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Abstract

Machine translation of a source language
sentence involves selecting appropriate tar-
get language words and ordering the se-
lected words to form a well-formed tar-
get language sentence. Most of the pre-
vious work on statistical machine transla-
tion relies on (local) associations of target
words/phrases with source words/phrases
for lexical selection. In contrast, in this pa-
per, we present a novel approach to lexical
selection where the target words are associ-
ated with the entire source sentence (global)
without the need to compute local associa-
tions. Further, we present a technique for
reconstructing the target language sentence
from the selected words. We compare the re-
sults of this approach against those obtained
from a finite-state based statistical machine
translation system which relies on local lex-
ical associations.

1 Introduction

Machine translation can be viewed as consisting of
two subproblems: (a) lexical selection, where appro-
priate target language lexical items are chosen for
each source language lexical item and (b) lexical re-
ordering, where the chosen target language lexical
items are rearranged to produce a meaningful target
language string. Most of the previous work on statis-
tical machine translation, as exemplified in (Brown
et al., 1993), employs word-alignment algorithm
(such as GIZA++ (Och and Ney, 2003)) that pro-
vides local associations between source and target
words. The source-to-target word alignments are
sometimes augmented with target-to-source word
alignments in order to improve precision. Further,
the word-level alignments are extended to phrase-
level alignments in order to increase the extent of

local associations. The phrasal associations compile
some amount of (local) lexical reordering of the tar-
get words – those permitted by the size of the phrase.
Most of the state-of-the-art machine translation sys-
tems use phrase-level associations in conjunction
with a target language model to produce sentences.
There is relatively little emphasis on (global) lexical
reordering other than the local reorderings permit-
ted within the phrasal alignments. A few exceptions
are the hierarchical (possibly syntax-based) trans-
duction models (Wu, 1997; Alshawi et al., 1998;
Yamada and Knight, 2001; Chiang, 2005) and the
string transduction models (Kanthak et al., 2005).

In this paper, we present an alternate approach to
lexical selection and lexical reordering. For lexical
selection, in contrast to the local approaches of as-
sociating target to source words, we associate tar-
get words to the entire source sentence. The intu-
ition is that there may be lexico-syntactic features of
the source sentence (not necessarily a single source
word) that might trigger the presence of a target
word in the target sentence. Furthermore, it might be
difficult to exactly associate a target word to a source
word in many situations – (a) when the translations
are not exact but paraphrases (b) when the target lan-
guage does not have one lexical item to express the
same concept that is expressed by a source word.
Extending word to phrase alignments attempts to ad-
dress some of these situations while alleviating the
noise in word-level alignments.

As a consequence of this global lexical selection
approach, we no longer have a tight association be-
tween source and target language words. The re-
sult of lexical selection is simply a bag of words in
the target language and the sentence has to be recon-
structed using this bag of words. The words in the
bag, however, might be enhanced with rich syntactic
information that could aid in reconstructing the tar-
get sentence. This approach to lexical selection and
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sentence reconstruction has the potential to circum-
vent limitations of word-alignment based methods
for translation between languages with significantly
different word order (e.g. English-Japanese).

In this paper, we present the details of training
a global lexical selection model using classifica-
tion techniques and sentence reconstruction mod-
els using permutation automata. We also present a
stochastic finite-state transducer (SFST) as an exam-
ple of an approach that relies on local associations
and use it to compare and contrast our approach.

2 SFST Training and Decoding

In this section, we describe each of the components
of our SFST system shown in Figure 1. The SFST
approach described here is similar to the one de-
scribed in (Bangalore and Riccardi, 2000) which has
subsequently been adopted by (Banchs et al., 2005).

2.1 Word Alignment

The first stage in the process of training a lexical se-
lection model is obtaining an alignment function (f )
that given a pair of source (s1s2 . . . sn) and target
(t1t2 . . . tm) language sentences, maps source lan-
guage word subsequences into target language word
subsequences, as shown below.

∀i∃j(f(si) = tj ∨ f(si) = ε) (1)

For the work reported in this paper, we have used
the GIZA++ tool (Och and Ney, 2003) which im-
plements a string-alignment algorithm. GIZA++
alignment however is asymmetric in that the word
mappings are different depending on the direction
of alignment – source-to-target or target-to-source.
Hence in addition to the functionsf as shown in
Equation 1 we train another alignment functiong :

∀j∃i(g(tj) = si ∨ g(tj) = ε) (2)

English: I need to make a collect call
Japanese:ÏH �Ã�� ��Âk $*d »^%�cW2
Alignment: 1 5 0 3 0 2 4

Figure 3: Example bilingual texts with alignment in-
formation

I:ÏH need:»^%�cW2 to:ε make:��Âk
a:ε collect�Ã�� call $*d

Figure 4: Bilanguage strings resulting from align-
ments shown in Figure 3.

2.2 Bilanguage Representation

From the alignment information (see Figure 3), we
construct a bilanguage representation of each sen-
tence in the bilingual corpus. The bilanguage string
consists of source-target symbol pair sequences as
shown in Equation 3. Note that the tokens of a bilan-
guage could be either ordered according to the word
order of the source language or ordered according to
the word order of the target language.

Bf = bf1 b
f
2 . . . bfm (3)

bfi = (si−1; si, f(si)) if f(si−1) = ε

= (si, f(si−1); f(si)) if si−1 = ε

= (si, f(si)) otherwise

Figure 4 shows an example alignment and the
source-word-ordered bilanguage strings correspond-
ing to the alignment shown in Figure 3.

We also construct a bilanguage using the align-
ment functiong similar to the bilanguage using the
alignment functionf as shown in Equation 3.

Thus, the bilanguage corpus obtained by combin-
ing the two alignment functions isB = Bf ∪Bg.
2.3 Bilingual Phrases and Local Reordering

While word-to-word translation only approximates
the lexical selection process, phrase-to-phrase map-
ping can greatly improve the translation of colloca-
tions, recurrent strings, etc. Using phrases also al-
lows words within the phrase to be reordered into the
correct target language order, thus partially solving
the reordering problem. Additionally, SFSTs can
take advantage of phrasal correlations to improve the
computation of the probabilityP (WS ,WT ).

The bilanguage representation could result in
some source language phrases to be mapped toε
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(empty target phrase). In addition to these phrases,
we compute subsequences of a given lengthk on the
bilanguage string and for each subsequence we re-
order the target words of the subsequence to be in
the same order as they are in the target language sen-
tence corresponding to that bilanguage string. This
results in a retokenization of the bilanguage into to-
kens of source-target phrase pairs.

2.4 SFST Model

From the bilanguage corpusB, we train ann-gram
language model using standard tools (Goffin et al.,
2005). The resulting language model is represented
as a weighted finite-state automaton (S × T →
[0, 1]). The symbols on the arcs of this automaton
(si ti) are interpreted as having the source and target
symbols (si:ti), making it into a weighted finite-state
transducer (S → T×[0, 1]) that provides a weighted
string-to-string transduction fromS into T :

T ∗ = argmax
T

P (si, ti|si−1, ti−1 . . . si−n−1, ti−n−1)

2.5 Decoding

Since we represent the translation model as a
weighted finite-state transducer (TransFST ), the
decoding process of translating a new source in-
put (sentence or weighted lattice (Is)) amounts to
a transducer composition (◦) and selection of the
best probability path (BestPath) resulting from the
composition and projecting the target sequence (π1).

T ∗ = π1(BestPath(Is ◦ TransFST )) (4)

However, we have noticed that on the develop-
ment corpus, the decoded target sentence is typically
shorter than the intended target sentence. This mis-
match may be due to the incorrect estimation of the
back-off events and their probabilities in the train-
ing phase of the transducer. In order to alleviate
this mismatch, we introduce a negative word inser-
tion penalty model as a mechanism to produce more
words in the target sentence.

2.6 Word Insertion Model

The word insertion model is also encoded as a
weighted finite-state automaton and is included in
the decoding sequence as shown in Equation 5. The
word insertion FST has one state and|∑T | number
of arcs each weighted with aλ weight representing
the word insertion cost. On composition as shown
in Equation 5, the word insertion model penalizes or
rewards paths which have more words depending on
whetherλ is positive or negative value.

T ∗ = π1(BestPath(Is◦TransFST◦WIP )) (5)
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Figure 5: Locally constraint permutation automaton
for a sentence with 4 words and window size of 2.

2.7 Global Reordering

Local reordering as described in Section 2.3 is re-
stricted by the window sizek and accounts only for
different word order within phrases. As permuting
non-linear automata is too complex, we apply global
reordering by permuting the words of the best trans-
lation and weighting the result by an n-gram lan-
guage model (see also Figure 2):

T ∗ = BestPath(perm(T ′) ◦ LMt) (6)

Even the size of the minimal permutation automa-
ton of a linear automaton grows exponentially with
the length of the input sequence. While decoding by
composition simply resembles the principle of mem-
oization (i.e. here: all state hypotheses of a whole
sentence are kept in memory), it is necessary to ei-
ther use heuristic forward pruning or constrain per-
mutations to be within a local window of adjustable
size (also see (Kanthak et al., 2005)). We have cho-
sen to constrain permutations here. Figure 5 shows
the resulting minimal permutation automaton for an
input sequence of 4 words and a window size of 2.

Decoding ASR output in combination with global
reordering usesn-best lists or extracts them from lat-
tices first. Each entry of then-best list is decoded
separately and the best target sentence is picked
from the union of then intermediate results.

3 Discriminant Models for Lexical
Selection

The approach from the previous section is a genera-
tive model for statistical machine translation relying
on local associations between source and target sen-
tences. Now, we present our approach for aglobal
lexical selection model based on discriminatively
trained classification techniques. Discriminant mod-
eling techniques have become the dominant method
for resolving ambiguity in speech and other NLP
tasks, outperforming generative models. Discrimi-
native training has been used mainly for translation
model combination (Och and Ney, 2002) and with
the exception of (Wellington et al., 2006; Tillmann
and Zhang, 2006), has not been used to directly train
parameters of a translation model. We expect dis-
criminatively trained global lexical selection models
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to outperform generatively trained local lexical se-
lection models as well as provide a framework for
incorporating rich morpho-syntactic information.

Statistical machine translation can be formulated
as a search for the best target sequence that maxi-
mizesP (T |S), whereS is the source sentence and
T is the target sentence. Ideally,P (T |S) should
be estimated directly to maximize the conditional
likelihood on the training data (discriminant model).
However,T corresponds to a sequence with a ex-
ponentially large combination of possible labels,
and traditional classification approaches cannot be
used directly. Although Conditional Random Fields
(CRF) (Lafferty et al., 2001) train an exponential
model at the sequence level, in translation tasks such
as ours the computational requirements of training
such models are prohibitively expensive.

We investigate two approaches to approximating
the string level global classification problem, using
different independence assumptions. A comparison
of the two approaches is summarized in Table 1.

3.1 Sequential Lexical Choice Model

In the first approach, we formulate a sequential lo-
cal classification problem as shown in Equations 7.
This approach is similar to the SFST approach in
that it relies on local associations between the source
and target words(phrases). We can use a conditional
model (instead of a joint model as before) and the
parameters are determined using discriminant train-
ing which allows for richer conditioning context.

P (T |S) =
∏N

i=1
P (ti|Φ(S, i)) (7)

whereΦ(S, i) is a set of features extracted from the
source stringS (shortened asΦ in the rest of the
section).

3.2 Bag-of-Words Lexical Choice Model

The sequential lexical choice model described in
the previous section treats the selection of a lexical
choice for a source word in the local lexical context
as a classification task. The data for training such
models is derived from word alignments obtained
by e.g. GIZA++. The decoded target lexical items
have to be further reordered, but for closely related
languages the reordering could be incorporated into
correctly ordered target phrases as discussed previ-
ously.

For pairs of languages with radically different
word order (e.g. English-Japanese), there needs to
be a global reordering of words similar to the case
in the SFST-based translation system. Also, for such

differing language pairs, the alignment algorithms
such as GIZA++ perform poorly.

These observations prompted us to formulate the
lexical choice problemwithout the need for word
alignment information. We require a sentence
aligned corpus as before, but we treat the target sen-
tence as a bag-of-words or BOW assigned to the
source sentence. The goal is, given a source sen-
tence, to estimate the probability that we find a given
word in the target sentence. This is why, instead of
producing a target sentence, what we initially obtain
is a target bag of words. Each word in the target vo-
cabulary is detected independently, so we have here
a very simple use of binary static classifiers. Train-
ing sentence pairs are considered as positive exam-
ples when the word appears in the target, and neg-
ative otherwise. Thus, the number of training ex-
amples equals the number of sentence pairs, in con-
trast to the sequential lexical choice model which
has one training example for each token in the bilin-
gual training corpus. The classifier is trained withn-
gram features (BOgrams(S)) from the source sen-
tence. During decoding the words with conditional
probability greater than a thresholdθ are considered
as the result of lexical choice decoding.

BOW ∗T = {t|P (t|BOgrams(S)) > θ} (8)

For reconstructing the proper order of words in
the target sentence we consider all permutations of
words inBOW ∗T and weight them by a target lan-
guage model. This step is similar to the one de-
scribed in Section 2.7. The BOW approach can also
be modified to allow for length adjustments of tar-
get sentences, if we add optional deletions in the fi-
nal step of permutation decoding. The parameterθ
and an additional word deletion penalty can then be
used to adjust the length of translated outputs. In
Section 6, we discuss several issues regarding this
model.

4 Choosing the classifier

This section addresses the choice of the classifi-
cation technique, and argues that one technique
that yields excellent performance while scaling well
is binary maximum entropy (Maxent)with L1-
regularization.

4.1 Multiclass vs. Binary Classification

The Sequential and BOW models represent two dif-
ferent classification problems. In the sequential
model, we have amulticlassproblem where each
classti is exclusive, therefore, all the classifier out-
puts P (ti|Φ) must be jointly optimized such that
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Table 1: A comparison of the sequential and bag-of-words lexical choice models
Sequential Lexical Model Bag-of-Words Lexical Model

Output target Target word for each source positioni Target word given a source sentence
Input features BOgram(S, i− d, i+ d) : bag ofn-grams BOgram(S, 0, |S|): bag ofn-grams

in source sentence in the interval[i− d, i+ d] in source sentence
Probabilities P (ti|BOgram(S, i− d, i+ d)) P (BOW (T )|BOgram(S, 0, |S|))

Independence assumption between the labels
Number of classes One per target word or phrase
Training samples One per source token One per sentence
Preprocessing Source/Targetwordalignment Source/Targetsentencealignment

∑
i P (ti|Φ) = 1. This can be problematic: with

one classifier per word in the vocabulary, even allo-
cating the memory during training may exceed the
memory capacity of current computers.

In the BOW model, each class can be detected
independently, and two different classes can be de-
tected at the same time. This is known as the 1-vs-
other scheme. The key advantage over the multiclass
scheme is that not all classifiers have to reside in
memory at the same time during training which al-
lows for parallelization. Fortunately for the sequen-
tial model, we can decompose a multiclass classifi-
cation problem into separate 1-vs-other problems. In
theory, one has to make an additional independence
assumption and the problem statement becomes dif-
ferent. Each output labelt is projected into a bit
string with componentsbj(t) where probability of
each component is estimated independently:

P (bj(t)|Φ) = 1− P (b̄j(t)|Φ) =
1

1 + e−(λj−λj̄)·Φ

In practice, despite the approximation, the 1-vs-
other scheme has been shown to perform as well as
the multiclass scheme (Rifkin and Klautau, 2004).
As a consequence, we use the same type of binary
classifier for the sequential and the BOW models.

The excellent results recently obtained with the
SEARN algorithm (Daume et al., 2007) also sug-
gest that binary classifiers, when properly trained
and combined, seem to be capable of matching more
complexstructuredoutput approaches.

4.2 Geometric vs. Probabilistic Interpretation

We separate the most popular classification tech-
niques into two broad categories:

• Geometric approaches maximize the width of
a separation margin between the classes. The
most popular method is the Support Vector Ma-
chine (SVM) (Vapnik, 1998).

• Probabilistic approaches maximize the con-
ditional likelihood of the output class given
the input features. This logistic regression is

also called Maxent as it finds the distribution
with maximum entropythat properly estimates
the average of each feature over the training
data (Berger et al., 1996).

In previous studies, we found that the best accuracy
is achieved with non-linear (or kernel) SVMs, at the
expense of a high test time complexity, which is un-
acceptable for machine translation. Linear SVMs
and regularized Maxent yield similar performance.
In theory, Maxent training, which scales linearly
with the number of examples, is faster than SVM
training, which scales quadratically with the num-
ber of examples. In our first experiments with lexi-
cal choice models, we observed that Maxent slightly
outperformed SVMs. Using a single threshold with
SVMs, some classes of words were over-detected.
This suggests that, as theory predicts, SVMs do not
properly approximate the posterior probability. We
therefore chose to use Maxent as the best probability
approximator.

4.3 L1 vs. L2 regularization

Traditionally, Maxent is regularized by imposing a
Gaussian prior on each weight: this L2 regulariza-
tion finds the solution with the smallest possible
weights. However, on tasks like machine translation
with a very large number of input features, a Lapla-
cian L1 regularization that also attempts to maxi-
mize the number of zero weights is highly desirable.

A new L1-regularized Maxent algorithms was
proposed for density estimation (Dudik et al., 2004)
and we adapted it to classification. We found this al-
gorithm to converge faster than the current state-of-
the-art in Maxent training, which is L2-regularized
L-BFGS (Malouf, 2002)1. Moreover, the number of
trained parameters is considerably smaller.

5 Data and Experiments

We have performed experiments on the IWSLT06
Chinese-English training and development sets from

1We used the implementation available at
http://homepages.inf.ed.ac.uk/s0450736/maxenttoolkit.html

156



Table 2: Statistics of training and development data from 2005/2006 (∗ = first of multiple translations only).
Training (2005) Dev 2005 Dev 2006

Chinese English Chinese English Chinese English
Sentences 46,311 506 489
Running Words 351,060 376,615 3,826 3,897 5,214 6,362∗

Vocabulary 11,178 11,232 931 898 1,136 1,134∗

Singletons 4,348 4,866 600 538 619 574∗

OOVs [%] - - 0.6 0.3 0.9 1.0
ASR WER [%] - - - - 25.2 -
Perplexity - - 33 - 86 -
# References - - 16 7

2005 and 2006. The data are traveler task ex-
pressions such as seeking directions, expressions in
restaurants and travel reservations. Table 2 presents
some statistics on the data sets. It must be noted
that while the 2005 development set matches the
training data closely, the 2006 development set has
been collected separately and shows slightly differ-
ent statistics for average sentence length, vocabulary
size and out-of-vocabulary words. Also the 2006
development set contains no punctuation marks in
Chinese, but the corresponding English translations
have punctuation marks. We also evaluated our
models on the Chinese speech recognition output
and we report results using 1-best with a word er-
ror rate of 25.2%.

For the experiments, we tokenized the Chinese
sentences into character strings and trained the mod-
els discussed in the previous sections. Also, we
trained a punctuation prediction model using Max-
ent framework on the Chinese character strings in
order to insert punctuation marks into the 2006 de-
velopment data set. The resulting character string
with punctuation marks is used as input to the trans-
lation decoder. For the 2005 development set, punc-
tuation insertion was not needed since the Chinese
sentences already had the true punctuation marks.

In Table 3 we present the results of the three dif-
ferent translation models – FST, Sequential Maxent
and BOW Maxent. There are a few interesting ob-
servations that can be made based on these results.
First, on the 2005 development set, the sequential
Maxent model outperforms the FST model, even
though the two models were trained starting from
the same GIZA++ alignment. The difference, how-
ever, is due to the fact that Maxent models can cope
with increased lexical context2 and the parameters
of the model are discriminatively trained. The more
surprising result is that the BOW Maxent model sig-
nificantly outperforms the sequential Maxent model.

2We use 6 words to the left and right of a source word for
sequential Maxent, but only 2 preceding source and target words
for FST approach.

The reason is that the sequential Maxent model re-
lies on the word alignment, which, if erroneous, re-
sults in incorrect predictions by the sequential Max-
ent model. The BOW model does not rely on the
word-level alignment and can be interpreted as a dis-
criminatively trained model of dictionary lookup for
a target word in the context of a source sentence.

Table 3: Results (mBLEU) scores for the three dif-
ferent models on the transcriptions for development
set 2005 and 2006 and ASR 1-best for development
set 2006.

Dev 2005 Dev 2006
Text Text ASR 1-best

FST 51.8 19.5 16.5
Seq. Maxent 53.5 19.4 16.3
BOW Maxent 59.9 19.3 16.6

As indicated in the data release document, the
2006 development set was collected differently com-
pared to the one from 2005. Due to this mis-
match, the performance of the Maxent models are
not very different from the FST model, indicating
the lack of good generalization across different gen-
res. However, we believe that the Maxent frame-
work allows for incorporation of linguistic features
that could potentially help in generalization across
genres. For translation of ASR 1-best, we see a sys-
tematic degradation of about 3% in mBLEU score
compared to translating the transcription.

In order to compensate for the mismatch between
the 2005 and 2006 data sets, we computed a 10-fold
average mBLEU score by including 90% of the 2006
development set into the training set and using 10%
of the 2006 development set for testing, each time.
The average mBLEU score across these 10 runs in-
creased to 22.8.

In Figure 6 we show the improvement of mBLEU
scores with the increase in permutation window size.
We had to limit to a permutation window size of 10
due to memory limitations, even though the curve
has not plateaued. We anticipate using pruning tech-
niques we can increase the window size further.
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Figure 6: Improvement in mBLEU score with the
increase in size of the permutation window

5.1 United Nations and Hansard Corpora

In order to test the scalability of the global lexical
selection approach, we also performed lexical se-
lection experiments on the United Nations (Arabic-
English) corpus and the Hansard (French-English)
corpus using the SFST model and the BOW Maxent
model. We used 1,000,000 training sentence pairs
and tested on 994 test sentences for the UN corpus.
For the Hansard corpus we used the same training
and test split as in (Zens and Ney, 2004): 1.4 million
training sentence pairs and 5432 test sentences. The
vocabulary sizes for the two corpora are mentioned
in Table 4. Also in Table 4, are the results in terms of
F-measure between the words in the reference sen-
tence and the decoded sentences. We can see that the
BOW model outperforms the SFST model on both
corpora significantly. This is due to a systematic
10% relative improvement for open class words, as
they benefit from a much wider context. BOW per-
formance on close class words is higher for the UN
corpus but lower for the Hansard corpus.

Table 4: Lexical Selection results (F-measure) on
the Arabic-English UN Corpus and the French-
English Hansard Corpus. In parenthesis are F-
measures for open and closed class lexical items.

Corpus Vocabulary SFST BOW
Source Target

UN 252,571 53,005 64.6 69.5
(60.5/69.1) (66.2/72.6)

Hansard 100,270 78,333 57.4 60.8
(50.6/67.7) (56.5/63.4)

6 Discussion

The BOW approach is promising as it performs rea-
sonably well despite considerable losses in the trans-
fer of information between source and target lan-
guage. The first and most obvious loss is about word
position. The only information we currently use to
restore the target word position is the target language

model. Information about the grammatical role of a
word in the source sentence is completely lost. The
language model might fortuitously recover this in-
formation if the sentence with the correct grammat-
ical role for the word happens to be the maximum
likelihood sentence in the permutation automaton.

We are currently working toward incorporating
syntactic information on the target words so as to be
able to recover some of the grammatical role infor-
mation lost in the classification process. In prelimi-
nary experiments, we have associated the target lex-
ical items with supertag information (Bangalore and
Joshi, 1999). Supertags are labels that provide linear
ordering constraints as well as grammatical relation
information. Although associating supertags to tar-
get words increases the class set for the classifier, we
have noticed that the degradation in the F-score is
on the order of 3% across different corpora. The su-
pertag information can then be exploited in the sen-
tence construction process. The use of supertags in
phrase-based SMT system has been shown to im-
prove results (Hassan et al., 2006).

A less obvious loss is the number of times a word
or concept appears in the target sentence.Func-
tion words like ”the” and ”of” can appear many
times in an English sentence. In the model dis-
cussed in this paper, we index each occurrence of the
function word with a counter. In order to improve
this method, we are currently exploring a technique
where the function words serve as attributes (e.g.
definiteness, tense, case) on the contentful lexical
items, thus enriching the lexical item with morpho-
syntactic information.

A third issue concerning the BOW model is the
problem ofsynonyms– target words which translate
the same source word. Suppose that in the training
data, target wordst1 andt2 are, with equal probabil-
ity, translations of the same source word. Then, in
the presence of this source word, the probability to
detect the corresponding target word, which we as-
sume is 0.8, will be, because of discriminant learn-
ing, split equally betweent1 andt2, that is 0.4 and
0.4. Because of this synonym problem, the BOW
thresholdθ has to be set lower than 0.5, which is
observed experimentally. However, if we set the
threshold to 0.3, botht1 and t2 will be detected in
the target sentence, and we found this to be a major
source of undesirable insertions.

The BOW approach is different from the pars-
ing based approaches (Melamed, 2004; Zhang and
Gildea, 2005; Cowan et al., 2006) where the transla-
tion model tightly couples the syntactic and lexical
items of the two languages. The decoupling of the
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two steps in our model has the potential for gener-
ating paraphrased sentences not necessarily isomor-
phic to the structure of the source sentence.

7 Conclusions

We view machine translation as consisting of lexi-
cal selection and lexical reordering steps. These two
steps need not necessarily be sequential and could be
tightly integrated. We have presented the weighted
finite-state transducer model of machine translation
where lexical choice and a limited amount of lexical
reordering are tightly integrated into a single trans-
duction. We have also presented a novel approach
to translation where these two steps are loosely cou-
pled and the parameters of the lexical choice model
are discriminatively trained using a maximum en-
tropy model. The lexical reordering model in this
approach is achieved using a permutation automa-
ton. We have evaluated these two approaches on the
2005 and 2006 IWSLT development sets and shown
that the techniques scale well to Hansard and UN
corpora.
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