
Proceedings of the 45th Annual Meeting of the Association of Computational Linguistics, pages 248–255,
Prague, Czech Republic, June 2007. c©2007 Association for Computational Linguistics

Formalism-Independent Parser Evaluation with CCG and DepBank

Stephen Clark
Oxford University Computing Laboratory

Wolfson Building, Parks Road
Oxford, OX1 3QD, UK

stephen.clark@comlab.ox.ac.uk

James R. Curran
School of Information Technologies

University of Sydney
NSW 2006, Australia

james@it.usyd.edu.au

Abstract

A key question facing the parsing commu-
nity is how to compare parsers which use
different grammar formalisms and produce
different output. Evaluating a parser on the
same resource used to create it can lead
to non-comparable accuracy scores and an
over-optimistic view of parser performance.
In this paper we evaluate aCCG parser on
DepBank, and demonstrate the difficulties
in converting the parser output into Dep-
Bank grammatical relations. In addition we
present a method for measuring the effec-
tiveness of the conversion, which provides
an upper bound on parsing accuracy. The
CCG parser obtains an F-score of 81.9%
on labelled dependencies, against an upper
bound of 84.8%. We compare theCCG

parser against theRASP parser, outperform-
ing RASPby over 5% overall and on the ma-
jority of dependency types.

1 Introduction

Parsers have been developed for a variety of gram-
mar formalisms, for exampleHPSG (Toutanova et
al., 2002; Malouf and van Noord, 2004),LFG (Ka-
plan et al., 2004; Cahill et al., 2004),TAG (Sarkar
and Joshi, 2003),CCG (Hockenmaier and Steed-
man, 2002; Clark and Curran, 2004b), and variants
of phrase-structure grammar (Briscoe et al., 2006),
including the phrase-structure grammar implicit in
the Penn Treebank (Collins, 2003; Charniak, 2000).
Different parsers produce different output, for ex-

ample phrase structure trees (Collins, 2003), depen-
dency trees (Nivre and Scholz, 2004), grammati-
cal relations (Briscoe et al., 2006), and formalism-
specific dependencies (Clark and Curran, 2004b).
This variety of formalisms and output creates a chal-
lenge for parser evaluation.

The majority of parser evaluations have used test
sets drawn from the same resource used to develop
the parser. This allows the many parsers based on
the Penn Treebank, for example, to be meaningfully
compared. However, there are two drawbacks to this
approach. First, parser evaluations using different
resources cannot be compared; for example, the Par-
seval scores obtained by Penn Treebank parsers can-
not be compared with the dependency F-scores ob-
tained by evaluating on the Parc Dependency Bank.
Second, using the same resource for development
and testing can lead to an over-optimistic view of
parser performance.

In this paper we evaluate aCCG parser (Clark
and Curran, 2004b) on the Briscoe and Carroll ver-
sion of DepBank (Briscoe and Carroll, 2006). The
CCG parser produces head-dependency relations, so
evaluating the parser should simply be a matter of
converting theCCG dependencies into those in Dep-
Bank. Such conversions have been performed for
other parsers, including parsers producing phrase
structure output (Kaplan et al., 2004; Preiss, 2003).
However, we found that performing such a conver-
sion is a time-consuming and non-trivial task.

The contributions of this paper are as follows.
First, we demonstrate the considerable difficulties
associated with formalism-independent parser eval-
uation, highlighting the problems in converting the

248



output of a parser from one representation to an-
other. Second, we develop a method for measur-
ing how effective the conversion process is, which
also provides an upper bound for the performance of
the parser, given the conversion process being used;
this method can be adapted by other researchers
to strengthen their own parser comparisons. And
third, we provide the first evaluation of a wide-
coverageCCGparser outside of CCGbank, obtaining
impressive results on DepBank and outperforming
the RASP parser (Briscoe et al., 2006) by over 5%
overall and on the majority of dependency types.

2 Previous Work

The most common form of parser evaluation is to ap-
ply the Parseval metrics to phrase-structure parsers
based on the Penn Treebank, and the highest re-
ported scores are now over 90% (Bod, 2003; Char-
niak and Johnson, 2005). However, it is unclear
whether these high scores accurately reflect the per-
formance of parsers in applications. It has been ar-
gued that the Parseval metrics are too forgiving and
that phrase structure is not the ideal representation
for a gold standard (Carroll et al., 1998). Also, us-
ing the same resource for training and testing may
result in the parser learning systematic errors which
are present in both the training and testing mate-
rial. An example of this is from CCGbank (Hock-
enmaier, 2003), where all modifiers in noun-noun
compound constructions modify the final noun (be-
cause the Penn Treebank, from which CCGbank is
derived, does not contain the necessary information
to obtain the correct bracketing). Thus there are non-
negligible, systematic errors in both the training and
testing material, and theCCG parsers are being re-
warded for following particular mistakes.

There are parser evaluation suites which have
been designed to be formalism-independent and
which have been carefully and manually corrected.
Carroll et al. (1998) describe such a suite, consisting
of sentences taken from the Susanne corpus, anno-
tated with Grammatical Relations (GRs) which spec-
ify the syntactic relation between a head and depen-
dent. Thus all that is required to use such a scheme,
in theory, is that the parser being evaluated is able
to identify heads. A similar resource — the Parc
Dependency Bank (DepBank) (King et al., 2003)

— has been created using sentences from the Penn
Treebank. Briscoe and Carroll (2006) reannotated
this resource using theirGRs scheme, and used it to
evaluate theRASPparser.

Kaplan et al. (2004) compare the Collins (2003)
parser with the ParcLFG parser by mappingLFG F-
structures and Penn Treebank parses into DepBank
dependencies, claiming that theLFG parser is con-
siderably more accurate with only a slight reduc-
tion in speed. Preiss (2003) compares the parsers of
Collins (2003) and Charniak (2000), theGR finder
of Buchholz et al. (1999), and theRASP parser, us-
ing the Carroll et al. (1998) gold-standard. The Penn
Treebank trees of the Collins and Charniak parsers,
and theGRs of the Buchholz parser, are mapped into
the requiredGRs, with the result that theGR finder
of Buchholz is the most accurate.

The major weakness of these evaluations is that
there is no measure of the difficultly of the conver-
sion process for each of the parsers. Kaplan et al.
(2004) clearly invested considerable time and ex-
pertise in mapping the output of the Collins parser
into the DepBank dependencies, but they also note
that “This conversion was relatively straightforward
for LFG structures. . . However, a certain amount of
skill and intuition was required to provide a fair con-
version of the Collins trees”. Without some measure
of the difficulty — and effectiveness — of the con-
version, there remains a suspicion that the Collins
parser is being unfairly penalised.

One way of providing such a measure is to con-
vert the original gold standard on which the parser
is based and evaluate that against the new gold stan-
dard (assuming the two resources are based on the
same corpus). In the case of Kaplan et al. (2004), the
testing procedure would include running their con-
version process on Section 23 of the Penn Treebank
and evaluating the output against DepBank. As well
as providing some measure of the effectiveness of
the conversion, this method would also provide an
upper bound for the Collins parser, giving the score
that a perfect Penn Treebank parser would obtain on
DepBank (given the conversion process).

We perform such an evaluation for theCCGparser,
with the surprising result that the upper bound on
DepBank is only 84.8%, despite the considerable ef-
fort invested in developing the conversion process.

249



3 The CCG Parser

Clark and Curran (2004b) describes theCCG parser
used for the evaluation. The grammar used by the
parser is extracted from CCGbank, aCCGversion of
the Penn Treebank (Hockenmaier, 2003). The gram-
mar consists of 425 lexical categories — expressing
subcategorisation information — plus a small num-
ber of combinatory rules which combine the cate-
gories (Steedman, 2000). A supertagger first assigns
lexical categories to the words in a sentence, which
are then combined by the parser using the combi-
natory rules and theCKY algorithm. A log-linear
model scores the alternative parses. We use the
normal-form model, which assigns probabilities to
single derivations based on the normal-form deriva-
tions in CCGbank. The features in the model are
defined over local parts of the derivation and include
word-word dependencies. A packed chart represen-
tation allows efficient decoding, with the Viterbi al-
gorithm finding the most probable derivation.

The parser outputs predicate-argument dependen-
cies defined in terms ofCCG lexical categories.
More formally, a CCG predicate-argument depen-
dency is a 5-tuple:〈hf , f, s, ha, l〉, wherehf is the
lexical item of the lexical category expressing the
dependency relation;f is the lexical category;s is
the argument slot;ha is the head word of the ar-
gument; andl encodes whether the dependency is
long-range. For example, the dependency encoding
companyas the object ofbought(as inIBM bought
the company) is represented as follows:

〈bought, (S\NP1 )/NP2 , 2, company, −〉 (1)

The lexical category(S\NP1 )/NP2 is the cate-
gory of a transitive verb, with the first argument slot
corresponding to the subject, and the second argu-
ment slot corresponding to the direct object. The
final field indicates the nature of any long-range de-
pendency; in (1) the dependency is local.

The predicate-argument dependencies — includ-
ing long-range dependencies — are encoded in the
lexicon by adding head and dependency annota-
tion to the lexical categories. For example, the
expanded category for the control verbpersuade
is (((S [dcl]persuade\NP 1)/(S [to]2\NPX))/NPX,3). Nu-
merical subscripts on the argument categories rep-
resent dependency relations; the head of the final

declarative sentence ispersuade; and the head of the
infinitival complement’s subject is identified with
the head of the object, using the variableX, as in
standard unification-based accounts of control.

Previous evaluations ofCCGparsers have used the
predicate-argument dependencies from CCGbank as
a test set (Hockenmaier and Steedman, 2002; Clark
and Curran, 2004b), with impressive results of over
84% F-score on labelled dependencies. In this paper
we reinforce the earlier results with the first evalua-
tion of aCCG parser outside of CCGbank.

4 Dependency Conversion to DepBank

For the gold standard we chose the version of Dep-
Bank reannotated by Briscoe and Carroll (2006),
consisting of 700 sentences from Section 23 of the
Penn Treebank. TheB& C scheme is similar to the
original DepBank scheme (King et al., 2003), but
overall contains less grammatical detail; Briscoe and
Carroll (2006) describes the differences. We chose
this resource for the following reasons: it is pub-
licly available, allowing other researchers to com-
pare against our results; theGRs making up the an-
notation share some similarities with the predicate-
argument dependencies output by theCCG parser;
and we can directly compare our parser against a
non-CCG parser, namely theRASPparser. We chose
not to use the corpus based on the Susanne corpus
(Carroll et al., 1998) because theGRs are less like
the CCG dependencies; the corpus is not based on
the Penn Treebank, making comparison more diffi-
cult because of tokenisation differences, for exam-
ple; and the latest results forRASPare on DepBank.

The GRs are described in Briscoe and Carroll
(2006) and Briscoe et al. (2006). Table 1 lists the
GRs used in the evaluation. As an example, the sen-
tenceThe parent sold Imperialproduces threeGRs:
(det parent The) , (ncsubj sold parent ) and
(dobj sold Imperial) . Note that someGRs — in
this examplencsubj — have asubtype slot, giving
extra information. The subtype slot forncsubj is
used to indicate passive subjects, with the null value
“ ” for active subjects andobj for passive subjects.
Other subtype slots are discussed in Section 4.2.

The CCG dependencies were transformed into
GRs in two stages. The first stage was to create
a mapping between theCCG dependencies and the

250



GR description
conj coordinator
aux auxiliary
det determiner
ncmod non-clausal modifier
xmod unsaturated predicative modifier
cmod saturated clausal modifier
pmod PP modifier with a PP complement
ncsubj non-clausal subject
xsubj unsaturated predicative subject
csubj saturated clausal subject
dobj direct object
obj2 second object
iobj indirect object
pcomp PP which is a PP complement
xcomp unsaturated VP complement
ccomp saturated clausal complement
ta textual adjunct delimited by punctuation

Table 1:GRs in B& C’s annotation of DepBank

GRs. This involved mapping each argument slot in
the 425 lexical categories in theCCG lexicon onto
a GR. In the second stage, theGRs created from the
parser output were post-processed to correct some of
the obvious remaining differences between theCCG

andGR representations.
In the process of performing the transformation

we encountered a methodological problem: with-
out looking at examples it was difficult to create
the mapping and impossible to know whether the
two representations were converging. Briscoe et al.
(2006) split the 700 sentences in DepBank into a test
and development set, but the latter only consists of
140 sentences which was not enough to reliably cre-
ate the transformation. There are some development
files in theRASP release which provide examples of
the GRs, which were used when possible, but these
only cover a subset of theCCG lexical categories.

Our solution to this problem was to convert the
gold standard dependencies from CCGbank into
GRs and use these to develop the transformation. So
we did inspect the annotation in DepBank, and com-
pared it to the transformedCCG dependencies, but
only thegold-standardCCG dependencies. Thus the
parser output was never used during this process.
We also ensured that the dependency mapping and
the post processing are general to theGRs scheme
and not specific to the test set or parser.

4.1 Mapping the CCG dependencies toGRs

Table 2 gives some examples of the mapping;%l in-
dicates the word associated with the lexical category

CCG lexical category slotGR

(S [dcl ]\NP1 )/NP2 1 (ncsubj %l %f )
(S [dcl ]\NP1 )/NP2 2 (dobj %l %f)
(S\NP)/(S\NP)1 1 (ncmod %f %l)
(NP\NP1 )/NP2 1 (ncmod %f %l)
(NP\NP1 )/NP2 2 (dobj %l %f)
NP [nb]/N1 1 (det %f %l)
(NP\NP1 )/(S [pss]\NP)2 1 (xmod %f %l)
(NP\NP1 )/(S [pss]\NP)2 2 (xcomp %l %f)
((S\NP)\(S\NP)1 )/S [dcl ]2 1 (cmod %f %l)
((S\NP)\(S\NP)1 )/S [dcl ]2 2 (ccomp %l %f)
((S [dcl ]\NP1 )/NP2 )/NP3 2 (obj2 %l %f)
(S [dcl ]\NP1 )/(S [b]\NP)2 2 (aux %f %l)

Table 2: Examples of the dependency mapping

and%f is the head of the constituent filling the argu-
ment slot. Note that the order of%l and%f varies ac-
cording to whether theGR represents a complement
or modifier, in line with the Briscoe and Carroll an-
notation. For many of theCCG dependencies, the
mapping intoGRs is straightforward. For example,
the first two rows of Table 2 show the mapping for
the transitive verb category(S [dcl ]\NP1 )/NP2 : ar-
gument slot 1 is a non-clausal subject and argument
slot 2 is a direct object.

Creating the dependency transformation is more
difficult than these examples suggest. The first prob-
lem is that the mapping fromCCG dependencies to
GRs is many-to-many. For example, the transitive
verb category(S [dcl ]\NP)/NP applies to the cop-
ula in sentences likeImperial Corp. is the parent
of Imperial Savings & Loan. With the default anno-
tation, the relation betweenis andparentwould be
dobj , whereas in DepBank the argument of the cop-
ula is analysed as anxcomp. Table 3 gives some ex-
amples of how we attempt to deal with this problem.
The constraint in the first example means that, when-
ever the word associated with the transitive verb cat-
egory is a form ofbe, the second argument isxcomp,
otherwise the default case applies (in this casedobj ).
There are a number of categories with similar con-
straints, checking whether the word associated with
the category is a form ofbe.

The second type of constraint, shown in the third
line of the table, checks the lexical category of the
word filling the argument slot. In this example, if the
lexical category of the preposition isPP/NP , then
the second argument of(S [dcl ]\NP)/PP maps to
iobj ; thus in The loss stems from several fac-
tors the relation between the verb and preposition
is (iobj stems from) . If the lexical category of

251



CCG lexical category slotGR constraint example
(S [dcl ]\NP1 )/NP2 2 (xcomp %l %f) word=be The parentis Imperial

(dobj %l %f) The parentsold Imperial
(S [dcl ]\NP1 )/PP2 2 (iobj %l %f) cat=PP/NP The lossstems fromseveral factors

(xcomp %l %f) cat=PP/(S [ng ]\NP) The futuredepends onbuilding ties
(S [dcl ]\NP1 )/(S [to]\NP)2 2 (xcomp %f %l %k) cat=(S [to]\NP)/(S [b]\NP) wants to weanitself away from

Table 3: Examples of the many-to-many nature of theCCG dependency toGRs mapping, and a ternaryGR

the preposition isPP/(S [ng ]\NP), then theGR

is xcomp; thus in The future depends on building
ties the relation between the verb and preposition
is (xcomp depends on) . There are a number of
CCG dependencies with similar constraints, many of
them covering theiobj /xcomp distinction.

The second difficulty is that not all theGRs are bi-
nary relations, whereas theCCGdependencies are all
binary. The primary example of this is to-infinitival
constructions. For example, in the sentenceThe
company wants to wean itself away from expensive
gimmicks, the CCG parser produces two dependen-
cies relatingwants, to and wean, whereas there is
only one GR: (xcomp to wants wean) . The fi-
nal row of Table 3 gives an example. We im-
plement this constraint by introducing a%k vari-
able into theGR template which denotes the ar-
gument of the category in the constraint column
(which, as before, is the lexical category of the
word filling the argument slot). In the example, the
current category is(S [dcl ]\NP1 )/(S [to]\NP)2 ,
which is associated withwants; this combines with
(S [to]\NP)/(S [b]\NP), associated withto; and
the argument of(S [to]\NP)/(S [b]\NP) is wean.
The %k variable allows us to look beyond the argu-
ments of the current category when creating theGRs.

A further difficulty is that the head passing con-
ventions differ between DepBank and CCGbank. By
head passingwe mean the mechanism which de-
termines the heads of constituents and the mecha-
nism by which words become arguments of long-
range dependencies. For example, in the sentence
The group said it would consider withholding roy-
alty payments, the DepBank and CCGbank annota-
tions create a dependency betweensaidand the fol-
lowing clause. However, in DepBank the relation
is betweensaidandconsider, whereas in CCGbank
the relation is betweensaidandwould. We fixed this
problem by defining the head ofwould considerto
be considerrather thanwould, by changing the an-
notation of all the relevant lexical categories in the

CCG lexicon (mainly those creatingaux relations).
There are more subject relations in CCGbank than

DepBank. In the previous example, CCGbank has a
subject relation betweenit andconsider, and alsoit
andwould, whereas DepBank only has the relation
betweenit andconsider. In practice this means ig-
noring a number of the subject dependencies output
by theCCG parser.

Another example where the dependencies differ
is the treatment of relative pronouns. For example,
in Sen. Mitchell, who had proposed the streamlin-
ing, the subject ofproposedis Mitchell in CCGbank
but who in DepBank. Again, we implemented this
change by fixing the head annotation in the lexical
categories which apply to relative pronouns.

4.2 Post processing of theGR output

To obtain some idea of whether the schemes were
converging, we performed the following oracle ex-
periment. We took theCCG derivations from
CCGbank corresponding to the sentences in Dep-
Bank, and forced the parser to produce gold-
standard derivations, outputting the newly created
GRs. Treating the DepBankGRs as a gold-standard,
and comparing these with the CCGbankGRs, gave
precision and recall scores of only 76.23% and
79.56% respectively (using theRASP evaluation
tool). Thus given the current mapping, the perfect
CCGbank parser would achieve an F-score of only
77.86% when evaluated against DepBank.

On inspecting the output, it was clear that a
number of general rules could be applied to bring
the schemes closer together, which was imple-
mented as a post-processing script. The first set
of changes deals with coordination. One sig-
nificant difference between DepBank and CCG-
bank is the treatment of coordinations as argu-
ments. Consider the exampleThe president and
chief executive officer said the loss stems from sev-
eral factors. For both DepBank and the trans-
formed CCGbank there are twoconj GRs arising

252



from the coordination:(conj and president) and
(conj and officer) . The difference arises in the
subject of said: in DepBank the subject isand:
(ncsubj said and ) , whereas in CCGbank there
are two subjects:(ncsubj said president ) and
(ncsubj said officer ) . We deal with this dif-
ference by replacing any pairs ofGRs which differ
only in their arguments, and where the arguments
are coordinated items, with a singleGR containing
the coordination term as the argument.

Ampersands are a frequently occurring problem
in WSJ text. For example, the CCGbank analysis
of Standard & Poor’s indexassigns the lexical cat-
egoryN /N to bothStandardand& , treating them
as modifiers ofPoor, whereas DepBank treats& as
a coordinating term. We fixed this by creatingconj

GRs between any& and the two words either side;
removing the modifierGR between the two words;
and replacing anyGRs in which the words either side
of the& are arguments with a singleGR in which&
is the argument.

The ta relation, which identifies text adjuncts de-
limited by punctuation, is difficult to assign cor-
rectly to the parser output. The simple punctuation
rules used by the parser do not contain enough in-
formation to distinguish between the various cases
of ta . Thus the only rule we have implemented,
which is somewhat specific to the newspaper genre,
is to replaceGRs of the form (cmod say arg)

with (ta quote arg say) , wheresay can be any
of say, saidor says. This rule applies to only a small
subset of theta cases but has high enough precision
to be worthy of inclusion.

A common source of error is the distinction be-
tweeniobj andncmod, which is not surprising given
the difficulty that human annotators have in distin-
guishing arguments and adjuncts. There are many
cases where an argument in DepBank is an adjunct
in CCGbank, and vice versa. The only change we
have made is to turn allncmod GRs with of as the
modifier into iobj GRs (unless thencmod is a par-
titive predeterminer). This was found to have high
precision and applies to a large number of cases.

There are some dependencies in CCGbank which
do not appear in DepBank. Examples include any
dependencies in which a punctuation mark is one of
the arguments; these were removed from the output.

We attempt to fill the subtype slot for someGRs.

The subtype slot specifies additional information
about theGR; examples include the valueobj in a
passivencsubj , indicating that the subject is an un-
derlying object; the valuenum in ncmod, indicating a
numerical quantity; andprt in ncmod to indicate a
verb particle. The passive case is identified as fol-
lows: any lexical category which startsS [pss]\NP
indicates a passive verb, and we also mark any verbs
POS taggedVBN and assigned the lexical category
N /N as passive. Both these rules have high preci-
sion, but still leave many of the cases in DepBank
unidentified. The numerical case is identified using
two rules: thenum subtype is added if any argument
in a GR is assigned the lexical categoryN /N [num],
and if any of the arguments in anncmod is POS

taggedCD. prt is added to anncmod if the modi-
fiee has any of the verbPOStags and if the modifier
hasPOStagRP.

The final columns of Table 4 show the accuracy
of the transformed gold-standard CCGbank depen-
dencies when compared with DepBank; the sim-
ple post-processing rules have increased the F-score
from 77.86% to 84.76%. This F-score is anupper
boundon the performance of theCCG parser.

5 Results

The results in Table 4 were obtained by parsing the
sentences from CCGbank corresponding to those
in the 560-sentence test set used by Briscoe et al.
(2006). We used the CCGbank sentences because
these differ in some ways to the original Penn Tree-
bank sentences (there are no quotation marks in
CCGbank, for example) and the parser has been
trained on CCGbank. Even here we experienced
some unexpected difficulties, since some of the to-
kenisation is different between DepBank and CCG-
bank and there are some sentences in DepBank
which have been significantly shortened compared
to the original Penn Treebank sentences. We mod-
ified the CCGbank sentences — and the CCGbank
analyses since these were used for the oracle ex-
periments — to be as close to the DepBank sen-
tences as possible. All the results were obtained us-
ing theRASP evaluation scripts, with the results for
the RASP parser taken from Briscoe et al. (2006).
The results for CCGbank were obtained using the
oracle method described above.

253



RASP CCGparser CCGbank
Relation Prec Rec F Prec Rec F Prec Rec F #GRs
aux 93.33 91.00 92.15 94.20 89.25 91.66 96.47 90.33 93.30 400
conj 72.39 72.27 72.33 79.73 77.9878.84 83.07 80.27 81.65 595
ta 42.61 51.37 46.58 52.31 11.64 19.05 62.07 12.59 20.93 292
det 87.73 90.48 89.09 95.25 95.4295.34 97.27 94.09 95.66 1 114
ncmod 75.72 69.94 72.72 75.75 79.2777.47 78.88 80.64 79.75 3 550
xmod 53.21 46.63 49.70 43.46 52.25 47.45 56.54 60.67 58.54 178
cmod 45.95 30.36 36.56 51.50 61.3155.98 64.77 69.09 66.86 168
pmod 30.77 33.33 32.00 0.00 0.00 0.00 0.00 0.00 0.00 12
ncsubj 79.16 67.06 72.61 83.92 75.9279.72 88.86 78.51 83.37 1 354
xsubj 33.33 28.57 30.77 0.00 0.00 0.00 50.00 28.57 36.36 7
csubj 12.50 50.00 20.00 0.00 0.00 0.00 0.00 0.00 0.00 2
dobj 83.63 79.08 81.29 87.03 89.4088.20 92.11 90.32 91.21 1 764
obj2 23.08 30.00 26.09 65.00 65.0065.00 66.67 60.00 63.16 20
iobj 70.77 76.10 73.34 77.60 70.0473.62 83.59 69.81 76.08 544
xcomp 76.88 77.69 77.28 76.68 77.69 77.18 80.00 78.49 79.24 381
ccomp 46.44 69.42 55.55 79.55 72.1675.68 80.81 76.31 78.49 291
pcomp 72.73 66.67 69.57 0.00 0.00 0.00 0.00 0.00 0.00 24

macroaverage 62.12 63.77 62.94 65.61 63.2864.43 71.73 65.85 68.67
microaverage 77.66 74.98 76.29 82.44 81.2881.86 86.86 82.75 84.76

Table 4: Accuracy on DepBank. F-score is the balanced harmonic mean of precision (P ) and recall (R):
2PR/(P + R). # GRs is the number ofGRs in DepBank.

The CCG parser results are based on automati-
cally assignedPOS tags, using the Curran and Clark
(2003) tagger. The coverage of the parser on Dep-
Bank is 100%. For aGR in the parser output to be
correct, it has to match the gold-standardGR exactly,
including any subtype slots; however, it is possible
for a GR to be incorrect at one level but correct at
a subsuming level.1 For example, if anncmod GR is
incorrectly labelled withxmod, but is otherwise cor-
rect, it will be correct for all levels which subsume
bothncmod andxmod, for examplemod. The micro-
averaged scores are calculated by aggregating the
counts for all the relations in the hierarchy, including
the subsuming relations; the macro-averaged scores
are the mean of the individual scores for each rela-
tion (Briscoe et al., 2006).

The results show that the performance of theCCG

parser is higher thanRASP overall, and also higher
on the majority ofGR types (especially the more
frequent types).RASP uses an unlexicalised pars-
ing model and has not been tuned to newspaper text.
On the other hand it has had many years of develop-
ment; thus it provides a strong baseline for this test
set. The overall F-score for theCCG parser, 81.86%,
is only 3 points below that for CCGbank, which pro-

1TheGRs are arranged in a hierarchy, with those in Table 1 at
the leaves; a small number of more generalGRs subsume these
(Briscoe and Carroll, 2006).

vides an upper bound for theCCG parser (given the
conversion process being used).

6 Conclusion

A contribution of this paper has been to high-
light the difficulties associated with cross-formalism
parser comparison. Note that the difficulties are not
unique toCCG, and many would apply to any cross-
formalism comparison, especially with parsers using
automatically extracted grammars. Parser evalua-
tion has improved on the original Parseval measures
(Carroll et al., 1998), but the challenge remains to
develop a representation and evaluation suite which
can be easily applied to a wide variety of parsers
and formalisms. Despite the difficulties, we have
given the first evaluation of aCCG parser outside of
CCGbank, outperforming theRASP parser by over
5% overall and on the majority of dependency types.

Can theCCG parser be compared with parsers
other thanRASP? Briscoe and Carroll (2006) give a
rough comparison ofRASPwith the ParcLFG parser
on the different versions of DepBank, obtaining sim-
ilar results overall, but they acknowledge that the re-
sults are not strictly comparable because of the dif-
ferent annotation schemes used. Comparison with
Penn Treebank parsers would be difficult because,
for many constructions, the Penn Treebank trees and

254



CCG derivations are different shapes, and reversing
the mapping Hockenmaier used to create CCGbank
would be very difficult. Hence we challenge other
parser developers to map their own parse output into
the version of DepBank used here.

One aspect of parser evaluation not covered in this
paper is efficiency. TheCCG parser took only 22.6
seconds to parse the 560 sentences in DepBank, with
the accuracy given earlier. Using a cluster of 18 ma-
chines we have also parsed the entire Gigaword cor-
pus in less than five days. Hence, we conclude that
accurate, large-scale, linguistically-motivatedNLP is
now practical withCCG.

Acknowledgements

We would like to thanks the anonymous review-
ers for their helpful comments. James Curran was
funded under ARC Discovery grants DP0453131
and DP0665973.

References
Rens Bod. 2003. An efficient implementation of a new DOP

model. InProceedings of the 10th Meeting of the EACL,
pages 19–26, Budapest, Hungary.

Ted Briscoe and John Carroll. 2006. Evaluating the accuracy
of an unlexicalized statistical parser on the PARC DepBank.
In Proceedings of the Poster Session of COLING/ACL-06,
Sydney, Australia.

Ted Briscoe, John Carroll, and Rebecca Watson. 2006. The
second release of the RASP system. InProceedings of
the Interactive Demo Session of COLING/ACL-06, Sydney,
Australia.

Sabine Buchholz, Jorn Veenstra, and Walter Daelemans. 1999.
Cascaded grammatical relation assignment. InProceedings
of EMNLP/VLC-99, pages 239–246, University of Mary-
land, June 21-22.

A. Cahill, M. Burke, R. O’Donovan, J. van Genabith, and
A. Way. 2004. Long-distance dependency resolution in au-
tomatically acquired wide-coverage PCFG-based LFG ap-
proximations. InProceedings of the 42nd Meeting of the
ACL, pages 320–327, Barcelona, Spain.

John Carroll, Ted Briscoe, and Antonio Sanfilippo. 1998.
Parser evaluation: a survey and a new proposal. InProceed-
ings of the 1st LREC Conference, pages 447–454, Granada,
Spain.

Eugene Charniak and Mark Johnson. 2005. Coarse-to-fine n-
best parsing and maxent discriminative reranking. InPro-
ceedings of the 43rd Annual Meeting of the ACL, University
of Michigan, Ann Arbor.

Eugene Charniak. 2000. A maximum-entropy-inspired parser.
In Proceedings of the 1st Meeting of the NAACL, pages 132–
139, Seattle, WA.

Stephen Clark and James R. Curran. 2004a. The importance of
supertagging for wide-coverage CCG parsing. InProceed-
ings of COLING-04, pages 282–288, Geneva, Switzerland.

Stephen Clark and James R. Curran. 2004b. Parsing the WSJ
using CCG and log-linear models. InProceedings of the
42nd Meeting of the ACL, pages 104–111, Barcelona, Spain.

Michael Collins. 2003. Head-driven statistical models
for natural language parsing.Computational Linguistics,
29(4):589–637.

James R. Curran and Stephen Clark. 2003. Investigating GIS
and smoothing for maximum entropy taggers. InProceed-
ings of the 10th Meeting of the EACL, pages 91–98, Bu-
dapest, Hungary.

Julia Hockenmaier and Mark Steedman. 2002. Generative
models for statistical parsing with Combinatory Categorial
Grammar. InProceedings of the 40th Meeting of the ACL,
pages 335–342, Philadelphia, PA.

Julia Hockenmaier. 2003.Data and Models for Statistical
Parsing with Combinatory Categorial Grammar. Ph.D. the-
sis, University of Edinburgh.

Ron Kaplan, Stefan Riezler, Tracy H. King, John T. Maxwell
III, Alexander Vasserman, and Richard Crouch. 2004.
Speed and accuracy in shallow and deep stochastic parsing.
In Proceedings of the HLT Conference and the 4th NAACL
Meeting (HLT-NAACL’04), Boston, MA.

Tracy H. King, Richard Crouch, Stefan Riezler, Mary Dalrym-
ple, and Ronald M. Kaplan. 2003. The PARC 700 Depen-
dency Bank. InProceedings of the LINC-03 Workshop, Bu-
dapest, Hungary.

Robert Malouf and Gertjan van Noord. 2004. Wide coverage
parsing with stochastic attribute value grammars. InPro-
ceedings of the IJCNLP-04 Workshop: Beyond shallow anal-
yses - Formalisms and statistical modeling for deep analyses,
Hainan Island, China.

Joakim Nivre and Mario Scholz. 2004. Deterministic depen-
dency parsing of English text. InProceedings of COLING-
2004, pages 64–70, Geneva, Switzerland.

Judita Preiss. 2003. Using grammatical relations to compare
parsers. InProceedings of the 10th Meeting of the EACL,
pages 291–298, Budapest, Hungary.

Anoop Sarkar and Aravind Joshi. 2003. Tree-adjoining gram-
mars and its application to statistical parsing. In Rens Bod,
Remko Scha, and Khalil Sima’an, editors,Data-oriented
parsing. CSLI.

Mark Steedman. 2000.The Syntactic Process. The MIT Press,
Cambridge, MA.

Kristina Toutanova, Christopher Manning, Stuart Shieber, Dan
Flickinger, and Stephan Oepen. 2002. Parse disambiguation
for a rich HPSG grammar. InProceedings of the First Work-
shop on Treebanks and Linguistic Theories, pages 253–263,
Sozopol, Bulgaria.

255


