Forest Rescoring: Faster Decoding with Integrated L anguage M odels *

Liang Huang David Chiang
University of Pennsylvania USC Information Sciences Institute
Philadelphia, PA 19104 Marina del Rey, CA 90292
Ihuang3@cis.upenn.edu chiang@isi.edu
Abstract programming (Wu, 1996; Och and Ney, 2004). In

practice, one must prune the search space aggres-
Efficient decoding has been a fundamental sively to reduce it to a reasonable size.
problem in machine translation, especially A much simpler alternative method to incorporate
with an integrated language model which e | M isrescoring we first decode without the LM
is essential for achieving good translation (henceforth-LM decoding to produce a-best list
quality. We develop faster approaches for f candidate translations, and then rerankittgest
this problem based oh-best parsing algo- list using the LM. This method runs much faster in
rithms and demonstrate their effectiveness pnractice but often produces a considerable number
on both phrase-based and syntax-based MT ¢ search errors since the true best translation (taking
systems. In both cases, our methods achieve | \ into account) is often outside of tHebest list.
significant speed improvements, often by Cube pruningChiang, 2007) is a compromise be-
more than a factor of ten, over the conven- yeen rescoring and full-integration: it rescores
tional beam-search method at the same lev- g ptransiations at each node of the forest, rather than
els of search error and translation accuracy. only at the root node as in pure rescoring. By adapt-
ing the k-best parsing Algorithm 2 of Huang and
Chiang (2005), it achieves significant speed-up over
Recent efforts in statistical machine translatioriull-integration on Chiang’s Hiero system.
(MT) have seen promising improvements in out- We push the idea behind this method further and
put quality, especially the phrase-based models (O¢hake the following contributions in this paper:

and Ney, 2004) and syntax-based models (Chiang, _ _ _
2005: Galley et al., 2006). However, efficient de- © Ve generalize cube pruning and adapt it to two
systems very different from Hiero: a phrase-

based system similar to Pharaoh (Koehn, 2004)
and a tree-to-string system (Huang et al., 2006).

1 Introduction

coding under these paradigms, especially with inte-
grated language models (LMs), remains a difficult
problem. Part of the complexity arises from the ex-

pressive power of the translation model: for exam- ¢ \we also devise a faster variant of cube pruning,
!ole, a phrase- orvyord-based.modeI.th fullreorder- -5lledcube growingwhich uses a lazy version
ing has exponential complexity (Knight, 1999). The of k-best parsing (Huang and Chiang, 2005)

language model also, if fully integrated into the de- 15t tries to reducé to the minimum needed
coder, introduces an expensive overhead for main- o+ a5ch node to obtain the desired number of

taining target-language boundary words for dynamic hypotheses at the root.

* The authors would like to thank Dan Gildea, Jonathan) . .
Graehl, Mark Johnson, Kevin Knight, Daniel Marcu, Bob Cube pruning and cube growing are collectively
Moore and Hao Zhang. L. H. was partlally supported byca”ed forest rescoringsince they both approxi_

NSF ITR grants 11S-0428020 while visiting USC/ISI and EIA- tel th ked f t of derivati f
0205456 at UPenn. D. C. was partially supported under thghately rescore the packed forest or derivations irom

GALE/DARPA program, contract HR0011-06-C-0022. —LM decoding. In practice they run an order of
144

Proceedings of the 45th Annual Meeting of the Association of Computational Linguistics, pages 144-151,
Prague, Czech Republic, June 2007. (©2007 Association for Computational Linguistics

magnitude faster than full-integration with beamwhich is needed for distortion costs), and where
search, at the same level of search errors and trarmsid w + ¢ are the weights of the two hypotheses,

lation accuracy as measured by BLEU. respectively, withe being the cost of the phrase-pair.
o Similarly, the decoding problem with SCFGs can
2 Preliminaries also be cast as a deductive (parsing) system (Shieber

We establish in this section a unified frameworl€t &l-» 1995). Basically, we parse the input string us-
for translation with an integrated-gram language N9 the source projection of the SCFG while build-
model in both phrase-based systems and syntad the correqundlng subtranslations in parallel. A
based systems based on synchronous context-fla@ssible deduction of the above example is notated:
grammars (SCFGs). An SCFG (Lewis and Stearns, (PPi3) : (w1,t1) (VP3g) : (wo,t2)
1968) is a context-free rewriting system for generat- (VP16) : (w1 +wa + , taty) 2)
Ing string pairs. Each rulel — a, 3 rewrites a pair where the subscripts denote indices in the input sen-
of nonterminals in both languages, whereand 5 . . .

tence just as in CKY parsingy;, wy are the scores

are the source and target side components, and theg, the two antecedent items, andand, are the

is a one-to-one correspondence between the nonter- . . .
. : . corresponding subtranslations. The resulting trans-
minal occurrences ix and the nonterminal occur-

)) lation tot; is the inverted concatenation as specified
rences in. For example, the following rule by the target-side of the SCFG rule with the addi-
VP — PPL yp @), yp(®) pp) tional costc’ being the cost of this rule.

These two deductive systems represent the search
captures the swapping of VP and PP between Ch§pace of decoding without a language model. When
nese (source) and English (target). one is instantiated for a particular input string, it de-
fines a set of derivations, calledaest represented
in a compact structure that has a structure of a graph
We will use the following example from Chinese tojn the phrase-based case, or more generallyper-
English for both systems described in this section: graphin both cases. Accordingly we call items like
(eeeee) and(VP;) nodesn the forest, and instan-
tiated deductions like

2.1 Trandation as Deduction

yu Shalong juxing le huitan
with Sharon hold [pas] meeting
(eseee) — (__eee) with Sharon

(VP1g) — (VPsg) (PP 3)

A typical phrase-based decoder generates partigh, 4| hyperedgeghat connect one or more an-

target-language outputs in left-to-right order in th?ecedent nodes to a consequent node.
form of hypothesegKoehn, 2004). Each hypothesis

has acoverage vectocapturing the source-language2.2 Adding a L anguage M odel

words translated so far, and can be extended intog integrate with a bigram language model, we can
longer hypothesis by a phrase-pair translating an Ujyse the dynamic-programming algorithms of Och
covered segment. and Ney (2004) and Wu (1996) for phrase-based
This process can be formalized as a dedugngd SCFG-based systems, respectively, which we
tive system. For example, the following deducmay think of as doing a finer-grained version of the
tion step grows a hypothesis by the phrase-paffequctions above. Each nodein the forest will
(yu Stalong with Sharoi: be split into a set of augmented items, which we
(__eee) : (w, *held a talk’) call +LM items For phrase-based decodingi-aM

. X , , item has the formv “) wherea is the last word
(eosee) : (w +c,"held atalk with Sharon)” (1) ¢ e hypothesis. Thus #LM version of Deduc-

‘held a meeting with Sharon’

where ae in the coverage vector indicates the sourcgOn (1) might be:

word at this position is “covered” (for simplicity (__eee ®¥) : (w,“held a talk")

we omit here the ending position of the last phrase (eeeee S"a0 : (3 “held a talk with Sharony
145

N N ¢ ™ N PO &0@\ S Q,?o(\‘\ (&0@'\
2

f}\{i@é\ *%& f}\{i@@ *6& P‘&&*% 2 *6(&05? *
&p'z}orp\&&rp &'z}orp@\rp &’&o‘b&(\‘b &'&0%&\%
@QNSQ'\/@Q\/ QQ\,S \/SQ\/ QQ\,QQ\,SQ\, QQN,\SQ»@Q»
1.0 4.0 7.0 1.0 4.0 7.0 1.0 4.0 7.0 1.0 4.0 7.0
(VPhadmeelng 1 925/ 8.3 8.5 12583 25/8.3 2.5/8.3/85
(vPhgd+talk) 11]2.4/9.5 8.4 2.4 2.4/9.5 2.4/9.5
(VP o+ conferency 3519 2117.0 15.2 | 92 | | 92
(@) (b) (©) (d)

Figure 1: Cube pruning along one hyperedge. (a): the numbers inithdegrote the score of the resulting
+LM item, including the combination cost; (b)-(d): the best-first enumeratighefop three items. Notice
that the items popped in (b) and (c) are out of order due to the non-macidgaf the combination cost.

where the score of the resultingtM item 3 CubePruning

w' = w + ¢ — log Py, (with | talk) Cube pruning (Chiang, 2007) reduces the search
now includes aombination costiue to the bigrams space significantly based on the observation that
formed when applying the phrase-pair. when the above method is combined with beam

Similarly, a +LM item in SCFG-based models search, only a small fraction of the possibiéM
has the form(v*®), wherea andb are boundary items at a node will escape being pruned, and more-
wordsof the hypothesis string, ands a placeholder over we can select with reasonable accuracy those
symbol for an elided part of that string, indicatingtop-* items without computing all possible items
that a possible translation of the part of the inpufirst. In a nutshell, cube pruning works on th& M
spanned by starts witha and ends wittb. An ex- forest, keeping at mogt +-LM items at each node,
ample+LM version of Deduction (2) is: and uses thé&-best parsing Algorithm 2 of Huang
(PP« Sharony. (4,) (P heldxtalk). (0 40 and tha_ng (2005) to sp_eed up the computation.
' i Sharo : For simplicity of presentation, we will use concrete
(VP15 0: (w,tat1) SCFG-based examples, but the method applies to the
wherew = w; +ws + ¢ —log Py, (with | talk) with general hypergraph framework in Section 2.
a similar combination cost formed in combining ad- Consider Figure 1(a). Here = 3 and we use
jacent boundary words of antecedents. This scheni®(v) to denote the to@-+LM items (in sorted or-
can be easily extended to work with a genetal der) of nodev. Suppose we have comput& u)
gram model (Chiang, 2007). The experiments in thiand D(ug) for the two antecedent nodes =
paper use trigram models. (VP36) anduy = (PP 3) respectively. Then for
The conventional full-integration approach trathe consequent node = (VP;s) we just need
verses the forest bottom-up and explores all poge derive the top-3 from the 9 combinations of
sible +LM deductions along each hyperedge(D;(u1), D;j(u2)) with 4,5 € [1,3]. Since the an-
The theoretical running time of this algorithmtecedent items are sorted, it is very likely that the
is O(|F||T|(™=Y) for phrase-based models, andbest consequent items in this grid lie towards the
O(|F||T|*™=1) for binary-branching SCFG-basedupper-left corner. This situation is very similarke
models, wheréF| is the size of the forest, anjd’| best parsing and we can adapt the Algorithm 2 of
is the number of possible target-side words. EveHuang and Chiang (2005) here to explore this grid
if we assume a constant number of translations fan a best-first order.
each word in the input, with a trigram model, this Suppose that the combination costs are negligible,
still amounts ta?(n'!) for SCFG-based models andand therefore the weight of a consequent item is just
O(2"n?) for phrase-based models. the product of the weights of the antecedent items.
146

1: function CUB_E(F) 1>th_e input is a forest’ method ‘ k—best\ +LM rescoring . .

2: for v € F in (bottom-up) topological ordeto -

3 KBEST(v) rescoring Alg. 3 | only at the root node

4: return Dy (TOP) cube pruning| Alg. 2 | on-the-fly at each node
5: procedure KBEST(v) cube growing| Alg. 3 | on-the-fly at each node
6: cand — {{e,1) | e € IN(v)} » for each incoming

7: HEAPIFY d > a priority queue of candidates .

8 buf — 0 (cand) prioriy d Table 1: Comparison of the three methods.
9: while |cand| > 0 and|buf| < k do

10: item «— POP-MIN(cand)

1L appendtern to buf hyperedges in the-LM forest. In Hiero, these hy-
12: RusHSuCc(item, cand) peredges are processed as a single unit which we

13: sortbuf to D(v) . .
14: procedure PUSHSUCC((e,), cand) call a hyperedge bundleThe different target sides

15: eisv — ur...up then constitute a third dimension of the grid, form-
16: foriin1...|e| do ing a cube of possible combinations (Chiang, 2007).
ig ff “‘_3(3;) ‘bz il then Now consider that there are many hyperedges that
19: PUSH({e,), cand) derive v, and we are only interested the teg.M
items ofv over all incoming hyperedges. Following
Figure 2: Pseudocode for cube pruning. Algorithm 2, we initialize the priority queueand

with the upper-left corner item from each hyper-

edge, and proceed as above. See Figure 2 for the
Then we know thatDy(v) = (Di(u1), Di(u2)), pseudocode for cube pruning. We use the notation
the upper-left corner of the grid. Moreover, We<e,j> to identify the derivation ofy via the hyper-
know thatDs(v) is the better of D1 (u1), D2(u2)) edgee and thej;th best subderivation of antecedent
and (Da(u1), D1(uz)), the two neighbors of the (1 < i < [j]). Also, we let1 stand for a vec-
upper-left corner. We continue in this way (see Figdzor whose elements are dll andb’ for the vector

ure 1(b)—(d)), enumerating the consequent ittMgqse members are 4l except for theith whose
best-first while keeping track of a relatively smally5)¢ js1 (the dimensionality of either should be ev-
number of candidates (shaded cells in Figure 1(B)yent from the context). The heart of the algorithm
cand in Figure 2) for the next-best item. is lines 10-12. Lines 10-11 move the best deriva-

However, when we take into account the combigio (¢, 5) from cand to buf, and then line 12 pushes
nation costs, this grid is no longer monotonic in 9enyg syccessor(e, j + b') | i € 1... |e|} into cand.
eral, and the above algorithm will not always enu-

merate items in best-first order. We can see this i Cube Growing

the first iteration in Figure 1(b), where an item with

score 2.5 has been enumerated even though theréMghough much faster than full-integration, cube

an item with score 2.4 still to come. Thus we riskPruning still computes a fixed amount-e£.M items

making more search errors than the full-integratiodt €ach node, many of which will not be useful for

method, but in practice the loss is much less signiffTiving at the 1-best hypothesis at the root. It would

icant than the speedup. Because of this disorderinge more efficient to compute as feul M items at

we do not put the enumerated items directly int&ach node as are needed to obtain the 1-best hypoth-

D(v); instead, we collect items in a buffeb(f in esis at the root. This new method, callade grow-

Figure 2) and re-sort the buffer infd(v) after ithas NG, iS & lazy version of cube pruning just as Algo-

accumulated items? rithm 3 of Huang and Chiang (2005), is a lazy ver-
In general the grammar may have multiple rule§ion of Algorithm 2 (see Table 1).

that share the same source side but have different/nstead of traversing the forest bottom-up, cube

target sides, which we have treated here as separ§f@Wwing Visits nodes recursively in depth-first or-
der from the root node (Figure 4). First we call

1_No§ice that different combinations might have the same et Azy JTHBEST(TOP, 1), which uses the same al-
sulting item, in which case we only keep the one with the better ith b . to find the 1-bestM
score (sometimes calldd/pothesis recombinatian MT liter- gorithm as cube pruning to fin e 1-bes

ature), so the number of itemsID(v) might be less thak. item of the root node using the bestM items of
147

1.0 40 7.0 1.0 40 7.0 1: procedure LAzY JTHBEST(v, j)
2 if cand[v] is undefinedhen
1.0 2151 81 2583 3 cand[v] — 0
111225282 24 4: FIRE(e, 1, cand) foreach e € IN (v)
5: buf[v] — @
3.5/4.6|7.6/10.6 6: while [D(v)| < j and |buf[v]| + |D(v)| < k and

(a) h-values (b) true costs 7: |cand[1;}t|e;0<—d?30P-M IN(cand|v])
8: PusH(item, buf [v])
Figure 3: Example of cube growing along one hyper-9: PusHSucc(item, cand[v])
edge. (a): thé(x) scores for the grid in Figure 1(a), 77 Z’E‘,;“U’"ﬁ@ﬁ;ﬁ%g){'b;’fui;;md[””

assumingh compo (€) = 0.1 for this hyperedge; (b) 12: Enum(buf[v], D(v), +o0)
cube growing prevents early ranking of the top-lefi3: procedure FIRE(e, j, cand)

cell (2.5) as the best item in this grid. 14: elsv—ur... g
15: foriinl...|e|do
16: LAZY JTHBEST(us, ji)

the antecedent nodes. However, in this case the bqgt RJS'H|(<6(1;>)L;2) enreurn

+LM items of the antecedent nodes are not KNnoWnyg. - ocedure PusHsucc((e, j), cand)

because we have not visited them yet. SO we reo: FRRre(e,j + b’, cand) foreach iin 1. .. |e|

cursively invokeLAzy JTHBEST on the antecedent 21: procedure ENUM(buf, D, bound)

nodes to obtain them as needed. Each invocation § While |buf| > 0:and MiN(buf) < bound do

. . . . append BP-MIN(buf) to D

LAzYJTHBEST(v, j) will recursively call itself on

the antecedents afuntil it is confident that thgth

best+LM item for nodev has been found.
Consider again the case of one hyperedgBe-

cause of the nonmonotonicity caused by combinample,min{2.2,5.1} = 2.2 is a lower bound on

tion costs, the first-LM item ({e, 1)) popped from the cost of any item in the future for the hyperedge

cand is not guaranteed to be the best of all combinae. Indeed, ifcand contains items from multiple hy-

tions along this hyperedge (for example, the top-lefeeredges for a single consequent node, this is still a

cell of 2.5 in Figure 1 is not the best in the grid). Sovalid lower bound. More formally:

we cannot simply enumerate items just as they com€xmma 1. For each node in the forest, the term

off of cand.? Instead, we need to store up popped

items in a bufferbuf, just as in cube pruning, and bound = min h(z) (3)

enumerate an item only when we are confident that it € cand(v]

will never b.e surpassed in the_future. In otherwqrdsl,s a lower bound on the true cost of any future item
we would like to have an estimate of the best ite

- That is yet to be explored far.
not explored yet (analogous to the heuristic func-

tion in A* search). If we can establish a lower boundproof. For any itemz that is not explored yet, the
hcombo(€) ON the combination cost of anyLM de- true coste(z) > h(x), by the definition ofh. And
duction via hyperedge, then we can form a mono- there exists an item € cand[v] along the same hy-
tonic grid (see Figure 3(a)) of lower bounds on thgeredge such that(z) > h(y), due to the mono-
grid of combinations, by usinB.oms. (¢) in place of tonicity of 4 within the grid along one hyperedge.
the true combination cost for eaghLM item z in We also haveh(y) > bound by the definition of

Figure 4: Pseudocode of cube growing.

the grid; call this lower bound(x). bound. Thereforec(z) > bound. O
Now suppose that the gray-shaded cells in Fig- _ _
ure 3(a) are the members ofind. Then the min- Now we can safely pop the best item frdraf if

imum of h(z) over the items incand, in this ex- itstrue cosMIN(buf) is better tharbound and pass
it up to the consequent node (lines 21-23); but other-

?If we did, then the out-of-order enumeration-BEM items \yise, we have to wait for more items to accumulate
at an antecedent node would cause an entire row or column in buf t t tential h f
the grid to be disordered at the consequent node, potential'lp uf to prevent a potential search error, for exam-

leading to a multiplication of search errors. ple, in the case of Figure 3(b), where the top-left cell
148

o
e 5°
RENSRPRTCRERNY

10 40 70 ——
25|83 85 :
2.4/ 9.5 8.4

9.2|117.015.2

(77... meeting 1.0

(__ooe talk) 1.1
(__eee conferenc§ 35

i

\
\
I
I
v

Figure 6: A hyperedge bundle represents-alM

(b) - deductions that derives an item in the current bin
. from the same coverage vector (see Figure 5). The
1 2 3 4 5 phrases on the top denote the target-sides of appli-

cable phrase-pairs sharing the same source-side.
Figure 5: (a) Pharaoh expands the hypotheses in the
current bin (#2) into longer ones. (b) In Cubit, hy- _
potheses in previous bins are fed via hyperedge bun-L Phrase-based Decoding
dles (solid arrows) into a priority queue (shaded trivwe implementedCubit, a Python clone of the
angle), which empties into the current bin (#5). Pharaoh decoder (Koehn, 2064and adapted cube
pruning to it as follows. As in Pharaoh, each bin
1 contains hypotheses (i.erLM items) coveringi
(2.5) is worse than the currebtund of 2.2. The up- words on the source-side. But at each bin (see Fig-
date ofbound in each iteration (line 10) can be effi- ure 5), all+LM items from previous bins are first
ciently implemented by using another heap with theartitioned into—LM items; then the hyperedges
same contents asind but prioritized byh instead. leading from those-LM items are further grouped
In practice this is a negligible overhead on top ofnto hyperedge bundles (Figure 6), which are placed
cube pruning. into the priority queue of the current bin.

We now turn to the problem of estimating the Our data preparation follows Huang et al. (2006):
heuristic functionh .- In practice, computing the training dataisa paraIIeI corpus of 28.3M words
true lower bounds of the combination costs is to®n the English side, and a trigram language model is
slow and would compromise the speed up gainei@@ined on the Chinese side. We use the same test set
from cube growing. So we instead use a much sin@s (Huang et al., 2006), which is a 140-sentence sub-
pler method that just calculates the minimum comset of the NIST 2003 test set with 9-36 words on the

bination cost of each hyperedge in the togeriva- English side. The weights for the log-linear model
tions of the root node in-LM decoding. This is are tuned on a separate development set. We set the
just an approximation of the true lower bound, anglecoder phrase-table limit to 100 as suggested in
bad estimates can lead to search errors. However, tfeoehn, 2004) and the distortion limit to 4.

hope is that by choosing the right valueipthese es- Figure 7(a) compares cube pruning against full-
timates will be accurate enough to affect the seardhtegration in terms of search quality vs. search ef-
quality only slightly, which is analogous to “almostficiency, under various pruning settings (threshold
admissible” heuristics in A* search (Soricut, 2006).beam set to 0.0001, stack size varying from 1 to
200). Search quality is measured by average model
cost per sentence (lower is better), and search effi-
ciency is measured by the average number of hy-
potheses generated (smaller is faster). At each level

5 Experiments

We test our methods on two large-scale English-to—; _ _ "
In our tests, Cubit always obtains a BLEU score within

Chinese tran5|atio_n systems: a phrase-based SYSt@HbA. of Pharaoh’s (Figure 7(b)). Source code available at
and our tree-to-string system (Huang et al., 2006). http://www.cis.upenn.edu/ ~ lhuang3/cubit/

149

92 s rorrTTT rorrTTT rorrTTT TorTTTTT 0245 TorrTT TorrTT T
B full-integration (Cubit) =++=:+ 7] 0.240 k _
B : cube pruning (Cubit) = = . 0.235 L ; .) |
S 88t - .
3 % g 0230 ; i
kS . 3 0225 F 7 -
E gl - g . > :
87 "" ." L_I|J 0.220 g - n
© . ’ m . _.:' »]
S ol L. | 0.215 Pharaoh
£ " 0.210 |- full-integration (Cubit) ++w«++ |
- LT 0.205 - cube pruning (Cubit) == = -
76 PR | ol PR | L .."....... 0200 PRI | PRI | Lol PR R
102 10° 10* 10° 10° 10 10° 10* 10° 10°
average number of hypotheses per sentence average number of hypotheses per sentence

(a) (b)

Figure 7: Cube pruning vs. full-integration (with beam search) on ghbased decoding.

of search quality, the speed-up is always better thaterivation trees remain context-free and the search
a factor of 10. The speed-up at the lowest searclspace is still a hypergraph, where we can adapt the
error level is a factor of 32. Figure 7(b) makes anethods presented in Sections 3 and 4.
similar comparison but measures search quality by The data set is same as in Section 5.1, except that
BLEU, which shows an even larger relative speed-upe also parsed the English-side using a variant of
for a given BLEU score, because translations witthe Collins (1997) parser, and then extracted 24.7M
very different model costs might have similar BLEUtree-to-string rules using the algorithm of (Galley et
scores. It also shows that our full-integration impleal., 2006). Since our tree-to-string rules may have
mentation in Cubit faithfully reproduces Pharaoh’snany variables, we first binarize each hyperedge in
performance. Fixing the stack size to 100 and vanthe forest on the target projection (Huang, 2007).
ing the threshold yielded a similar result. All the three+LM decoding methods to be com-

. . pared below take these binarized forests as input. For
52 Treeto-string Decoding cube growing, we use a non-duplicatédest method
In tree-to-string (also callesyntax-directefidecod- (Huang et al., 2006) to get 100-best unique transla-
ing (Huang et al., 2006; Liu et al., 2006), the sourcéions according te-LM to estimate the lower-bound
string is first parsed into a tree, which is then reheuristics' This preprocessing step takes on aver-
cursively converted into a target string according tage 0.12 seconds per sentence, which is negligible
transfer rules in a synchronous grammar (Galley &4 comparison to the-LM decoding time.
al., 2006). For instance, the following rule translates Figure 8(a) compares cube growing and cube

an English passive construction into Chinese: pruning against full-integration under various beam
VP settings in the same fashion of Figure 7(a). At the
— lowest level of search error, the relative speed-up
VBD VP-C — beizs 1 from cube growing and cube pruning compared with
! = full-integration is by a factor of 9.8 and 4.1, respec-
was zi:VBN PP tively. Figure 8(b) is a similar comparison in terms
— .
IN 29:NP-C of BLEU scores and shows an even bigger advanFage
| of cube growing and cube pruning over the baseline.
by “If a hyperedge is not represented at all in the 100-bést!

Our tree-to-string system performs slightly betderivations at the root node, we use the 1-belsM derivation

ter than the state-of-the-art phrase-based systedijhis hyperedge instead. Here, rules that share the same source
... _side but have different target sides are treated as separate hy-

Pharaoh on the above data set. Although d'ﬁerﬁeredges, not collected into hyperedge bundles, since grouping

ent from the SCFG-based systems in Section 2, it&comes difficult after binarization.
150

219.0 —r ——rr 7
] full-integration ——— 0.262 L
= R cube pruning =rr=::-
g 2188 3 pruning ===+ |
° Lo cube growing = : o 0.260 F
3 A 3
o % Y (7] d
£ 2186 - % - z 2
o Y o 0.258 - -
[-
© m . .
5 full-integration
> 2184 T 0.256 . -
@ : - cube pruning rrwees
e e, i cube growing - - .
218.2 Lot . MR CRL N Miheile L. L2 WP wr e 0.254 Lot L N | . L
10° 10* 10° 10° 10 10°
average number of +LM items explored per sentence average number of +LM items explored per sentence
@ (b)

Figure 8: Cube growing vs. cube pruning vs. full-integration (with beaarch) on tree-to-string decoding.

6 Conclusionsand Future Work Liang Huang and David Chiang. 2005. Bettebest parsing.
In Proc. IWPT

We have presented a novel extension of cube prun- o . ,
. lledcub . dsh h both b Liang Huang, Kevin Knight, and Aravind Joshi. 2006. Sta-
Ing calleacube growingand shown how both can be tistical syntax-directed translation with extended domain of

seen as generébrest rescoringechniques applica- locality. In Proc. AMTA

ble to both phrase-based and syntax-based deCOd"I]gng Huang. 2007. Binarization, synchronous binarization,

We evaluated these methods on large-scale transla-and target-side binarization. Proc. NAACL Workshop on

tion tasks and observed considerable speed improve-Syntax and Structure in Statistical Translation

ments, often by more than a factor of ten. We plas. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. 1983. Optimiza-

to |nvest|gate hOW to adapt Cube grow|ng to phrase_ tlon by S|mu|ated annealln@ClenC6220(4598)671—680

based and hierarchical phrase-based systems. Kevin Knight. 1999. Decoding complexity in word-
These forest rescoring algorithms have potential replacement translation modelBomputational Linguistics

o . . ; 25(4):607-615.
applications to other computationally intensive tasks

involving combinations of different models, for Philipp Koehn. 2004. Pharaoh: a beam search decoder for
le. head-lexicalized . colli 1997)- phrase-based statistical machine translation models. In
example, head-lexicalized parsing (Collins,)} Proc. AMTA pages 115-124.

joint parsing and semantic role labeling (Sutton ang M. Lewis and R E. St 1068, Svntaxdirected transd
. VI, Lewlis an . E. Stearns. . Sdyntax-airected transauc-
McCallum, 2005); or tagging and parsing with non- " .’ ™y ACM 15:465-488.

local features. Thus we envision forest rescoring as

. . - . . Yang Liu, Qun Liu, and Shouxun Lin. 2006. Tree-to-string
being of general applicability for reducing compli- alignment template for statistical machine translation. In

cated search spaces, as an alternative to simulatedbroc. COLING-ACI, pages 609-616.

anneallng methods (Klrkpaka etal, 1983)' Franz Joseph Och and Hermann Ney. 2004. The alignment

template approach to statistical machine translatiGom-
putational Linguistics30:417-449.

References
. . . . Stuart Shieber, Yves Schabes, and Fernando Pereira. 1995.
David Chiang. 2005. A hierarchical phrase-based model for . = o - . : :
g : ; Principles and implementation of deductive parsifid-ogic
statistical machine translation. Rroc. ACL Programming 24:3-36.

David Chiang. 2007. Hierarchical phrase-based translatio

Computational Linguistics33(2). To appear. fRadu Soricut. 2006Natural Language Generation using an

Information-Slim RepresentationPh.D. thesis, University

Michael Collins. 1997. Three generative lexicalised models for ©f Southern California.

statistical parsing. I®roc. ACL Charles Sutton and Andrew McCallum. 2005. Joint parsing

M. Galley, J. Graehl, K. Knight, D. Marcu, S. DeNeefe, and semantic role labeling. Proc. CoNLL 2005
W. Wang, and I. Thayer. 2006. Scalable inference an
training of context-rich syntactic translation models. In
Proc. COLING-ACL

ﬁ)ekai Wu. 1996. A polynomial-time algorithm for statistical
machine translation. IRroc. ACL

151

