms of®, as:
computer hardware. Here, a word like “the” should
be tagged as a determiner in both cases. However,

a word like “monitor” is more likely to be a verb P*(z) = (2(2), 2(2),0) 2)

in the WSJ and more likely to be a noun in the hard- ' (z) = (®(x),0,d(z))

ware corpus. Consider a simple case whgre R?,

wherez; indicates if the word is “the” and indi- Now, we can compute the kernel product be-

cates if the word is “monitor.” Then, ift, i, andz, tween®® and @' in the expanded RKHS by mak-

will be “general” versions of the two indicator func- ing use of the original kernek’. We denote the ex-
tions, #3 and:z4 will be source-specific versions, andPanded kernel by (z, z'). It is simplest to first de-
#5 andi will be target-specific versions. scribe K (z,2') whenz and s’ are from the same
Now, consider what a learning algorithm could d#iomain, then analyze the case when the domain
to capture the fact that the appropriate tag for “thediffers. When the domain is the same, we get:
remains constant across the domains, and the thg@: @) = (®(z), ®(2)))x + (®(z), ®(2))x =
for “monitor” changes. In this case, the model ca (z,2"). When they are from different domains,
set the “determiner” weight vector to something likeVe 9et: K(z,2') = (d(x),®(z))x = K(z,a').
(1,0,0,0,0,0). This places high weight on the com-Putting this together, we have:
mon version of “the” and indicates that “the” is most
likely a determiner, regardless of the domain._ Oon , 2K (z,2’) same domain
the other hand, the weight vector for “noun” might K(z,z') = { K(z,2)  diff. domain
look something like(0, 0, 0,0, 0, 1), indicating that
the word “monitor” is a nouronly in the target do-  This is an intuitively pleasing result. What it
main. Similar, the weight vector for “verb” might says is that—considering the kernel as a measure
look like (0,0, 0,1, 0,0), indicating the “monitor”is  of similarity—data points from the same domain are
a verbonlyin the source domain. “by default” twice as similar as those from differ-
Note that this expansion is actually redundanent domains. Loosely speaking, this means that data
We could equally well useb®(x) = (x,x) and points from the target domain have twice as much
P!(x) = (x,0). However, it turns out that it is eas- influence as source points when making predictions
ier to analyze the first case, so we will stick withabout test target data.
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3.2 Analysis panded the feature space frd®i” to R3". For a

We first note an obvious property of the feature?* -domainKpr?k}Igm, we simply expand the feature
(K+DF in the obvious way (the4-1” cor-

augmentation approach. Namely, it does not makdPace &k : _
learning harder, in a minimum Bayes error sense. FESPONds to the “general domain” while each of the
more interesting statement would be that it maketherl ... & correspond to a single task).
Iearningeasier along the lines of the result of (Ben-4 Results

David et al., 2006) — note, however, that their re-

sults are for the “semi-supervised” domain adaptdn this section we describe experimental results on a
tion problem and so do not apply directly. As yetwide variety of domains. First we describe the tasks,

we do not know a proper formalism in which to an-then we present experimental results, and finally we
alyze the fully supervised case. look more closely at a few of the experiments.
It turns out that the feature-augmentation methog_1 Tasks

is remarkably similar to the ®oRr modef. Sup- . .
pose we learn feature-augmented weights in a clzAll tasks we consider are sequence labeling tasks

sifier regularized by a#, norm (eg., SVMs, maxi- (€ither named-entity recognition, shallow parsing or
mum entropy). We can denote by, the sum of the Part-of-speech tagging) on the following datasets:
“source” and “general” components of the learnedACE-NER. We use data from the 2005 Automatic
weight vector, and by, the sum of the “target” and Content Extraction task, restricting ourselves to
“general” components, so that andw; are the pre- the named-entity recognition task. The 2005
dictive weights for each task. Then, the regulariza- ACE data comes fronb domains: Broad-
tion condition on the entire weight vector is approx-  ¢ast News (bn), Broadcast Conversations (bc),
imaterngHQ + [Jws — wg||2 + [Jwg — wg||2, with Newswire (nw), Weblog (wl), Usenet (un) and
free parametew, which can be chosen to minimize ~ Converstaional Telephone Speech (cts).

this sum. This leads to a regularizer proportional toCoNLL-NE. Similar to ACE-NER, a hamed-entity

[|ws — thQ, akin to the RIOR model. recognition task. The difference is: we use the
Given this similarity between the feature- 2006 ACE data as the source domain and the
augmentation method and the&ki®rR model, one CoNLL 2003 NER data as the target domain.

might wonder why we expect our approach to dopubMed-POS. A part-of-speech tagging problem
better. Our belief is that this occurs because we op-  on PubMed abstracts introduced by Blitzer et
timize w, andwy jointly, not sequentially. First, this al. (2006). There are two domains: the source
means that we do not need to cross-validate to es- domain is the WSJ portion of the Penn Tree-
timate good hyperparameters for each task (though pank and the target domain is PubMed.

in our experiments, we do not use any hyperparamgN-Recap. This is a recapitalization task intro-
eters). Second, and more importantly, this means  y,ced by Chelba and Acero (2004) and also

that the single supervised learning algorithm that | ,saq by Daur@ Il and Marcu (2006). The
is run is allowed to regulate the trade-off between ¢4 rce domain is newswire and the target do-

source/target and general weights. In theidR main is the output of an ASR system.
model, we are forced to use the prior variance o

. . . . Mreebank-Chunk. This is a shallow parsing task
in the target learning scenario to do this ourselves.

based on the data from the Penn Treebank. This
data comes from a variety of domains: the stan-
dard WSJ domain (we use the same data as for

Our formulation is agnostic to the number of CONLL 2000), the ATIS switchboard domain
“source” domains. In particular, it may be the case ;.4 the Brown corpus (which is, itself, assem-
that the source data actually falls into a variety of ;|04 from six subdomains).

more specific domains. - This is S|mple 0 aLCCOUntTreebank-Brown. This is identical to the Treebank-
for in our model. In the two-domain case, we ex- .
Chunk task, except that we consider all of the
2Thanks an anonymous reviewer for pointing this out! Brown corpus to be a single domain.
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Task  Dom #1r  #De  #Te| #Ft Third, we can easily compute statistical significance
bn 52,008 6,625 6,626 80K

be 38073 4759 4761 109k over accuracies using McNemar's test.

ACE-  nw 44,364 5546 5547 113k

NER wl 35,883 4,485 4,487 109k 4.2 Experimental Results
un 35,083 4,385 4,387 96k _ _
cts 39,677 4,960 4,961 54k The full—somewhat daunting—table of results is

CONLL-  src 256,145 - -| 368k | presented in Table 2. The first two columns spec-
NER  tgt 29,791 5258 8,806 88k| : :
PubMed- src | 950.028 5711 Ify the task and domain. For the tasks with only a

POS tot 11,264 1,987 14,554 39k single source and target, we simply report results on

CNN-—src | 2,000,000 - -| 368k | the target. For the multi-domain adaptation tasks,

Recap tgt 39,684 7,003 8,073 88k t Its f h setti fthe t t (wh
ws] 101200 29455 38,440 94K we report results for each setting of the targe (where
swhd3 45,282 5596 41,840 55k all other data-sets are used as different “source” do-
br-cf 58,201 8,307 7,607 144k | mains). The next set of eight columns are éneor

Tree  brc 67,429 9,444 6,897 149k . .
bank- br_CE 51379 6061 9451 121k rates for the task, using one of the different tech-

Chunk  br-cl 47,382 5101 5,880 95k nigues (“AUGMENT” is our proposed technique).
br-cm | 11,696 1324 1,594 51k | p£or each row, the error rate of the best performing
br-cn 56,057 6,751 7,847 115k . . :
br-cp 55318 7.477 5977 112k technique is bolded (as are all techniques whose per-
br-cr 16,742 2,522 2,713 65K formance is not statistically significantly different at

- .the 95% level). The “kS” column is contains a “+”

Table 1: Task statistics; columns are task, domain, ° ) .

. . vgwenever TTONLY outperforms &CONLY (this
size of the training, development and test sets, an

. . . will become important shortly). The final column
the number of unique features in the training set. . . -
indicates when AGMENT comes in firs€

There are several trends to note in the results. Ex-

In all cases (except for CNN-Recap), we us&luding for a moment the “br-*” domains on the

roughly the same feature set, which has becomTe(eebank-Chunk task, our technique always per-

somewhat standardized: lexical information (wordd°'™Ms Pest. Still excluding “br-*", the clear second-
stems, capitalization, prefixes and suffixes), menflace contestant is the”FoR model, a finding con-
bership on gazetteers, etc. For the CNN-Recap tas%l,Stent with prior research. When we rept:::at t1r,1e
we use identical feature to those used by both Chelgiéebank-Chunk task, butulumplr]g all of the “br-*
and Acero (2004) and Daunill and Marcu (2006): data together into a single “brown” domain, the story

the current, previous and next word, and 1-3 lettd€VEIts 10 what we expected before: our algorithm
prefixes and suffixes. performs best, followed by the”RPOR method.

Importantly, this simple story breaks down on the
eebank-Chunk task for the eight sections of the
In all cases, we use thee&RN algorithm for solv-  grown corpus. For these, ourlsMENT technique
ing the sequence labeling problem (Daifi etal., performs rather poorly. Moreover, there is no clear
2007) with an underlying averaged perceptron clagginning approach on this task. Our hypothesis is
sifier; implementation due to (Dawnll, 2004). For  that the common feature of these examples is that
structural features, we make a second-order MarkgMese are exactly the tasks for whicR@NLY out-
assumption and only place a bias feature on the traferforms ToTONLY (with one exception: CONLL).
sitions. For simplicity, we optimize and report onlyThis seems like a plausible explanation, since it im-
on label accuracy (but require that our outputs bgjies that the source and target domains may not be
parsimonious: we do not allow “I-NP” to follow that different. If the domains are so similar that
“B-PP,” for instance). We do this for three rea- |arge amount of source data outperforms a small

sons. First, our focus in this work is on buildingamount of target data, then it is unlikely that blow-
better learning algorithms and introducing a more_____

complicated measure only serves to mask these ef- _30ne advantage of using the averaged perceptron for all ex-
fects. Second, itis arguable that a measurefikes periments is that the only tunable hyperparameter is the number
ects. J 9 of iterations. In all cases, we ri2d iterations and choose the

inappropriate for chunking tasks (Manning, 2006)one with the lowest error on development data.
260
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Task Dom SRCONLY TGTONLY ALL WEIGHT PRED LININT PRIOR AUGMENT [T<SWin
bn 4.98 2.37 2.29 2.23 2.11 2.21 2.06 198 ¥+
bc 4.54 4.07 3.55 3.53 3.89 401 3.47 3.47 + o+

ACE- nw 4.78 3.71 3.86 3.65 3.56 3.79 3.68 3.39 + o+

NER wil 2.45 2.45 2.12 2.12 2.45 2.33 2.41 2.12 = o+
un 3.67 2.46 2.48 2.40 2.18 2.10 203 191 + o+
cts 2.08 0.46 0.40 0.40 0.46 0.44 0.34 0.32 + o+

CoNLL  tgt 2.49 2.95 180 1.75 2.13 1.77 1.89 1.76 +

PubMed tgt 12.02 415 5.43 415 414 3.95 399 361 ¥ ¥

CNN tot 10.29 3.82 3.67 3.45 3.46 344 335 3.37 FE
WSj 6.63 435 433 430 432 432 427 411 ¥ ¥

swhd3 15.90 4.15 4.50 4.10 4.13 4.09 360 351 + o+
br-cf 5.16 6.27 4.85 4.80 478 4.72 5.22 5.15

Tree br-cg 4.32 5.36 4.16 4.15 4.27 4.30 4.25 4.90

bank- br-ck 5.05 6.32 5.05 498 501 5.05 5.27 5.41

Chunk  brcl 5.66 6.60 542 5.39 539 553 5.99 5.73

br-cm 3.57 6.59 3.14 3.11 3.15 3.31 4.08 4.89
br-cn 4.60 5.56 4.27 422 420 4.19 4.48 4.42
br-cp 4.82 5.62 463 457 4.55 455 487 4.78
br-cr 5.78 9.13 571 5.19 520 5.15 6.71 6.30
Treebank-brown 6.35 5.75 4.80 4.75 4.81 4.72 4.72 4.65 + o+
Table 2: Task results.
ing up the feature space will help. * bn bc nw w un cts

We additionally ran the MGAM model (Daung
Il and Marcu, 2006) on these data (though not
in the multi-conditional case; for this, we consid- 5pg
ered the single source as the union of all sources).
The results are not displayed in Table 2 to savepgrg
space. For the majority of results, MAM per-
formed roughly comparably to the best of the sys-| oc
tems in the table. In particular, it was not sta-
tistically significantly different that AGMENT on: Figure 1: Hinton diagram for feature /Aa+/ at cur-
ACE-NER, CoNLL, PubMed, Treebank-chunk-wsj,cant position.
Treebank-chunk-swbd3, CNN and Treebank-brown.
It did outperform AJGMENT on the Treebank-chunk
on the Treebank-chunk-br-* data sets, but only oudomains actually makes some plausible sense.

performed the best other model on these data setsye perform this analysis only on the ACE-NER
for br-cg, br-cm and br-cp. However, despite itjata by looking specifically at the learned weights.
advantages on these data sets, it was quite signifinat s, for any given featurg, there will be seven
cantly slower to train: a single run required about tegersions of f: one corresponding to the “cross-
times longer than any of the other models (includingjomainnf and seven corresponding to each domain.
AUGMENT), and also required five-to-ten iterationsyye visualize these weights, using Hinton diagrams,

of cross-validation to tune its hyperparameters so 3§ see how the weights vary across domains.
to achieve these results.

For example, consider the feature “current word
has an initial capital letter and is then followed by
one or more lower-case letters.” This feature is pre-
One explanation of our model's improved perforsumably useless for data that lacks capitalization in-
mance is simply that by augmenting the featuréormation, but potentially quite useful for other do-
space, we are creating a more powerful modemains. In Figure 1 we shown a Hinton diagram for
While this may be a partial explanation, here wehis figure. Each column in this figure correspond
show that what the model learns about the various a domain (the top row is the “general domain”).
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* bn bc nw wl un cts * bn bc nw wl un cts
PER

PER
GPE GPE
ORG ORG
LOC

LOC

Figure 2: Hinton diagram for feature /bush/ at curgigyre 3: Hinton diagram for feature /the/ at current
rent position. position.

*
Each row corresponds to a clds®lack boxes cor- bn_ bc nw_w _un_cis

respond to negative weights and white boxes correpgr

spond to positive weights. The size of the box de-

picts the absolute value of the weight. GPE
As we can see from Figure 1, the /Aa+/ feature

is a very good indicator of entity-hood (it's value is ORG

strongly positive for all four entity classes), regard-

less of domain (i.e., for the “*" domain). The lack LOC

of boxes in the “bn” column means that, beyond the

settings in “*”, the broadcast news is agnostic withFigure 4: Hinton diagram for feature /the/ at previ-

respect to this feature. This makes sense: theredsis position.

no capitalization in broadcast news domain, so there

would be no sense is setting these weights to any- ) _

thing by zero. The usenet column is filled with neg- Figure 3 presents the Hinton diagram for the fea-

ative weights. While this may seem strange, it i$uré “word at the current position is ‘the™ (again,

due to the fact that many email addresses and URC&Se-sensitive). In general, it appears, “the” is a

match this pattern, but are not entities. common word in entities in all domain except for

Figure 2 depicts a similar figure for the fea,[urebroadcast news and conversation; The exceptions
“word is *bush’ at the current position” (this figure is are broadcast news and conversations. These excep-

case sensitive). These weights are somewhat hardef©"S ¢rop up because of the capitalization issue.
to interpret. What is happening is that “by default” N Figure 4, we show the diagram for the feature
the word “bush” is going to be a person—this is be-Previous word is ‘the.” The only domain for which
cause it rarely appears referring to a plant and biS is @ good feature of entity-hood is broadcast
even in the capitalized domains like broadcast corfonversations (to a much lesser extent, newswire).
versations, if it appears at all, it is a person. Thd his occurs because of four phrases very common in
exception is that in the conversations data, peopFQe broadcast conversations and rare elsewhere: “the
do actually talk about bushes as plants, and so tHE2di people” (“Iraqi” is a GPE), “the Pentagon” (an
weights are set accordingly. The weights are high iPRG). “the Bush (cabin@dvisors. . .)” (PER), and
the usenet domain because people tend to talk abotfte South” (LOC).
the president without capitalizing his name. Finally, Figure 5 shows the Hinton diagram for
the feature “the current word is on a list of com-
“Technically there are many more classes than are shownon names” (this feature is casesensitive). All
here. We do not depict the smallest classes, and have merggehund, this is a good feature for picking out people
the “Begin-*" and “In-*" weights for each entity type. . . L
®The scale of weights across featuresds comparable, so and nothing else. The two exceptions are: it is also
do not try to compare Figure 1 with Figure 2. a good feature for other entity types for broadcast
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* bn bc nw wl un cts CoNLL section of the treebank improves frangs

PER to 5.11. While this improvement is small, it is real,
and may carry over to full parsing. The most impor-
GPE tant avenue of future work is to develop a formal
framework under which we can analyze this (and
ORG other supervised domain adaptation models) theo-
retically. Currently our results only state that this
LOC augmentation procedure doesn’t make the learning

harder — we would like to know that it actually
Figure 5: Hinton diagram for membership on a listnakes it easier. An additional future direction is
of names at current position. to explore the kernelization interpretation further:
why should we use as the “similarity” between

domains—we could introduce a hyperparamter

news_and_ Itis ngtqwte S0 900‘?' for people in usene_lthat indicates the similarity between domains and
The first is easily explained: in broadcast news, L ould be tuned via cross-validation

is very common to refer to countries and organiza-
tions by the name of their respective leaders. This iBcknowledgments. We thank the three anony-
essentially a metonymy issue, but as the data is amous reviewers, as well as Ryan McDonald and
notated, these are marked by their true referent. Fdohn Blitzer for very helpful comments and insights.
usenet, it is because the list of names comes from
nelws data, l:l)uthusengt rr:arr:jes _are :cnon?1 dlve][se. References
n gener wei i r r

genera ’.t e . eights ep cte for these eat.u & ai Ben-David, John Blitzer, Koby Crammer, and Fernando
make some intuitive sense (in as much as weights pgreira. 20086. Analysis of representations for domain adap-
for any learned algorithm make intuitive sense). It tation. InAdvances in Neural Information Processing Sys-
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