1

Transforming Projective Bilexical Dependency Grammars irio
efficiently-parsable CFGs with Unfold-Fold

Mark Johnson

Microsoft Research
Redmond, WA
t-maj oh@n crosoft.com

Abstract

This paper shows how to use the Unfold-
Fold transformation to transform Projective
Bilexical Dependency Grammars (PBDGSs)
into ambiguity-preserving weakly equiva-
lent Context-Free Grammars (CFGs). These
CFGs can be parsed 0(n?) time using a
CKY algorithm with appropriate indexing,
rather than theO(n®) time required by a
naive encoding. Informally, using the CKY
algorithm with such a CFG mimics the steps
of the Eisner-Satté&)(n?) PBDG parsing al-
gorithm. This transformation makes all of
the techniques developed for CFGs available
to PBDGs. We demonstrate this by describ-
ing a maximum posterior parse decoder for
PBDGs.

Introduction

Brown University
Providence, RI
Mar k_Johnson@r own. edu

step, the Unfold-Fold transformation, to transform a
PBDG into an equivalent CFG that can be parsed in
O(n?3) time using a version of the CKY algorithm
with suitable indexing (Younger, 1967), and extend
this transformation so that it captures second-order
PBDG dependencies as well. The transformations
are ambiguity-preserving, i.e., there is a one-to-
one mapping between dependency parses and CFG
parses, so it is possible to map the CFG parses back
to the PBDG parses they correspond to.

The PBDG to CFG reductions make techniques
developed for CFGs available to PBDGs as well. For
example, incremental CFG parsing algorithms can
be used with the CFGs produced by this transform,
as can the Inside-Outside estimation algorithm (Lari
and Young, 1990) and more exotic methods such as
estimating adjoined hidden states (Matsuzaki et al.,
2005; Petrov et al., 2006). As an example appli-
cation, we describe a maximum posterior parse de-
coder for PBDGs in Section 8.

Projective Bilexical Dependency Grammars (PB-

DGs) have attracted attention recently for two rea- The Unfold-Fold transformation is a calculus for
sons. First, because they capture bilexical head-ttransforming functional and logic programs into
head dependencies they are capable of producieguivalent but (hopefully) faster programs (Burstall

extremely high-quality parses: state-of-the-art disand Darlington, 1977).

We use it here to trans-

criminatively trained PBDG parsers rival the accuform CFGs encoding dependency grammars into
racy of the very best statistical parsers available tawther CFGs that are more efficiently parsable. Since
day (McDonald, 2006). Second, Eisner-Saita>)
PBDG parsing algorithms are extremely fast (Eisnegrams (Pereira and Shieber, 1987) and the Unfold-
1996; Eisner and Satta, 1999; Eisner, 2000).
This paper investigates the relationship betweegrams (Sato, 1992; Pettorossi and Proeitti, 1992), it
Context-Free Grammar (CFG) parsing and the Eidellows that its application to CFGs is provably cor-

ner/Satta PBDG parsing algorithms, including theirect as well. The Unfold-Fold transformation is used

CFGs can be expressed as Horn-clause logic pro-

Fold transformation is provably correct for such pro-

extension to second-order PBDG parsing (McDorhkere to derive the CFG schemata presented in sec-
ald, 2006; McDonald and Pereira, 2006). Specifiions 5-7. A system that uses these schemata (such
cally, we show how to use an off-line preprocessings the one described in section 8) can implement

168

Proceedings of the 45th Annual Meeting of the Association of Computational Linguistics, pages 168—175,
Prague, Czech Republic, June 2007. (©2007 Association for Computational Linguistics

these schemata directly, so the Unfold-Fold trans- m

formation plays a theoretical role in this work, justi- 0 Sandy gavethe dog a bone
fying the resulting CFG schemata.
The closest related work we are aware of o
is McAllester (1999), which also describes a refigure 1: A projective dependency parse for the sen-
duction of PBDGs to efficiently-parsable CFGdence “Sam gave the dog a bone”.
and directly inspired this work. However, the

CFGs produced by McAllester’s transformation in- 5 dependency parsé is projectiveiff whenever

clude epsilon-productions so they require a specigfhere s a path from to v then there is also a path
ized CFG parsing algorithm, while the CFGs progqm 4, t every word between andv in w* as well.

d_uced by the t_ransformations described here h?“ﬁgure 1 depicts a projective dependency parse for
binary productions so they can be parsed Withe sentence “Sam gave the dog a bone”.

standard CFG parsing algorithms. Further, our a prgiective dependency grammar defines a set of
approach extends to second-order PBDG parsingrqiactive dependency parses. Phojective Bilexi-

while McAllester pnly discu_sses first-order PBDGs 4, Dependency Gramm4PBDG) consists of two
Th_e rest of this paper is structured as follows,g|ations™ and "™, both defined ovefS U {0}) x

Section 2 defines pr_OJectNe plependency_graphs aRd A PBDG generates a projective dependency

grammars and Section 3 reviews the “na'Ve"_e”COdﬁarseG iff w>v for all right dependencieu, v)

ing of PBDGs as CFGs with a@(n®) parse time, iy ¢ and 4 for all left dependenciesu, v) in

v_vheren is the length of th_e string to be parsed_. Secy. The language generated by a PBDG is the set
tion 4 introduces the spI|4t—head CFG encoding ofyf strings that have projective dependency parses
PBDGs, which has a®(n") parse time and SerVes%enerated by the grammar. The following depen-

as the input to the Unfold-Fold transform. Section ency grammar generates the dependency parse in
uses the Unfold-Fold transform to obtain a WeaklyFigure 1.

equivalent CFG encoding of PBDGs which can be

parsed inO(n?) time, and presents timing results 0 gave Sandy gave
showing that the transformation does speed parsing. gave “dog the ~dog
Sections 6 and 7 apply Unfold-Fold in slightly more gave “bone & bone

complex ways to obtain CFG encodings of PBDGs
that also make second-order dependencies availableThis paper does not consider stochastic depen-
in O(n?) time parsable CFGs. Section 8 applies @ency grammars directly, but see Section 8 for an
PBDG to CFG transform to obtain a maximum posapplication involving them. However, it is straight-
terior decoding parser for PBDGs. forward to associate weights with dependencies, and
since the dependencies are preserved by the transfor-
2 Projective bilexical dependency parses mations, obtain a weighted CFG. Standard methods
and grammars for converting weighted CFGs to equivalent PCFGs
can be used if required (Chi, 1999). Alternatively,
one can transform a corpus of dependency parses
into a corpus of the corresponding CFG parses, and
estimate CFG production probabilities directly from
Othat corpus.

Let X2 be a finite set ofterminals (e.g., words),
and let 0 be theoot terminal not in . If w =
(wi,...,wy,) € X*, letw* = (0,wy,...,w,), i.e.,
w* is obtained by prefixingy with 0. A dependency
parseG for w is a tree whose root is labeled 0 an
whose other vertices are labeled with each of the
terminals inw. If G contains an arc from to v then
we say thaw is adependenbf u, and if G contains There is a well-known method for encoding a PBDG
a path fromu to v then we say that is adescendant as a CFG in which each terminale Y. is associated

of u. If v is dependent of that also precedesin with a corresponding nonterminal Xhat expands
w* then we say that is aleft dependentdf « (right to« and all ofu’s descendants. The nonterminals of
dependent and left and right descendants are defintk naive encoding CFG consist of the start symbol
similarly). S and symbols X for each terminaku € ¥, and

169

3 A naive encoding of PBDGs

the productions of the CFG are the instances of the

following schemata: X v
S - X, where 0y Xsa‘ndy X oo
Xu — U Sandy /X% Xy one
X, — X X wherev* u « y x/\
X, — X, X, whereu v gave dog 2 bone
.) . gave X X a bone
The dependency annotations associated with each the fos
production specify how to interpret a local tree gen- the dog
erated by that production, and permit us to map a ?
CFG parse to the corresponding dependency parse. X o
For example, the top-most local tree in Figure 2 was
generated by the production S X, and indi- X save &&
cate that in this parse 0’ gave. X X jos X -
Given a terminal vocabulary of size the CFG — ‘ ‘
containsO(m?) productions, so it is impractical to Xsynay Xewe Xipe Xgog @ bONE
enumerate all possible productions for even modestSandy gave the dog
vocabularies. Instead productions relevant to a par-
ticular sentence are generated on the fly. Figure 2: Two parses using the naive CFG encod-

The naive encoding CFG in general requireg,g that both correspond to the dependency parse of
O(n) parsing time with a conventional CKY pars-Figure 1.

ing algorithm, since tracking the head annotations
andv multiplies the standar®(n3) CFG parse time _ o
requirements by an additional factor proportional to The split-head CFG for a PBDG is given by the

the O(n?) productions expanding X following schemata:
An additional problem with the naive encoding

is that the resulting CFG in general exhibits spuri- S — X, where 0" ~u

ous ambiguities, i.e., a single dependency parse may X, — L, ,R whereueX

correspond to more than one CFG parse, as shown L, — w

in Figure 2. Informally, this is because the CFG per- L, — X, L, wherev u

mits left and the right dependencies to be arbitrarily LR

intermingled. LR — R X whereu v

4 Split-head encoding of PBDGs The dependency parse shown in Figure 1 corre-

sponds to the split-head CFG parse shown in Fig-

e 3. Each X expands 0w e cateores
g 9] énduR. L, consists ofy; and all ofu’s left descen-

This section presents a method we call the “split-] i]
nts, while R consists ofu,. and all ofu’s right

head encoding”, which removes the ambiguities anf

u . - - -
serves as starting point for the grammar transfornfi€Scendants. The spurious ambiguity present in the
described below. naive encoding does not arise in the split-head en-

The split-head encoding represents each word coding because the left and right dependents of a
in the input stringw by two unique terminalsy head are assembled independently and cannot inter-

andu, in the CFG parse. A splitthead CFG's ter-Tndle. N _
As can be seen by examining the split-head

minal vocabulary isY = {uju, : u € X},) =P
where ¥ is the set of terminals of the PBDG. A Schemata, theightmostdescendant of L is either
PBDG parse with yields = (uq, ..., u,) is trans- L, OF u;, which guarantees that the rightmost termi-
formed to a split-head CFG parse with yield = nal dominated by L is alwaysu,; similarly theleft-
(W11, ULy oy Up gy Un), SO[W'| = 2]w). mostterminal dominated byR is alwaysu,. Thus

170

X ave
L ave ave
xSandy gave ave bone
/\
LSandy SandyR gavoR /X@g\ I_bonc boncR
Sahdy Sar‘1d¥ gave ga‘ve L R X/\
T //QQK dog et S ane
X L, L R bong bone
e og a a T
— | | |
t‘he thf‘sR doq dogr al ar
the the

Figure 3: The split-head parse corresponding to the depegpdgaph depicted in Figure 1. Notice that
is always the rightmost descendant ofandu, is always the leftmost descendant &, which means that
these indices are redundant given the constituent spans.

these subscript indices are redundant given the striig A O(n?) split-head grammar
positions of the constituents, which means we do n
need to track the indexin L and R but can parse

with just the two categories L and R, and determin

<%Ihe split-head encoding described in the previous
section require®(n?*) parsing time because the in-

. . , . dexwv on X is not redundant. We can obtain an
the index from the constituent’s span when required. v

. : 3)
It is straight-forward to extend the split-head CFGIe quglr;’:]lleGIEt ?rr:rr]rsl;g?rrmt::atﬂ?glg Ii(:—?]lg;?nr a)rr?rigr Us-
to encode the additional state information requirec§1g y 9 b g

by the head automata of Eisner and Satta (199?3 1g Unfold-Fold. We describe the transformation on

s . . ; the transformation of R is symmetric.

this corresponds to splitting the non-terminals L ~« L .o . .
S . Lo We begin with the definition of L in the split-

and R. For simplicity we work with PBDGs in this head grammar above (“separatesuthe right-hand
paper, but all of the Unfold-Fold transformations de- ides of productions)
scribed below extend to split-head grammars with P '
the additional state structure required by head au- L — w | X L wherev u
tomata. “ v

Implementation note_: it is possible to_di_rectlyoljr first transformation step is to unfold Xn L ,
parse the “undoubled” input string by modifying j.e_, replace X by its expansion, producing the fol-
both the CKY algorithm and the CFGs describeqy,ying definition for L, (ignore the underlining for

in this paper. Modify L and R so they both ul- now).

timately expand to the same termingland special-

case the implementation of production %> L R L, — w | L, R L, wherev* " u

and all productions derived from it to permit land

,Rto overlap by the terminal. This removes the offending Xn L _, but the result-

The split-head formulation explains what initially ing definition of L contains ternary productions and
seem unusual properties of existing PBDG algoso still incursO(n*) parse time. To address this we
rithms. For example, one of the standard “sanitgefine new nonterminaLgiVIy for eachz,y € X
checks” for the Inside-Outside algorithm—that the
outside probability of each terminal is equal to the xMy - R Ly
sentence’s inside probability—fails for these algo-
rithms. In fact, the outside probability of each ter-and fold the underlined children in linto M :
minal isdoublethe sentence’s inside probability be-
cause these algorithms implicitly collapse the two xIVIy - _R Ly wherez,y € ¥
terminalsuy; andw, into a single terminal:. L, — w | L, M wherev" u

171

5 —

L
ave ave
g M
andy Sand gave gave _ bone bone
/\
San(‘iy gave ave R L bone
/\
Sandy Sand¥ gavcM dog 4o R La ﬁb%
/—\
gav‘e Ldog d‘R b‘one
_—
gave gave L. M, a a bong bone
/\
theR Ldog

the the, dogr dog
Figure 4: TheO(n?) split-head parse corresponding to the dependency grapiyafe-L.

The O(n?) split-head grammar is obtained by un-schemata described so far. The production schemata
folding the occurence of Xin the S production and were hard-coded for speed, and the implementation
dropping the X schema as Xno longer appears on trick described in section 4 was used to avoid dou-
the rlght hand side of any production. The resultingling the terminal string. We obtained dependency

O(n?) split-head grammar schemata are as followsveights from our existing discriminatively-trained
PBDG parser (not cited to preserve anonymity). We

S - L, R where 0 u compared the parsers’ running times on section 24
L — of the Penn Treebank. Because all three CFGs im-
|_u —~ L M wherev*u plement the same dependency grammar their Viterbi
R u: v parses have the same dependency accuracy, namely
‘R =~ M R whereu v 0.8918. We precompute the dependency weights,
M — RL wherer,ycy so the times include just the dynamic programming
v v computation on a 3.6GHz Pentium 4.
As before, the dependency annotations on the pro- CFG schemata sentences parsed / second
duction schemata permit us to map CFG parses to NaiveO(n’) CFG 45.4
the corresponding dependency parse. This grammar O(n*) CFG 406.2
requiresO(n?) parsing time to parse because the in- O(n?) CFG 3580.0

dices are redundant given the constituent’s string po- 3
sitions for the reasons described in section 4. Spect An O(n?) adjacent-head grammar

ically, the rightmost terminal of Lis alwaysu;, the his section shows how to further transform the

leftmost terminal of R is alwaysu, and the left- (n3) grammar described above into a form that

most and rightmost terminals oM _arev; andu, encodes second-order dependencies between ad-

respectively. jacent dependent heads in much the way that a
The O(n3) split-head grammar is closely relatedMarkov PCFG does (McDonald, 2006; McDonald

to theO(n?®) PBDG parsing algorithm given by Eis- and Pereira, 2006). We provide a derivation for the

ner and Satta (1999). Specifically, the steps involved constituents; there is a parallel derivation fé.

in parsing with this grammar using the CKY algo- ‘e begin by unfolding X in the definition of L

rithm are essentially the same as those performeglthe split-head grammar producing as before:
by the Eisner/Satta algorithm. The primary differ-

ence is that the Eisner/Satta algorithm involves two L, - w|L, RL,
separate categories that are collapsed into the single
category M here. Now introduce a new nontermlnaM which is a

To confirm their relative performance we imple-specialized version of M requmng thatls a left-
mented stochastic CKY parsers for the three CF@ependent of;, and fold the underlined constituents

172

L ve a ER
‘* ************* :F};&Lr—\
/\ : aveMbone : boneR
L R |
LSandy Sand gave ,’:_/g/a_\;c,_dog\ ‘/dmgh/lbo&l\
R gave gave L. R L
Sdm‘iy q T /d\()k . do /ane\L
Sandy Sandy L M dog L, ﬁw
th?R doq dog ‘ a‘R bonq bone
thel ther S a

Figure 5: TheO(n?) adjacent-head parse corresponding to the dependency gir&igure 1. The boxed
local tree indicateoneis the dependent afivefollowing the dependerdog, i.e., give ~ dog ~ bone .

intovMZ. of each constituent, so they need not be computed
. . or stored and the CFG can be parsedim?) time.
M, — RL, wherev™ "u The steps involved in CKY parsing with this gram-
L, — w|L, M’ wherev " u mar correspond closely to those of the McDonald

) o . _ (2006) second-order PBDG parsing algorithm.
Now unfold L in the definition of M ', producing:

L. VEs

L
M LoOvov o u

v u

- Ruw | RL, M
. . . . 7 An O(n?®) dependent-head grammar
Note that in the first production expandlgylz, v (n®) dep 9
is theclosestleft dependent ofi, and in the second
productionv andv’ areadjacentleft-dependents of
U. UMz has a ternary production, so we introduc

xMy as before to fold the underlined constituent%

This section shows a different application of Unfold-
old can capture head-to-head-to-head dependen-
ies, i.e., “vertical” second-order dependencies,

Into. rather than the “horizontal” ones captured by the
xMy - R Ly wherez,y € 2 transformation described in the previous section.
MY Ru Y MY oS o Because we expect these vertical dependencies to
v v voov v

be less important linguistically than the horizontal
The resulting grammar schema is as below, andanes, we only sketch the transformation here.

sample parse is given in Figure 5. L .)) .
pie P g 9 The derivation differs from the one in Section 6 in

S - L, R where 0y that the dependenR, rather than the head |is un-
L, — w whasnoleftdependents folded inthe initial definition of M. . This results in
LE - L, M/ visu’s last left dep. a grammar that tracks vertical, rather than horizon-
Mo — Ruy visu's closest left dep. tal, second-order dependencies. Since left-hand and
MY — M, MY A right-hand derivations are assembled separately in a
"R o w0 uhasno right dependents split-head grammar, the grammar in fact only tracks
“R . K/IR R vis s last right dep zig-zag type dependencies (e.g., where a grandpar-
Ur v o o ent has a right dependent, which in turn has a left
M™ — wu,L v iswu’s closest right dep.
u'y m e dependent).
Moo= M, M T T
xMy - R '-y wherez, y € 3. The resulting grammar is given below, and a sam-

ple parse using this grammar is shown in Figure 6.
As before, the indices on the nonterminals are réBecause the subscripts are redundant they can be
dundant, as the heads are always located at an edgaitted and the resulting CFG can be parsed in

173

L R
ave ;jg\ﬂq’\
L ! R
Lsa‘ndy Swl\&/e : /gﬂ% : bone
Sandy Sandy L ! M M |
gpve L ewe s 0 ropene
ach L‘a Lb‘onc
R
emeMay doeR 3 a bong bone
L
gaveMthe theMdog
/\
gav‘eR Lt‘he Ld‘og
gave gave the dog dog,

Figure 6: Then? dependent-head parse corresponding to the dependendy afr&igure 1. The boxed
local @ei@dicates thad is a left-dependent obone which is in turn a right-dependent gfave i.e.,

gave a < bone .

O(n?) time using the CKY algorithm.

s - L, R where 0 v
Lu — U
L}f — L, M’ wherev"u
Mo — oL wherev
M- MY M wherev w
uR — Uy
LR — M'R whereu v
MY~ Ry whereu v
MY = M MY whereu w
mMy - R Ly wherez,y € ¥

8 Maximum posterior decoding

u

u

each of the dependencies in the parse. Such a de-
coder might plausibly produce parses that score bet-
ter on the dependency accuracy metric than Viterbi
parses.

MPD is straightforward given the PBDG to CFG
reductions described in this paper. Specifically, we
use the Inside-Outside algorithm to compute the
posterior probability of the CFG constituents corre-
sponding to each PBDG dependency, and then use
the Viterbi algorithm to find the parse tree that max-
imizes the sum of these posterior probabilities.

We implemented MPD for first-order PBDGs
using dependency weights from our existing
discriminatively-trained PBDG parser (not cited to
preserve anonymity). These weights are estimated

As noted in the introduction, one consequence of thgy an online procedure as in McDonald (2006), and
PBDG to CFG reductions presented in this paper @&re not intended to define a probability distribution.
that CFG parsing and estimation techniques are now an attempt to heuristically correct for this, in this
available for PBDGs as well. As an example apexperiment we useekp(aw,) as the weight of the
plication, this section describes Maximum Posteriodependency between headnd dependent, where

Decoding (MPD) for PBDGs.

wy,, 1S the weight provided by the discriminatively-

Goodman (1996) observed that the Viterbi parsttained model and is an adjustable scaling parame-
is in general not the optimal parse for evaluatiorier tuned to optimize MPD accuracy on development
metrics such as f-score that are based on the numistata.
of correct constituents in a parse. He showed that Unfortunately we found no significant differ-
MPD improves f-score modestly relative to Viterbience between the accuracy of the MPD and Viterbi

decoding for PCFGs.

parses. Optimizing MPD on the development data

Since dependency parse accuracy is just the pr¢section 24 of the PTB) set the scale factor=
portion of dependencies in the parse that are corre€t21 and produced MPD parses with an accuracy
Goodman’s observation should hold for PBDG parsef 0.8921, which is approximately the same as the
ing as well. MPD for PBDGs selects the parse thatiterbi accuracy of 0.8918. On the blind test data
maximizes the sum of the marginal probabilities ofsection 23) the two accuracies are essentially iden-

tical (0.8997). of the 16th International Conference on Computational Lin-
There are several possible explanations for the guistics pages 340-345, Copenhagen. Center for Sprogte-
. knologi.
failure of MPD to produce more accurate parses than
Viterbi decoding. Perhaps MPD requires weightgason Eisner. 2000. Bilexical grammars and their cubie-tim
; ili ictrib it _ parsing algorithms. In Harry Bunt and Anton Nijholt, edi-
that define a pr.obablllty dIS-trIbutlon (?'g". a. Ma}x tors,Advances in Probabilistic and Other Parsing Technolo-
Ent _model)_. It is also possm_le that discriminative gieq pages 29-62. Kluwer Academic Publishers.
training adjusts the weights in a way that ensures

; ; ; ; Joshua T. Goodman. 1996. Parsing algorithms and metrics. In
that the Viterbi parse is close to the maximum pOS] Proceedings of the 34th Annual Meeting of the Association

terio_r parse. ThiS_WaS_ thf'—’ case in ogr_exp_eriment, for Computational Linguisticspages 177-183, Santa Cruz,
and if this is true with discriminative training in gen- Ca.

eral, then maX|mu_m pps_tenpr decodmg will not haqu Lari and S.J. Young. 1990. The estimation of Stochastic
much to offer to discriminative parsing. Context-Free Grammars using the Inside-Outside algorithm

Computer Speech and Languagé35-56).

9 Conclusion , , N
Takuya Matsuzaki, Yusuke Miyao, and Jun’ichi Tsujii. 2005.

f | . h b of the 43rd Annual Meeting of the Association for Com-
orm to_trans ate_ PBDGs into CFGs that Cfa'n_ e putational Linguistics (ACL'05)pages 75—-82, Ann Arbor,
parsed inO(n?) time. A key component of this is Michigan, June. Association for Computational Linguistic
.the spht-he_a_d ConStrUCtlo.n’ where each woid the David McAllester. 1999. A reformulation of Eisner and Sata’
input is split into two terminals; andu,. of the CFG cubic time parser for split head automata grammars. Avail-
parse. We also showed how to systematically trans- able from http://ttic.uchicago.edu/"dmcallester/.
form the split-head CFG I_nto grammar_s which traCIT?yan McDonald and Fernando Pereira. 2006. Online learn-
second-order dependencies. We provided one gram-ing of approximate dependency parsing algorithms11th
mar which captures horizontal second-order depen- Conference of the European Chapter of the Association for
dencies (McDonald, 2006), and another which cap- Computational Linguisticgpages 81-88, Trento, Italy.
tures vertical second-order head-to-head-to-head dgyan McDonald. 2006Discriminative Training and Spanning
pendencies. Tree Algorithms for Dependency Parsirgh.D. thesis, Uni-
The grammars described here just scratch the sur-Versity of Pennyslvania, Philadelphia, PA.
face of what is possible with Unfold-Fold. Notice Femando Pereiraand Stuart M. Shieber. 198log and Nat-
that both of the second-order grammars have more Urlel Léfmguag_e AgalyS;S%erger for the Study of Language
nonterminals than the first-order grammar. If one js 29 nformation, Stanford, CA.
prepared to increase the number of nonterminals stélav Petrov, Leon Barrett, Romain Thibaux, and Dan Klein.
further, it may be possible to track additional infor- 2006. Lea{“g‘g accgfate: C}?T]Paﬁv afl‘d 'ntefPretalee ”?e a
. . . N notation. InProceedings of the 21st International Confer-
matl??n abOUt_ConStltue_mS (although if we mSISt_On ence on Computational Linguistics and 44th Annual Meet-
O(n?) parse time we will be unable to track the in- ing of the Association for Computational Linguistipgages
teraction of more than three heads at once). 433-440, Sydney, Australia, July. Association for Computa
tional Linguistics.

A. Pettorossi and M. Proeitti. 1992. Transformation of togi
References programs. InHandbook of Logic in Atrtificial Intelligence

R.M. Burstall and John Darlington. 1977. A transformation Vvolume 5, pages 697-787. Oxford University Press.
system for developing recursive programdournal of the

Association for Computing Machinerg4(1):44-67. Taisuke Sato. 1992. Equivalence-preserving first-order un
fold/fold transformation system&.heoretical Computer Sci-
Zhiyi Chi. 1999. Statistical properties of probabilistiontext- ence 105(1):57-84.

free grammarsComputational Linguistics25(1):131-160.) » .
Daniel H. Younger. 1967. Recognition and parsing of

Jason Eisner and Giorgio Satta. 1999. Efficient parsing for context-free languages in time. Information and Contral
bilexical context-free grammars and head automaton gram- 10(2):189-208.
mars. InProceedings of the 37th Annual Meeting of the
Association for Computational Linguisticgages 457-480,
University of Maryland.

Jason Eisner. 1996. Three new probabilistic models formepe
dency parsing: An exploration. BOLING96: Proceedings

175

