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Abstract

Speech recognition in many morphologi-
cally rich languages suffers from a very high
out-of-vocabulary (OOV) ratio. Earlier work
has shown that vocabulary decomposition
methods can practically solve this problem
for a subset of these languages. This pa-
per compares various vocabulary decompo-
sition approaches to open vocabulary speech
recognition, using Estonian speech recogni-
tion as a benchmark. Comparisons are per-
formed utilizing large models of 60000 lex-
ical items and smaller vocabularies of 5000
items. A large vocabulary model based on
a manually constructed morphological tag-
ger is shown to give the lowest word er-
ror rate, while the unsupervised morphol-
ogy discovery method Morfessor Baseline
gives marginally weaker results. Only the
Morfessor-based approach is shown to ade-
quately scale to smaller vocabulary sizes.

1 Introduction

1.1 OOV problem

Open vocabulary speech recognition refers to au-
tomatic speech recognition (ASR) of continuous
speech, or “speech-to-text” of spoken language,
where the recognizer is expected to recognize any
word spoken in that language. This capability is a re-
cent development in ASR, and is required or benefi-
cial in many of the current applications of ASR tech-
nology. Moreover, large vocabulary speech recogni-

tion is not possible in most languages of the world
without first developing the tools needed for open
vocabulary speech recognition. This is due to a fun-
damental obstacle in current ASR called the out-of-
vocabulary (OOV) problem.

The OOV problem refers to the existence of words
encountered that a speech recognizer is unable to
recognize, as they are not covered in the vocabu-
lary. The OOV problem is caused by three inter-
twined issues. Firstly, the language model training
data and the test data always come from different
samplings of the language, and the mismatch be-
tween test and training data introduces some OOV
words, the amount depending on the difference be-
tween the data sets. Secondly, ASR systems always
use finite and preferably small sized vocabularies,
since the speed of decoding rapidly slows down as
the vocabulary size is increased. Vocabulary sizes
depend on the application domain, sizes larger than
60000 being very rare. As some of the words en-
countered in the training data are left out of the vo-
cabulary, there will be OOV words during recogni-
tion. The third and final issue is the fundamental
one; languages form novel sentences not only by
combining words, but also by combining sub-word
items called morphs to make up the words them-
selves. These morphs in turn correspond to abstract
grammatical items called morphemes, and morphs
of the same morpheme are called allomorphs of that
morpheme. The study of these facets of language
is aptly called morphology, and has been largely ne-
glected in modern ASR technology. This is due to
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ASR having been developed primarily for English,
where the OOV problem is not as severe as in other
languages of the world.

1.2 Relevance of morphology for ASR

Morphologies in natural languages are character-
ized typologically using two parameters, called in-
dexes of synthesis and fusion. Index of synthesis
has been loosely defined as the ratio of morphs per
word forms in the language(Comrie, 1989), while
index of fusion refers to the ratio of morphs per mor-
pheme. High frequency of verb paradigms such as
“hear, hear + d, hear + d” would result in a high syn-
thesis, low fusion language, whereas high frequency
of paradigms such as “sing, sang, sung” would re-
sult in almost the opposite. Counting distinct item
types and not instances of the types, the first ex-
ample would have 2 word forms, 2 morphs and 2
morphemes, the second 3 word forms, 3 morphs and
1 morpheme. Although in the first example, there
are 3 word instances of the 2 word forms, the lat-
ter word form being an ambiguous one referring to
two distinct grammatical constructions. It should
also be noted that the first morph of the first ex-
ample has 2 pronunciations. Pronunciational bound-
aries do not always follow morphological ones, and
a morph may and will have several pronunciations
that depend on context, if the language in question
has significant orthographic irregularity.

As can be seen, both types of morphological com-
plexity increase the amount of distinct word forms,
resulting in an increase in the OOV rate of any fi-
nite sized vocabulary for that language. In prac-
tice, the OOV increase caused by synthesis is much
larger, as languages can have thousands of differ-
ent word forms per word that are caused by addi-
tion of processes of word formation followed by in-
flections. Thus the OOV problem in ASR has been
most pronounced in languages with much synthesis,
regardless of the amount of fusion. The morpheme-
based modeling approaches evaluated in this work
are primarily intended for fixing the problem caused
by synthesis, and should work less well or even ad-
versely when attempted with low synthesis, high fu-
sion languages. It should be noted that models based
on finite state transducers have been shown to be ad-
equate for describing fusion as well(Koskenniemi,
1983), and further work should evaluate these types

of models in ASR of languages with higher indexes
of fusion.

1.3 Approaches for solving the OOV problem

The traditional method for reducing OOV would be
to simply increase the vocabulary size so that the rate
of OOV words becomes sufficiently low. Naturally
this method fails when the words are derived, com-
pounded or inflected forms of rarer words. While
this approach might still be practical in languages
with a low index of synthesis such as English, it
fails with most languages in the world. For exam-
ple, in English with language models (LM) of 60k
words trained from the Gigaword Corpus V.2(Graff
et al., 2005), and testing on a very similar Voice
of America -portion of TDT4 speech corpora(Kong
and Graff, 2005), this gives a OOV rate of 1.5%.
It should be noted that every OOV causes roughly
two errors in recognition, and vocabulary decompo-
sition approaches such as the ones evaluated here
give some benefits to word error rate (WER) even
in recognizing languages such as English(Bisani and
Ney, 2005).

Four different approaches to lexical unit selec-
tion are evaluated in this work, all of which have
been presented previously. These are hence called
“word”, “hybrid”, “morph” and “grammar”. The
word approach is the default approach to lexical
item selection, and is provided here as a baseline for
the alternative approaches. The alternatives tested
here are all based on decomposing the in-vocabulary
words, OOV words, or both, in LM training data into
sequences of sub-word fragments. During recogni-
tion the decoder can then construct the OOV words
encountered as combinations of these fragments.
Word boundaries are marked in LMs with tokens so
that the words can be reconstructed from the sub-
word fragments after decoding simply by removing
spaces between fragments, and changing the word
boundaries tokens to spaces. As splitting to sub-
word items makes the span of LM histories shorter,
higher order n-grams must be used to correct this.
Varigrams(Siivola and Pellom, 2005) are used in
this work, and to make LMs trained with each ap-
proach comparable, the varigrams have been grown
to roughly sizes of 5 million counts. It should be
noted that the names for the approaches here are
somewhat arbitrary, as from a theoretical perspec-
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tive both morph- and grammar-based approaches try
to model the grammatical morph set of a language,
difference being that “morph” does this with an un-
supervised data-driven machine learning algorithm,
whereas “grammar” does this using segmentations
from a manually constructed rule-based morpholog-
ical tagger.

2 Modeling approaches

2.1 Word approach

The first approach evaluated in this work is the tra-
ditional word based LM, where items are simply the
most frequent words in the language model training
data. OOV words are simply treated as unknown
words in language model training. This has been
the default approach to selection of lexical items in
speech recognition for several decades, and as it has
been sufficient in English ASR, there has been lim-
ited interest in any alternatives.

2.2 Hybrid approach

The second approach is a recent refinement of the
traditional word-based approach. This is similar to
what was introduced as “flat hybrid model”(Bisani
and Ney, 2005), and it tries to model OOV-words
as sequences of words and fragments. “Hybrid”
refers to the LM histories being composed of hy-
brids of words and fragments, while “flat” refers to
the model being composed of one n-gram model in-
stead of several models for the different item types.
The models tested in this work differ in that since
Estonian has a very regular phonemic orthography,
grapheme sequences can be directly used instead
of more complex pronunciation modeling. Subse-
quently the fragments used are just one grapheme in
length.

2.3 Morph approach

The morph-based approach has shown superior re-
sults to word-based models in languages of high
synthesis and low fusion, including Estonian. This
approach, called “Morfessor Baseline” is described
in detail in (Creutz et al., 2007). An unsupervised
machine learning algorithm is used to discover the
morph set of the language in question, using mini-
mum description length (MDL) as an optimization
criterion. The algorithm is given a word list of the

language, usually pruned to about 100 000 words,
that it proceeds to recursively split to smaller items,
using gains in MDL to optimize the item set. The
resulting set of morphs models the morph set well in
languages of high synthesis, but as it does not take
fusion into account any manner, it should not work
in languages of high fusion. It neither preserves in-
formation about pronunciations, and as these do not
follow morph boundaries, the approach is unsuitable
in its basic form to languages of high orthographic
irregularity.

2.4 Grammar approach

The final approach applies a manually constructed
rule-based morphological tagger(Alumäe, 2006).
This approach is expected to give the best results,
as the tagger should give the ideal segmentation
along the grammatical morphs that the unsupervised
and language-independent morph approach tries to
find. To make this approach more comparable to
the morph models, OOV morphs are modeled as
sequences of graphemes similar to the hybrid ap-
proach. Small changes to the original approach
were also made to make the model comparable to
the other models presented here, such as using the
tagger segmentations as such and not using pseudo-
morphemes, as well as not tagging the items in any
manner. This approach suffers from the same handi-
caps as the morph approach, as well as from some
additional ones: morphological analyzers are not
readily available for most languages, they must be
tailored by linguists for new datasets, and it is an
open problem as to how pronunciation dictionaries
should be written for grammatical morphs in lan-
guages with significant orthographic irregularity.

2.5 Text segmentation and language modeling

For training the LMs, a subset of 43 mil-
lion words from the Estonian Segakorpus was
used(Segakorpus, 2005), preprocessed with a mor-
phological analyzer(Alumäe, 2006). After selecting
the item types, segmenting the training corpora and
generation of a pronunciation dictionary, LMs were
trained for each lexical item type. Table 1 shows
the text format for LM training data after segmen-
tation with each model. As can be seen, the word-
based approach doesn’t use word boundary tokens.
To keep the LMs comparable between each model-
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model text segmentation

word 5k voodis reeglina loeme

word 60k voodis reeglina loeme

hybrid 5k v o o d i s<w> reeglina<w> l o e m e

hybrid 60k voodis<w> reeglina<w> loeme

morph 5k voodi s<w> re e g lina<w> loe me

morph 60k voodi s<w> reegli na<w> loe me

grammar 5k voodi s<w> reegli na<w> loe me

grammar 60k voodi s<w> reegli na<w> loe me

Table 1. Sample segmented texts for each model.

ing approach, growing varigram models(Siivola and
Pellom, 2005) were used with no limits as to the or-
der of n-grams, but limiting the number of counts to
4.8 and 5 million counts. In some models this grow-
ing method resulted in the inclusion of very frequent
long item sequences to the varigram, up to a 28-
gram. Models of both 5000 and 60000 lexical items
were trained in order to test if and how the model-
ing approaches would scale to smaller and therefore
much faster vocabularies. Distribution of counts in
n-gram orders can be seen in figure 1.

Figure 1. Number of counts included for each n-
gram order in the 60k varigram models.

The performance of the statistical language mod-
els is often evaluated by perplexity or cross-entropy.
However, we decided to only report the real ASR
performance, because perplexity does not suit well
to the comparison of models that use different lex-
ica, have different OOV rates and have lexical units

of different lengths.

3 Experimental setup

3.1 Evaluation set

Acoustic models for Estonian ASR were trained on
the Estonian Speechdat-like corpus(Meister et al.,
2002). This consists of spoken newspaper sentences
and shorter utterances, read over a telephone by
1332 different speakers. The data therefore was
quite clearly articulated, but suffered from 8kHz
sample rate, different microphones, channel noises
and occasional background noises. On top of this
the speakers were selected to give a very broad cov-
erage of different dialectal varieties of Estonian and
were of different age groups. For these reasons, in
spite of consisting of relatively common word forms
from newspaper sentences, the database can be con-
sidered challenging for ASR.

Held-out sentences were from the same corpus
used as development and evaluation set. 8 different
sentences from 50 speakers each were used for eval-
uation, while sentences from 15 speakers were used
for development. LM scaling factor was optimized
for each model separately on the development set.
On total over 200 hours of data from the database
was used for acoustic model training, of which less
than half was speech.

3.2 Decoding

The acoustic models were Hidden Markov Models
(HMM) with Gaussian Mixture Models (GMM)
for state modeling based on 39-dimensional
MFCC+P+D+DD features, with windowed cepstral
mean subtraction (CMS) of 1.25 second window.
Maximum likelihood linear transformation (MLLT)
was used during training. State-tied cross-word
triphones and 3 left-to-right states were used, state
durations were modeled using gamma distributions.
On total 3103 tied states and 16 Gaussians per state
were used.

Decoding was done with the decoder developed
at TKK(Pylkkönen, 2005), which is based on a one-
pass Viterbi beam search with token passing on a
lexical prefix tree. The lexical prefix tree included a
cross-word network for modeling triphone contexts,
and the nodes in the prefix tree were tied at the tri-
phone state level. Bigram look-ahead models were
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used in speeding up decoding, in addition to prun-
ing with global beam, history, histogram and word
end pruning. Due to the properties of the decoder
and varigram models, very high order n-grams could
be used without significant degradation in decoding
speed.

As the decoder was run with only one pass, adap-
tation was not used in this work. In preliminary
experiments simple adaptation with just constrained
maximum likelihood linear regression (CMLLR)
was shown to give as much as 20 % relative word
error rate reductions (RWERR) with this dataset.
Adaptation was not used, since it interacts with the
model types, as well as with the WER from the first
round of decoding, providing larger RWERR for the
better models. With high WER models, adaptation
matrices are less accurate, and it is also probable that
the decomposition methods yield more accurate ma-
trices, as they produce results where fewer HMM-
states are misrecognized. These issues should be in-
vestigated in future research.

After decoding, the results were post-processed
by removing words that seemed to be sequences of
junk fragments: consonant-only sequences and 1-
phoneme words. This treatment should give very
significant improvements with noisy data, but in pre-
liminary experiments it was noted that the use of
sentence boundaries resulted in almost 10% RW-
ERR weaker results for the approaches using frag-
ments, as that almost negates the gains achieved
from this post-processing. Since sentence bound-
ary forcing is done prior to junk removal, it seems
to work erroneously when it is forced to operate on
noisy data. Sentence boundaries were nevertheless
used, as in the same experiments the word-based
models gained significantly from their use, most
likely because they cannot use the fragment items
for detection of acoustic junk, as the models with
fragments can.

4 Results

Results of the experiments were consistent with ear-
lier findings(Hirsimäki et al., 2006; Kurimo et al.,
2006). Traditional word based LMs showed the
worst performance, with all of the recently proposed
alternatives giving better results. Hybrid LMs con-
sistently outperformed traditional word-based LMs

in both large and small vocabulary conditions. The
two morphology-driven approaches gave similar and
clearly superior results. Only the morph approach
seems to scale down well to smaller vocabulary
sizes, as the WER for the grammar approach in-
creased rapidly as size of the vocabulary was de-
creased.

size word hybrid morph grammar
60000 53.1 47.1 39.4 38.7
5000 82.0 63.0 43.5 47.6

Table 2. Word error rates for the models (WER %).

Table 2 shows the WER for the large (60000) and
small (5000) vocabulary sizes and different mod-
eling approaches. Table 3 shows the correspond-
ing letter error rates (LER). LERs are more compa-
rable across some languages than WERs, as WER
depends more on factors such as length, morpho-
logical complexity, and OOV of the words. How-
ever, for within-language and between-model com-
parisons, the RWERR should still be a valid met-
ric, and is also usable in languages that do not use a
phonemic writing system. The RWERRs of differ-
ent novel methods seems to be comparable between
different languages as well. Both WER and LER are
high considering the task. However, standard meth-
ods such as adaptation were not used, as the inten-
tion was only to study the RWERR of the different
approaches.

size word hybrid morph grammar
60000 17.8 15.8 12.4 12.3
5000 35.5 20.8 14.4 15.4

Table 3. Letter error rates for the models (LER %).

5 Discussion

Four different approaches to lexical item selection
for large and open vocabulary ASR in Estonian
were evaluated. It was shown that the three ap-
proaches utilizing vocabulary decomposition give
substantial improvements over the traditional word
based approach, and make large vocabulary ASR
technology possible for languages similar to Esto-
nian, where the traditional approach fails due to very
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high OOV rates. These include memetic relatives
Finnish and Turkish, among other languages that
have morphologies of high fusion, low synthesis and
low orthographic irregularity.

5.1 Performance of the approaches

The morpheme-based approaches outperformed the
word- and hybrid-based approaches clearly. The re-
sults for “hybrid” are in in the range suggested by
earlier work(Bisani and Ney, 2005). One possi-
ble explanation for the discrepancy between the hy-
brid and morpheme-based approaches would be that
the morpheme-based approaches capture items that
make sense in n-gram modeling, as morphs are items
that the system of language naturally operates on.
These items would then be of more use when try-
ing to predict unseen data(Creutz et al., 2007). As
modeling pronunciations is much more straightfor-
ward in Estonian, the morpheme-based approaches
do not suffer from erroneous pronunciations, result-
ing in clearly superior performance.

As for the superiority of the “grammar” over the
unsupervised “morph”, the difference is marginal in
terms of RWERR. The grammatical tagger was tai-
lored by hand for that particular language, whereas
Morfessor method is meant to be unsupervised and
language independent. There are further arguments
that would suggest that the unsupervised approach
is one that should be followed; only “morph” scaled
well to smaller vocabulary sizes, the usual practice
of pruning the word list to produce smaller morph
sets gives better results than here and most impor-
tantly, it is questionable if “grammar” can be taken
to languages with high indexes of fusion and ortho-
graphic irregularity, as the models have to take these
into account as well.

5.2 Comparison to previous results

There are few previous results published on Estonian
open vocabulary ASR. In (Alumäe, 2006) a WER of
44.5% was obtained with word-based trigrams and
a WER of 37.2% with items similar to ones from
“grammar” using the same speech corpus as in this
work. Compared to the present work, the WER
for the morpheme-based models was measured with
compound words split in both hypothesis and ref-
erence texts, making the task slightly easier than
here. In (Kurimo et al., 2006) a WER of 57.6% was

achieved with word-based varigrams and a WER of
49.0% with morphs-based ones. This used the same
evaluation set as this work, but had slightly different
LMs and different acoustic modelling which is the
main reason for the higher WER levels. In summary,
morpheme-based approaches seem to consistently
outperform the traditional word based one in Esto-
nian ASR, regardless of the specifics of the recogni-
tion system, test set and models.

In (Hirsimäki et al., 2006) a corresponding com-
parison of unsupervised and grammar-based morphs
was presented in Finnish, and the grammar-based
model gave a significantly higher WER in one of the
tasks. This result is interesting, and may stem from a
number of factors, among them the different decoder
and acoustic models, 4-grams versus varigrams, as
well as differences in post-processing. Most likely
the difference is due to lack of coverage for domain-
specific words in the Finnish tagger, as it has a 4.2%
OOV rate on the training data. On top of this the
OOV words are modeled simply as grapheme se-
quences, instead of modeling only OOV morphs in
that manner, as is done in this work.

5.3 Open problems in vocabulary
decomposition

As stated in the introduction, modeling languages
with high indexes of fusion such as Arabic will re-
quire more complex vocabulary decomposition ap-
proaches. This is verified by recent empirical re-
sults, where gains obtained from simple morpholog-
ical decomposition seem to be marginal(Kirchhoff
et al., 2006; Creutz et al., 2007). These languages
would possibly need novel LM inference algorithms
and decoder architectures. Current research seems
to be heading in this direction, with weighted finite
state transducers becoming standard representations
for the vocabulary instead of the lexical prefix tree.

Another issue in vocabulary decomposition is or-
thographic irregularity, as the items resulting from
decomposition do not necessarily have unambigu-
ous pronunciations. As most modern recognizers
use the Viterbi approximation with vocabularies of
one pronunciation per item, this is problematic. One
solution to this is expanding the different items with
tags according to pronunciation, shifting the prob-
lem to language modeling(Creutz et al., 2007). For
example, English plural “s” would expand to “s#1”
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with pronunciation “/s/”, and “s#2” with pronunci-
ation “/z/”, and so on. In this case the vocabulary
size increases by the amount of different pronunci-
ations added. The new items will have pronuncia-
tions that depend on their language model context,
enabling the prediction of pronunciations with lan-
guage model probabilities. The only downside to
this is complicating the search for optimal vocabu-
lary decomposition, as the items should make sense
in both pronunciational and morphological terms.

One can consider the originally presented hybrid
approach as an approach to vocabulary decompo-
sition that tries to keep the pronunciations of the
items as good as possible, whereas the morph ap-
proach tries to find items that make sense in terms
of morphology. This is obviously due to the meth-
ods having been developed on very different types
of languages. The morph approach was developed
for the needs of Finnish speech recognition, which
is a high synthesis, moderate fusion and very low or-
thographic irregularity language, whereas the hybrid
approach in (Bisani and Ney, 2005) was developed
for English, which has low synthesis, moderate fu-
sion, and very high orthographic irregularity. A uni-
versal approach to vocabulary decomposition would
have to take all of these factors into account.
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