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Abstract

Machine translation of a source language
sentence involves selecting appropriate tar-
get language words and ordering the se-
lected words to form a well-formed tar-
get language sentence. Most of the pre-
vious work on statistical machine transla-
tion relies on lpcal) associations of target
words/phrases with source words/phrases
for lexical selection. In contrast, in this pa-
per, we present a novel approach to lexical
selection where the target words are associ-
ated with the entire source sentengkbal)
without the need to compute local associa-
tions. Further, we present a technique for
reconstructing the target language sentence
from the selected words. We compare the re-
sults of this approach against those obtained
from a finite-state based statistical machine
translation system which relies on local lex-
ical associations.

Introduction

}@research.att.com

local associations. The phrasal associations compile
some amount ofi¢cal) lexical reordering of the tar-
get words —those permitted by the size of the phrase.
Most of the state-of-the-art machine translation sys-
tems use phrase-level associations in conjunction
with a target language model to produce sentences.
There is relatively little emphasis oglobal) lexical
reordering other than the local reorderings permit-
ted within the phrasal alignments. A few exceptions
are the hierarchical (possibly syntax-based) trans-
duction models (Wu, 1997; Alshawi et al., 1998;
Yamada and Knight, 2001; Chiang, 2005) and the
string transduction models (Kanthak et al., 2005).

In this paper, we present an alternate approach to
lexical selection and lexical reordering. For lexical
selection, in contrast to the local approaches of as-
sociating target to source words, we associate tar-
get words to the entire source sentence. The intu-
ition is that there may be lexico-syntactic features of
the source sentence (not necessarily a single source
word) that might trigger the presence of a target
word in the target sentence. Furthermore, it might be
difficult to exactly associate a target word to a source

1
c\)q/ord in many situations — (a) when the translations

Machine translation can be viewed as consisting e not exact but paraphrases (b) when the target lan-
two subproblems: (a) lexical selection, where appro- parap J

priate target language lexical items are chosen fGHage does not have one lexical item to express the

each source language lexical item and (b) lexical r _ar;;(; d(;;)ncvsgrt dt[]oat rlmsrai)épa:ﬁsﬁader?é gttsecr)#r?st;vgéc_l'
ordering, where the chosen target language lexic 9 P 9 P

items are rearranged to produce a meaningful targngi}:: iiovr\?oer do_]; ;C;S;i;gl;?gr?tgs while alleviating the

language string. Most of the previous work on statis-
tical machine translation, as exemplified in (Brown As a consequence of this global lexical selection
et al., 1993), employs word-alignment algorithmapproach, we no longer have a tight association be-
(such as GIZA++ (Och and Ney, 2003)) that protween source and target language words. The re-
vides local associations between source and targmilt of lexical selection is simply a bag of words in
words. The source-to-target word alignments arthe target language and the sentence has to be recon-
sometimes augmented with target-to-source worgtructed using this bag of words. The words in the
alignments in order to improve precision. Furtherbag, however, might be enhanced with rich syntactic
the word-level alignments are extended to phraséformation that could aid in reconstructing the tar-
level alignments in order to increase the extent ajet sentence. This approach to lexical selection and
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Figure 2: Decoding phases for our system Figure 4: Bilanguage strings resulting from align-

ments shown in Figure 3.

sentence reconstruction has the potential to circum- ) )
vent limitations of word-alignment based method€-2 Bilanguage Representation
for translation between languages with significantlfrrom the alignment information (see Figure 3), we
different word order (e.g. English-Japanese). construct a bilanguage representation of each sen-
In this paper, we present the details of trainingence in the bilingual corpus. The bilanguage string
a global lexical selection model using classificaconsists of source-target symbol pair sequences as
tion technigues and sentence reconstruction modhown in Equation 3. Note that the tokens of a bilan-
els using permutation automata. We also presentgaiage could be either ordered according to the word
stochastic finite-state transducer (SFST) as an exaworder of the source language or ordered according to
ple of an approach that relies on local associatiortee word order of the target language.
and use it to compare and contrast our approach.

Bl = ol v] ... bl (3)
2 SFST Training and Decoding b = (siiisi f(si) if flsii1) =e
In this section, we describe each of the components = (85, f(si-1); f(83)) if sic1=¢

of our SFST system shown in Figure 1. The SFST
approach described here is similar to the one de-
scribed in (Bangalore and Riccardi, 2000) which hasFigure 4 shows an example alignment and the
subsequently been adopted by (Banchs et al., 2005purce-word-ordered bilanguage strings correspond-
_ ing to the alignment shown in Figure 3.
2.1 Word Alignment We also construct a bilanguage using the align-
The first stage in the process of training a lexical sement functiong similar to the bilanguage using the
lection model is obtaining an alignment functiof) ( alignment functionf as shown in Equation 3.
that given a pair of sources(s,...s,) and target  Thus, the bilanguage corpus obtained by combin-
(tit2 ... t) language sentences, maps source lainrg the two alignment functions iB = By U B,,.
gﬂggsqﬁggdczgf)zgiﬁirxf Eé?ésvfarget language WOé% Bilingual Phrases and Local Reordering
= N — . N While word-to-word translation only approximates
vidj(J(si) = 1; V /(si) =€) @) the lexical selection process, phrase-to-phrase map-

For the work reported in this paper, we have Useﬂin ; ;
S g can greatly improve the translation of colloca-
the GIZA++ tool (Och and Ney, 2003) which im-jiqns recurrent strings, etc. Using phrases also al-

plements a string-alignment algorithm. ~ GIZA++,\ s \vords within the phrase to be reordered into the
alignment however is asymmetric in that the wor

. . . - UrTtorrect target language order, thus partially solving
mappings are different depending on the directiofyg reordering problem. Additionally, SFSTs can

of alignment — source-to-target or target-to-Sourcg,y e advantage of phrasal correlations to improve the
Hence in addition to the functiong as shown in computation of the probabilit? (W, Wr).

Equation 1 we train another alignment functipn The bilanguage representation could result in
ViTi(g(t;) = s Vg(t;) =e) (2) some source language phrases to be mapped to

= (s4, f(si)) otherwise
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(empty target phrase). In addition to these phrases, 5 CR
we compute subsequences of a given lergth the . ;
bilanguage string and for each subsequence we r > ) .< 3
order the target words of the subsequence to be in G@/ CQ/
the same order as they are in the target language sen- ) . .
tence corresponding to that bilanguage string. Thg‘gure 5: Locally constraint permutation automaton
results in a retokenization of the bilanguage into to!OF & sentence with 4 words and window size of 2.
kens of source-target phrase pairs. 2.7 Global Reordering

2.4 SFST Model Local reordering as described in Section 2.3 is re-

From the bilanguage corpus, we train anz-gram stricted by the window siz& and accounts only for
language model using standard tools (Goffin et a/different word order within phrases. As permuting
2005). The resulting language model is represent&Pn-linear automata is too complex, we apply global
as a weighted finite-state automatofi ¥ 7' — reordering by permuting the words of the best trans-
[0,1]). The symbols on the arcs of this automatof2tion and weighting the result by an n-gram lan-
(si_t;) are interpreted as having the source and targ8@9e model (see also Figure 2):

symbols ;:t;), making it into a weighted finite-state T* = BestPath(perm(T") o LMy) (6)
transducer§ — T x [0, 1]) that provides a weighted _ o _
string-to-string transduction frori into 7" : Even the size of the minimal permutation automa-

ton of a linear automaton grows exponentially with
the length of the input sequence. While decoding by
25 Decoding cpmpositi.on simpl;_/ resembles the principle of mem-

_ _ oization (i.e. here: all state hypotheses of a whole
Since we represent the translation model as gentence are kept in memory), it is necessary to ei-
weighted finite-state transducef(ansFST), the ther use heuristic forward pruning or constrain per-
decoding process of translating a new source inpytations to be within a local window of adjustable
put (sentence or weighted latticé&)) amounts to  sjze (also see (Kanthak et al., 2005)). We have cho-
a transducer compositior)(and selection of the sen to constrain permutations here. Figure 5 shows
best probability path§est Path) resulting from the  the resulting minimal permutation automaton for an
composition and projecting the target sequens. ( jnput sequence of 4 words and a window size of 2.

T* = m1(BestPath(Iy o TransFST))  (4) Decoding ASR output in combination with global
reordering uses-best lists or extracts them from lat-

However, we have noticed that on the developtices first. Each entry of the-best list is decoded
ment corpus, the decoded target sentence is typicaigparately and the best target sentence is picked
shorter than the intended target sentence. This mi&em the union of the: intermediate results.
match may be due to the incorrect estimation of the o .
back-off events and their probabilities in the train3 Discriminant Models for Lexical
ing phase of the transducer. In order to alleviate Selection

this mismatch, we introduce a negative word iNS€frpe apnroach from the previous section is a genera-
tion penalty model as a mechanism to produce moRe model for statistical machine translation relying
words in the target sentence. on local associations between source and target sen-
26 Word Insertion Model tences. Now, we present our approach fgiebal

. . _ lexical selection model based on discriminatively
Th? word Insertion model is also e_nc_oded 8S fained classification techniques. Discriminant mod-
weighted finite-state automaton and is included '@Iing techniques have become the dominant method

the decoding sequence as shown in Equation 5. TRe yasqlving ambiguity in speech and other NLP
word insertion FST has one state dnd ;- | number ooy s “qutperforming generative models. Discrimi-

of arcs each weighted with aweight representing na+ive training has been used mainly for translation
the word insertion cost. On composition as showp, ,4el combination (Och and Ney, 2002) and with
in Equation 5, the word insertion model penalizes Ofyg exception of (Wellington et al., 2006; Tillmann
rewards paths which have more words depending Qg zhang, 2006), has not been used to directly train
whether) is positive or negative value. parameters of a translation model. We expect dis-
T* = m(BestPath(IsoTransFSToWIP)) (5) criminatively trained global lexical selection models

*
T = argmax P(s;,ti]si—1,ti-1...8i—n-1,ti—n-1)
T
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to outperform generatively trained local lexical sediffering language pairs, the alignment algorithms
lection models as well as provide a framework fosuch as GIZA++ perform poorly.
incorporating rich morpho-syntactic information. These observations prompted us to formulate the
Statistical machine translation can be formulatetéxical choice problenwithout the need for word
as a search for the best target sequence that maaiignment information. We require a sentence
mizesP(T'|S), whereS is the source sentence andaligned corpus as before, but we treat the target sen-
T is the target sentence. Ideallf(7|S) should tence as a bag-of-words or BOW assigned to the
be estimated directly to maximize the conditionakource sentence. The goal is, given a source sen-
likelihood on the training data (discriminant model)tence, to estimate the probability that we find a given
However,T' corresponds to a sequence with a exword in the target sentence. This is why, instead of
ponentially large combination of possible labelsproducing a target sentence, what we initially obtain
and traditional classification approaches cannot he a target bag of words. Each word in the target vo-
used directly. Although Conditional Random Fieldscabulary is detected independently, so we have here
(CRF) (Lafferty et al., 2001) train an exponentiala very simple use of binary static classifiers. Train-
model at the sequence level, in translation tasks sugtg sentence pairs are considered as positive exam-
as ours the computational requirements of trainingles when the word appears in the target, and neg-
such models are prohibitively expensive. ative otherwise. Thus, the number of training ex-
We investigate two approaches to approximatingmples equals the number of sentence pairs, in con-
the string level global classification problem, usindrast to the sequential lexical choice model which
different independence assumptions. A comparisdras one training example for each token in the bilin-
of the two approaches is summarized in Table 1. gual training corpus. The classifier is trained with
gram featuresBOgrams(S)) from the source sen-
3.1 Sequential Lexical Choice Model tence. During decoding the words with conditional

In the first approach, we formulate a sequential IgRrobability greater than a threshdldre considered
cal classification problem as shown in Equations 7S the result of lexical choice decoding.

This' approach is similar to _the SFST approach in BOW}. = {t|P(t|BOgrams(S)) > 0} (8)

that it relies on local associations between the sourceF . h d ¢ ds i
and target words(phrases). We can use a conditional ©f 'econstructing the proper order of words in
model (instead of a joint model as before) and th'€ target sentence we consider all permutations of
parameters are determined using discriminant traitfiords in BOWr. and weight them by a target lan-

ina which all for rich ditioni . guage model. 'This step is similar to the one de-
g ows for richer conditioning context scribed in Section 2.7. The BOW approach can also

P(T|S) = HN P(t:|®(S, 7)) @) be maodified to allow for length adjustments of tar-
i=1 ’ get sentences, if we add optional deletions in the fi-

where®(S, i) is a set of features extracted from thenal step of permutation decoding. The paraméter
source stringS (shortened a® in the rest of the and an additional word deletion penalty can then be

section). used to adjust the length of translated outputs. In
Section 6, we discuss several issues regarding this
3.2 Bag-of-Words Lexical Choice Model model.

The sequential lexical choice model described iﬁ
the previous section treats the selection of a lexical
choice for a source word in the local lexical contexThis section addresses the choice of the classifi-
as a classification task. The data for training sucbation technique, and argues that one technique
models is derived from word alignments obtainedhat yields excellent performance while scaling well
by e.g. GIZA++. The decoded target lexical itemss binary maximum entropy (Maxentyith L1-
have to be further reordered, but for closely relatecegularization
languages the reordering could be incorporated into ) ] o
correctly ordered target phrases as discussed prefil Multiclass vs. Binary Classification
ously. The Sequential and BOW models represent two dif-
For pairs of languages with radically differentferent classification problems. In the sequential
word order (e.g. English-Japanese), there needsnmdel, we have anulticlassproblem where each
be a global reordering of words similar to the caselasst; is exclusive, therefore, all the classifier out-
in the SFST-based translation system. Also, for sugbuts P(¢;|®) must be jointly optimized such that

Choosing the classifier
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Table 1: A comparison of the sequential and bag-of-words lexical choice models

Sequential Lexical Model Bag-of-Words Lexical Model

Output target Target word for each source position Target word given a source sentence

Input features BOgram(S,i —d,i + d) : bag ofn-grams BOgram(S,0,]S5]): bag ofn-grams
in source sentence in the interfal- d,¢ + d] | in source sentence

Probabilities P(t;|BOgram(S,i —d,i + d)) P(BOW (T)[BOgram(S,0,]57))
Independence assumption between the labels

Number of classes One per target word or phrase

Training samples | One per source token One per sentence

Preprocessing Source/Targetvord alignment Source/Targesentencalignment

>, P(t;/®) = 1. This can be problematic: with also called Maxent as it finds the distribution
one classifier per word in the vocabulary, even allo-  with maximum entropyhat properly estimates
cating the memory during training may exceed the the average of each feature over the training
memory capacity of current computers. data (Berger et al., 1996).
In the BOW model, each class can be detected ] ]
independently, and two different classes can be d# previous studies, we found that the best accuracy
tected at the same time. This is known as the 1-vés achieved with non-linear (or kernel) SVMs, at the
other scheme. The key advantage over the multicla¥Pense of a high test time complexity, which is un-
scheme is that not all classifiers have to reside icceptable for machine translation. Linear SVMs
memory at the same time during training which aland regularized Maxent yield similar performance.
lows for parallelization. Fortunately for the sequen!n theory, Maxent training, which scales linearly
tial model, we can decompose a multiclass classif¥ith the number of examples, is faster than SVM
cation problem into separate 1-vs-other problems. i@ining, which scales quadratically with the num-
theory, one has to make an additional independenb€" of examples. In our first experiments with lexi-
assumption and the problem statement becomes d#@! choice models, we observed that Maxent slightly
string with components; (¢) where probability of SVMs, some classes of words were over-detected.
each component is estimated independently: This suggests that, as theory predicts, SVMs do not
properly approximate the posterior probability. We
1 therefore chose to use Maxent as the best probability

POb;i(t)|®) =1— P(b;(t)|®) = ——F———
(b; (1)|®) (b; (1)|®) 1+e A=2)®  approximator.

In practice, despite the approximation, the 1-vsp 3 | 1 ys. L2 regularization

other scheme has been shown to perform as well as .. : . . .

the multiclass scheme (Rifkin and Klautau, 2004)!raditionally, Maxent is regularized by imposing a

As a consequence, we use the same type of binagpussian prior on each weight: this L2 regulariza-

classifier for the sequential and the BOW models. Uon finds the solution with the smallest possible
The excellent results recently obtained with thd/€ights. However, on tasks like machine translation

SEARN algorithm (Daume et al., 2007) also sugWith @ very large number of input features, a Lapla-

gest that binary classifiers, when properly traine§ian L1 regularization that also attempts to maxi-

and combined, seem to be capable of matching mo ze the number of zero weights is highl_y desirable.
complexstructuredoutput approaches. A new L1l-regularized Maxent algorithms was
proposed for density estimation (Dudik et al., 2004)

4.2 Geometric vs. Probabilistic Interpretation ~ and we adapted it to classification. We found this al-
%orithm to converge faster than the current state-of-
the-art in Maxent training, which is L2-regularized
L-BFGS (Malouf, 2002’*). Moreover, the number of
e Geometric approaches maximize the width ofrained parameters is considerably smaller.

a separation margin between the classes. The ,

most popular method is the Support Vector Ma®  Data and Experiments

chine (SVM) (Vapnik, 1998). We have performed experiments on the IWSLT06

e Probabilistic approaches maximize the con&hinese-English training and development sets from

ditional likelihood of the output class given iye ysed the implementation available  at
the input features. This logistic regression isttp://homepages.inf.ed.ac.uk/s0450736/maxeolkit.html

We separate the most popular classification tec
nigues into two broad categories:
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Table 2: Statistics of training and development data from 2005/20886i(st of multiple translations only).

Training (2005) Dev 2005 Dev 2006
Chinese| English | Chinese[ English | Chinese| English

Sentences 46,311 506 489
Running Words| 351,060 376,615| 3,826 3,897 5214 T 6,362
Vocabulary 11,178 | 11,232 931 898 1,136 | 1,134
Singletons 4,348 4,866 600 538 619 574
OOVs [%] - - 0.6 0.3 0.9 1.0
ASR WER [%] - - - - 25.2 -
Perplexity - - 33 - 86
# References - - 16

2005 and 2006. The data are traveler task ex-he reason is that the sequential Maxent model re-
pressions such as seeking directions, expressiondlies on the word alignment, which, if erroneous, re-
restaurants and travel reservations. Table 2 presestdts in incorrect predictions by the sequential Max-
some statistics on the data sets. It must be notest model. The BOW model does not rely on the
that while the 2005 development set matches th&ord-level alignment and can be interpreted as a dis-
training data closely, the 2006 development set hasiminatively trained model of dictionary lookup for
been collected separately and shows slightly diffea target word in the context of a source sentence.
ent statistics for average sentence length, vocabulary
size and out-of-vocabulary words. Also the 200%
[

development set contains no punctuation marks ifP!e 3: Results (mBLEU) scores for the three dif-

[ i i i dels on the transcriptions for development
Chinese, but the corresponding English translatiod§'®"t MO
have punctuation marks. We also evaluated ot 2005 and 2006 and ASR 1-best for development

models on the Chinese speech recognition outpﬁ?t 2006.

. . Dev 2005 Dev 2006
and we report results using 1-best with a word er- Text T Text | ASR 1-best
ror rate of 25.2%. FST 51.8 | 195 16.5

i i i Seq. Maxent 535 19.4 16.3
For the experiments, we tokenized _the Chinese e o e
sentences into character strings and trained the mod-
els discussed in the previous sections. Also, we - .
trained a punctuation prediction model using Max: 0’82 ('jg?/gitegégt tshe? ﬁ:;iéﬁéi?:g dcijfc;g?emnﬁngotru?
ent framework on the Chinese character strings i% P y

order to insert punctuation marks into the 2006 dégag;?q t?héheeggfmgﬁgne %??Ee MDaizntton:gcljselrsngr_e
velopment data set. The resulting character strin ’ P

with punctuation marks is used as input to the trang; t very different from t_he .FST model,_ Indicating
lation decoder. For the 2005 development set, pun 1€ lack of good generalization across different gen-

tuation insertion was not needed since the Chine$&S: However, we believe that the Maxent frame-

sentences already had the true punctuation markswork allows for incorporation of linguistic features
In Table 3 we present the results of the three ClitI_hat could potentially help in generalization across

; . enres. For translation of ASR 1-best, we see a sys-
ferent translation models — FST, Seq'uentlal .Maxe'?ématic degradation of about 3% in mBLEU scor)(/a
and B_OW Maxent. There are a few interesting Ob'ompared to translating the transcription.
servations that can be made based on these resu S order to compensate for the mismatch between
First, on the 2005 development set, the sequennme 2005 and 2006 data sets, we computed a 10-fold
Maxent model outperforms the FST model, evel3verage mMBLEU score by including 90% of the 2006

though the two models were trained starting fro - o - o
the same GIZA++ alignment. The difference, how"_&levelopment set into the training set and using 10%

ever. is due to the fact that Maxent models can co of the 2006 development set for testing, each time.

L . e average mBLEU score across these 10 runs in-
with increased lexical contektand the parameters creased to 22.8.

of the model are discriminatively trained. The more - :
surprising result is that the BOW Maxent model sig- In Figure 6 we show the improvement of mBLEU

. : cores with the increase in permutation window size.
nificantly outperforms the sequential Maxent mode@ve had to limit to a permutation window size of 10

2We use 6 words to the left and right of a source word fordue to memory limitations, even though the curve
sequential Maxent, but only 2 preceding source and target word@S Not plateaued. We anticipate using pruning tech-

for FST approach. niques we can increase the window size further.
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T model. Information about the grammatical role of a
] word in the source sentence is completely lost. The
language model might fortuitously recover this in-
formation if the sentence with the correct grammat-
] ical role for the word happens to be the maximum
] likelihood sentence in the permutation automaton.
We are currently working toward incorporating
syntactic information on the target words so as to be
] able to recover some of the grammatical role infor-
mation lost in the classification process. In prelimi-

L L L L L L
6 65 7 75 8 85 9 95 10

_ pemiaton o e _ nary experiments, we have associated the target lex-
Figure 6: Improvement in mBLEU score with thejcal items with supertag information (Bangalore and
increase in size of the permutation window Joshi, 1999). Supertags are labels that provide linear

. . ordering constraints as well as grammatical relation
5.1 United Nations and Hansard Corpora information. Although associating supertags to tar-
In order to test the scalability of the global lexicalget words increases the class set for the classifier, we
selection approach, we also performed lexical sérave noticed that the degradation in the F-score is
lection experiments on the United Nations (Arabicon the order of 3% across different corpora. The su-
English) corpus and the Hansard (French-Englisthertag information can then be exploited in the sen-
corpus using the SFST model and the BOW Maxengénce construction process. The use of supertags in
model. We used 1,000,000 training sentence paiffhrase-based SMT system has been shown to im-
and tested on 994 test sentences for the UN corpysrove results (Hassan et al., 2006).
For the Hansard corpus we used the same training A |ess obvious loss is the number of times a word
and test Sp“t asin (Zens and Ney, 2004) 1.4 ml”lor&)r Concept appears in the target senten&elnc-
training sentence pairs and 5432 test sentences. Tthﬂ'] words like "the” and "of” can appear many
vocabulary sizes for the two corpora are mentionegimes in an English sentence. In the model dis-
in Table 4. Also in Table 4, are the results in terms Oéussed in this paper, we index each occurrence of the
F-measure between the words in the reference sefinction word with a counter. In order to improve
tence and the decoded sentences. We can see thattmg method’ we are Currenﬂy exp|oring a technique
BOW model outperforms the SFST model on bothyhere the function words serve as attributes (e.g.
corpora significantly. This is due to a systematigjefiniteness, tense, case) on the contentful lexical
10% relative improvement for open class words, agems, thus enriching the lexical item with morpho-
they benefit from a much wider context. BOW persyntactic information.
formance on close class words is higher for the UN" A third issue concerning the BOW model is the
corpus but lower for the Hansard corpus. problem ofsynonyms- target words which translate
the same source word. Suppose that in the training
Table 4: Lexical Selection results (F-measure) Ofata, target words and¢, are, with equal probabil-
the Arabic-English UN Corpus and the Frenchity, translations of the same source word. Then, in
English Hansard Corpus. In parenthesis are khe presence of this source word, the probability to
measures for open and closed class lexical items. detect the corresponding target word, which we as-

Corpus < VocabulTary . SFST BOW sume is 0.8, will be, because of discriminant learn-
ource arge . . )
UN [ 252571 53,005 646 695 ing, split equally betweem, andts, that is 0.4 and
(60.5/69.1) | (66.2/72.6) 0.4. Because of this synonym problem, the BOW
Hansard| 100,270] 78,333 574 60.8 thresholdd has to be set lower than 0.5, which is
(50.6/67.7)| (56.5/634)|  pserved experimentally. However, if we set the

threshold to 0.3, both;, andt, will be detected in

the target sentence, and we found this to be a major
The BOW approach is promising as it performs reasource of undesirable insertions.
sonably well despite considerable losses in the trans-The BOW approach is different from the pars-
fer of information between source and target laning based approaches (Melamed, 2004; Zhang and
guage. The first and most obvious loss is about wor@ildea, 2005; Cowan et al., 2006) where the transla-
position. The only information we currently use totion model tightly couples the syntactic and lexical
restore the target word position is the target languagieems of the two languages. The decoupling of the

6 Discussion
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two steps in our model has the potential for genem. Dudik, S. Phillips, and R.E. Schapire. 2004. Perfor-
ating paraphrased sentences not necessarily isomormance Guarantees for Regularized Maximum Entropy Den-

phic to the structure of the source sentence. sity_Estimation. InProceedings of COLT'QBanff, Canada.
Springer Verlag.
7 Conclusions V. Goffin, C. Allauzen, E. Bocchieri, D. Hakkani-Tur, A. Ljolje,
. . . L. . S. Parthasarathy, M. Rahim, G. Riccardi, and M. Saraclar.
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