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Abstract

In this paper, we propose a novel discrim-
inative language model, which can be ap-
plied quite generaly. Compared to the
well known N-gram language models, dis-
criminative language models can achieve
more accurate discrimination because they
can employ overlapping features and non-
local information. However, discriminative
language maodels have been used only for
re-ranking in specific applications because
negative examples are not available. We
propose sampling pseudo-negative examples
taken from probabilistic language models.
However, this approach requires prohibitive
computational cost if we are dealing with
quite a few features and training samples.
We tackle the problem by estimating the la-
tent information in sentences using a semi-
Markov class model, and then extracting
features from them. We also use an on-
line margin-based algorithm with efficient
kernel computation. Experimental results
show that pseudo-negative examples can be
treated as real negative examples and our
model can classify these sentences correctly.

1 Introduction

Language models (LMs) are fundamental tools for
many applications, such as speech recognition, ma-
chine translation and spelling correction. The goal
of LMsisto determine whether a sentence is correct
or incorrect in terms of grammars and pragmatics.
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The most widely used LM is a probabilistic lan-
guage model (PLM), which assigns a probability to
a sentence or a word sequence. In particular, N-
grams with maximum likelihood estimation (NLMs)
are often used. Although NLMs are simple, they are
effective for many applications.

However, NLMs cannot determine correctness
of a sentence independently because the probabil-
ity depends on the length of the sentence and the
global frequencies of each word in it. For exam-
ple, p(S1) < p(S2), where p(S) is the probability
of a sentence S given by an NLM, does not always
mean that S, ismore correct, but instead could occur
when S, is shorter than 51, or if Sy has more com-
mon words than S;. Another problem isthat NLMs
cannot handle overlapping information or non-local
information easily, which is important for more ac-
curate sentence classification. For example, a NLM
could assign a high probability to a sentence even if
it does not have averh.

Discriminative language models (DLMs) have
been proposed to classify sentences directly as cor-
rect or incorrect (Gao et al., 2005; Roark et al.,
2007), and these models can handle both non-local
and overlapping information. However DLMs in
previous studies have been restricted to specific ap-
plications. Therefore the model cannot be used for
other applications. If we had negative examples
available, the models could be trained directly by
discriminating between correct and incorrect sen-
tences.

In this paper, we propose a generic DLM, which
can be used not only for specific applications, but
also more generaly, similar to PLMs. To achieve
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this goal, we need to solve two problems. The first
isthat since we cannot obtain negative examples (in-
correct sentences), we need to generate them. The
second isthe prohibitive computational cost because
the number of features and examplesisvery large. In
previous studies this problem did not arise because
the amount of training data was limited and they did
not use a combination of features, and thus the com-
putational cost was negligible.

To solve the first problem, we propose sampling
incorrect sentences taken from a PLM and then
training amodel to discriminate between correct and
incorrect sentences. We call these examples Pseudo-
Negative because they are not actually negative sen-
tences. We call this method DLM-PN (DLM with
Pseudo-Negative samples).

To deal with the second problem, we employ an
online margin-based learning algorithm with fast
kernel computation. This enables usto employ com-
binations of features, which are important for dis-
crimination between correct and incorrect sentences.
We a so estimate the latent information in sentences
by using a semi-Markov class model to extract fea
tures. Although there are substantially fewer la-
tent features than explicit features such as words or
phrases, latent features contain essential information
for sentence classification.

Experimental results show that these pseudo-
negative samples can be treated as incorrect exam-
ples, and that DLM-PN can learn to correctly dis-
criminate between correct and incorrect sentences
and can therefore classify these sentences correctly.

2 Previouswork

Probabilistic language models (PLMs) estimate the
probability of word strings or sentences. Among
these models, N-gram language models (NLMs) are
widely used. NLMs approximate the probability by
conditioning only on the preceding N — 1 words.
For example, let S denote a sentence of ¢ words,
S = wy,ws,...,w;. Then, by the chain rule of
probability and the approximation, we have

P(S) = -y Wt)

= [I Pwilwi—nsr,...,wir). (1)
i1t

P(wy,wa, ..

The parameters can be estimated using the maxi-
mum likelihood method.
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Since the number of parameters in NLM is still
large, several smoothing methods are used (Chen
and Goodman, 1998) to produce more accurate
probabilities, and to assign nonzero probabilities to
any word string.

However, since the probabilities in NLMs depend
on the length of the sentence, two sentences of dif-
ferent length cannot be compared directly.

Recently, Whole Sentence Maximum Entropy
Models (Rosenfeld et al., 2001) (WSMES) have
been introduced. They assign a probability to
each sentence using a maximum entropy model.
Although WSMEs can encode all features of a
sentence including non-local ones, they are only
sightly superior to NLMs, in that they have the dis-
advantage of being computationally expensive, and
not all relevant features can be included.

A discriminative language model (DLM) assigns
ascore f(S) to asentence S, measuring the correct-
ness of a sentence in terms of grammar and prag-
matics, so that f(S) > 0 implies S is correct and
f(S) < 0 implies S is incorrect. A PLM can be
considered as a special case of a DLM by defining
f using P(S). For example, we can take f(S) =
P(S)/|S| — a, where « is some threshold, and |S]|
isthelength of S.

Given a sentence S, we extract a feature vector
(¢(S)) from it using a pre-defined set of feature
functions {¢;}7,. The form of the function f we
useis

f(8) =w-9(5), (2)

where w is a feature weighting vector.

Since there is no restriction in designing ¢(S),
DLMs can make use of both over-lapping and non-
local information in S. We estimate w using training
samples {(S;,y;)} fori = 1...t, wherey; = 1if S;
iscorrect and y; = —1 if .S; isincorrect.

However, it is hard to obtain incorrect sentences
because only correct sentences are available from
the corpus. This problem was not an issue for previ-
ous studies because they were concerned with spe-
cific applications and therefore were able to obtain
real negative examples easily. For example, Roark
(2007) proposed adiscriminative language model, in
which a model is trained so that a correct sentence
should have higher score than others. The differ-
ence between their approach and ours is that we do
not assume just one application. Moreover, they had



For i=1,2, ...
Choose a word w; at random
according to the distribution

P(wi|wi_N+1, e ,wi_l)

If w;= "end of a sentence"
Break

End End

Figure 1. Sample procedure for pseudo-negative ex-
amples taken from N-gram language models.

training sets consisting of one correct sentence and
many incorrect sentences, which were very similar
because they were generated by the same input. Our
framework does not assume any such training sets,
and we treat correct or incorrect examples indepen-
dently in training.

3 Discriminative Language Model with
Pseudo-Negative samples

We propose a novel discriminative language model;
a Discriminative Language Model with Pseudo-
Negative samples (DLM-PN). In this model,
pseudo-negative examples, which are al assumed to
be incorrect, are sampled from PLMs.

First a PLM is built using training data and then
examples, which are aimost all negative, are sam-
pled independently from PLMs. DLMs are trained
using correct sentences from a corpus and negative
examples from a Pseudo-Negative generator.

An advantage of sampling is that as many nega-
tive examples can be collected as correct ones, and
adistinction can be clearly made between truly cor-
rect sentences and incorrect sentences, even though
the latter might be correct in alocal sense.

For sampling, any PLMs can be used as long
as the model supports a sentence sampling proce-
dure. In this research we used NLMs with interpo-
lated smoothing because such models support effi-
cient sentence sampling. Figure 1 describes the sam-
pling procedure and figure 2 shows an example of a
pseudo-negative sentence.

Since the focus is on discriminating between cor-
rect sentences from a corpus and incorrect sentences
sampled from the NLM, DLM-PN may not able to
classify incorrect sentences that are not generated
fromthe NLM. However, this does not result in ase-
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We know of no program, and animated
discussions about prospects for trade
barriers or regulations on the rules
of the game as a whole, and elements
of decoration of this peanut-shaped

to priorities tasks across both target
countries

Figure 2. Example of a sentence sampled by PLMs
(Trigram).

Build a probabilistic language model

Probabilistic LM
(e.g. N-gram LM)

J——

‘ Sample sentences

.

Corpus

(Pseudo-) Negative

Positive
l Input training examples

Binary Classifier )

—— —(
test sentences / \

Return positive/negative label or score (margin)

Figure 3: Framework of our classification process.

rious problem, because these sentences, if they exi<t,
can befiltered out by NLMs.

4 Online margin-based learning with fast
kernel computation

The DLM-PN can be trained by using any binary
classification learning methods. However, since the
number of training examples is very large, batch
training has suffered from prohibitively large com-
putational cost in terms of time and memory. There-
fore we make use of an online learning agorithm
proposed by (Crammer et a., 2006), which has a
much smaller computational cost. We follow the
definition in (Crammer et a., 2006).

Theinitiation vector wy isinitialized to 0 and for
each round the algorithm observes a training exam-
plex; := ¢(S;) and predicts its label y; to be either
+1 or —1. After the prediction is made, the true la-
bel y; isrevealed and the algorithm suffers an instan-
taneous hinge-loss [(w; (x;,vi)) = 1 — yi(w; - x;)
which reflects the degree to which its prediction was
wrong. If the prediction was wrong, the parameter



w is updated as

3)
(4)

where ¢ isadack term and C'isa positive parameter
which controls the influence of the slack term on the
objective function. A largevalue of C' will resultina
more aggressive update step. Thishasaclosed form
solution as

o1
Wipl = argmmw§||w —wi||> + C¢

()

where 7; = min{C,W}. As in SVMs, a fi-
nal weight vector can be represented as a kernel-
dependent combination of the stored training exam-
ples.

Wit1 = Wi + T¥iX;

wex =Y 7igi(xiXx) (6)
13

Using this formulation the inner product can be re-

placed with a general Mercer kernel K (x;,x) such

as apolynomial kernel or a Gaussian kernel.

The combination of features, which can capture
correlation information, is important in DLMs. If
the kernel-trick (Taylor and Cristianini, 2004) is ap-
plied to online margin-based learning, a subset of
the observed examples, called the active set, needs
to be stored. However in contrast to the support set
in SVMs, an example is added to the active set every
time the online agorithm makes a prediction mis-
take or when its confidence in a prediction is inad-
equately low. Therefore the active set can increase
in size significantly and thus the total computational
cost becomes proportiona to the square of the num-
ber of training examples. Since the number of train-
ing examples isvery large, the computational cost is
prohibitive even if we apply the kernel trick.

The calculation of the inner product between two
examples can be done by intersection of the acti-
vated features in each example. This is similar to
a merge sort and can be executed in O(M) time
where M is the average number of activated fea
tures in an example. When the number of examples
in the active set is A, the total computational cost is
O(M - A). For fast kernel computation, the Poly-
nomial Kernel Inverted method (PKI)) is proposed
(Kudo and Matsumoto, 2003), which is an exten-
sion of Inverted Index in Information Retrieval. This
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algorithm uses a table h(f;) for each feature item,
which stores examples where a feature f; is fired.
Let B bethe average of |h(f;)| over all feature item.
Then the kernel computation can be performed in
O(M - B) time which is much less than the normal
kernel computation timewhen B < A. We can eas-
ily extend this algorithm into the online setting by
updating h(f;) when an observed example is added
to an active set.

5 Latent features by semi-Markov class
model

Another problem for DLMs is that the number of
features becomes very large, because all possible N-
grams are used as features. In particular, the mem-
ory requirement becomes a serious problem because
quite afew active sets with many features have to be
stored, not only at training time, but also at classi-
fication time. One way to deal with this is to filter
out low-confidence features, but it is difficult to de-
cide which features areimportant in online learning.
For this reason we cluster similar N-grams using a
semi-Markov class model.

The class model wasoriginally proposed by (Mar-
tin et a., 1998). In the class model, determinis-
tic word-to-class mappings are estimated, keeping
the number of classes much smaller than the num-
ber of distinct words. A semi-Markov class model
(SMCM) is an extended version of the class mode,
apart of which was proposed by (Deligne and BIM-
BOT, 1995). In SMCM, a word sequence is par-
titioned into a variable-length sequence of chunks
and then chunks are clustered into classes (Figure 4).
How a chunk is clustered depends on which chunks
are adjacent to it.

The probability of a sentence P(wy, ...
bi-gram class model is calculated by

[T Plwisileisr) Pleigale).

2

,wy),ina

(")

On the other hand, the probabilities in a bi-gram
semi-Markov class model are calculated by

Z HP(Ci|Ci—1) - P(wis),i(i)+1,...u@lci)- (8)

where s varies over al possible partitions of S, #(i)
and u(i) denote the start and end positions respec-
tively of the i-th chunk in partition s,and ¢(i + 1) =



u(i) + 1 for all 7. Note that each word or variable-
length chunk belongs to only one class, in contrast
to a hidden Markov model where each word can be-
long to several classes.

Using atraining corpus, the mapping is estimated
by maximum likelihood estimation. The log like-
lihood of the training corpus (wy,...,w,) in a bi-
gram class model can be calculated as

log H P(wjq1|w;) 9
= Zlog P(wit1|ciy1)P(cit1|c;) (10)
B F(er, o)
= ZFCIaCQ)IOgm

C1,C2

~I—ZF

where F(w), F(c) and F'(c1, co) are frequencies of
aword w, aclass ¢ and a class bi-gram ¢, ¢, in the
training corpus. In (11) only the first term is used,
since the second term does not depend on the class
alocation. The class alocation problem is solved by
an exchange algorithm as follows. First, al words
are assigned to a randomly determined class. Next,
for each word w, we moveit to the class ¢ for which
the log-likelihood is maximized. This procedure is
continued until the log-likelihood converges to alo-
cal maximum. A naive implementation of the clus-
tering algorithm scales quadratically to the number
of classes, since each time aword is moved between
classes, al class bi-gram counts are potentially af-
fected. However, by considering only those counts
that actually change, the algorithm can be made to
scale somewhere between linearly and quadratically
to the number of classes (Martin et a., 1998).

In SMCM, partitions of each sentence are also de-
termined. We used a Viterbi decoding (Deligne and
BIMBOT, 1995) for the partition. We applied the
exchange algorithm and the Viterbi decoding alter-
nately until the log-likelihood converged to the local
maximum.

Since the number of chunks is very large, for ex-
ample, in our experiments we used about 3 million
chunks, the computational cost is till large. We
therefore employed the following two techniques.
The first was to approximate the computation in the
exchange agorithm; the second was to make use of
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(11)

) log F'(w

W IWZIV\{SIW4 W5 We [W7 ,WSJ

oo ! |

c, G, C, C,

Figure 4: Example of assignment in semi-Markov
class model. A sentence is partitioned into variable-
length chunks and each chunk is assigned a unique
class number.

bottom-up clustering to strengthen the convergence.

In each step in the exchange agorithm, the ap-
proximate value of the change of the log-likelihood
was examined, and the exchange algorithm applied
only if the approximate value was larger than a pre-
defined threshold.

The second technique was to reduce memory re-
guirements. Since the matrices used in the exchange
algorithm could become very large, we clustered
chunks into 2 classes and then again we clustered
these two into 2 each, thus obtaining 4 classes. This
procedure was applied recursively until the number
of classes reached a pre-defined number.

6 Experiments

6.1 Experimental Setup

We partitioned a BNC-corpus into model-train,
DLM-train-positive, and DLM-test-positive sets.
The numbers of sentences in model-train, DLM-
train-positive and DLM-test-positive were 4500k,
250k, and 10k respectively. An NLM was built
using model-train and Pseudo-Negative examples
(250k sentences) were sampled from it. We mixed
sentences from DLM-train-positive and the Pseudo-
Negative examples and then shuffled the order of
these sentences to make DLM-train. We also con-
structed DLM-test by mixing DLM-test-positive and
10k new (not aready used) sentences from the
Pseudo-Negative examples. We call the sentences
from DLM-train-positive “positive” examples and
the sentences from the Pseudo-Negative examples
“negative” examples in the following. From these
sentences the ones with less than 5 words were ex-
cluded beforehand because it was difficult to decide
whether these sentences were correct or not (e.g.



| Accuracy (%) Training time (s)
Linear classifier

word tri-gram 51.28 137.1

POS tri-gram 52.64 85.0
SMCM bi-gram (G = 100) 51.79 304.9
SMCM bi-gram (G' = 500) 54.45 422.1

3rd order Polynomial Kernel

word tri-gram 73.65 20143.7

POS tri-gram 66.58 29622.9
SMCM bi-gram (G = 100) 67.11 37181.6
SMCM bi-gram (G' = 500) 74.11 34474.7

Table 1; Performance on the evaluation data.

compound words).

Let G be the number of classesin SMCMs. Two
SMCMSs, one with G = 100 and the other with
G = 500, were constructed from model-train. Each
SMCM contained 2.8 million extracted chunks.

6.2 Experimentson Pseudo-Examples

We examined the property of a sentence being
Pseudo-Negative, in order to justify our framework.
A native English speaker and two non-native En-
glish speaker were asked to assign correct/incorrect
labels to 100 sentences in DLM-train*. The result
for an native English speaker was that all positive
sentences were labeled as correct and all negative
sentences except for one were labeled as incorrect.
On the other hand, the results for non-native English
speakers are 67% and 70%. From this result, we
can say that the sampling method was able to gen-
erate incorrect sentences and if a classifier can dis-
criminate them, the classifier can also discriminate
between correct and incorrect sentences. Note that
it takes an average of 25 seconds for the native En-
glish speaker to assign the label, which suggests that
it isdifficult even for a human to determine the cor-
rectness of a sentence.

We then examined whether it was possible to dis-
criminate between correct and incorrect sentences
using parsing methods, since if so, we could have
used parsing as a classification tool. We exam-
ined 100 sentences using a phrase structure parser
(Charniak and Johnson, 2005) and an HPSG parser

1Since the PLM also made use of the BNC-corpus for posi-
tive examples, we were not able to classify sentences based on
word occurrences
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(Miyao and Tsujii, 2005). All sentences were parsed
correctly except for one positive example. This
result indicates that correct sentences and pseudo-
negative examples cannot be differentiated syntacti-
caly.

6.3 Experimentson DLM-PN

We investigated the performance of classifiers and
the effect of different sets of features.

For N-grams and Part of Speech (POS), we used
tri-gram features. For SMCM, we used bi-gram fea-
tures. We used DLM-train as a training set. In al
experiments, we set C' = 50.0 where C isaparame-
ter in the classification (Section 4). In all kernel ex-
periments, a 3rd order polynomial kernel was used
and values were computed using PKI (the inverted
indexing method). Table 1 shows the accuracy re-
sults with different features, or in the case of the
SMCMs, different numbers of classes. This result
shows that the kernel method isimportant in achiev-
ing high performance. Note that the classifier with
SMCM features performs as well as the one with
word.

Table 2 shows the number of features in each
method. Note that a new feature is added only if the
classifier needsto update its parameters. These num-
bers are therefore smaller than the possible number
of all candidate features. This result and the previ-
ous result indicate that SMCM achieves high perfor-
mance with very few features.

We then examined the effect of PKI. Table 3
shows the results of the classifier with 3rd order
polynomial kernel both with and without PKI. In
this experiment, only 200 K sentences in DLM-train



# of distinct features

word tri-gram 15773230
POS tri-gram 35376
SMCM (G = 100) 9335
SMCM (G = 500) 199745

Table 2: The number of features.

training time (s)  prediction time (ms)

Baseline
+ Index

37665.5 370.6
4664.9 47.8

Table 3: Comparison between classification perfor-
mance with/without index

—o— negative
—&— positive

Number of sentences

Figure 5: Margin distribution using SMCM bi-gram
features.

were used for both experiments because training us-
ing al the training data would have required amuch
longer time than was possible with our experimental
setup.

Figure 5 shows the margin distribution for pos-
itive and negative examples using SMCM bi-gram
features. Although many examples are close to the
border line (margin = 0), positive and negative ex-
amples are distributed on either side of 0. Therefore
higher recall or precision could be achieved by using
a pre-defined margin threshold other than 0.

Finally, we generated learning curves to examine
the effect of the size of training data on performance.
Figure 6 shows the result of the classification task
using SMCM-bi-gram features. The result suggests
that the performance could be further improved by
enlarging the training data set.
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Accuracy (%)
[=>)
[3;]

5000
35000
65000
95000
1E+05
2E+05
2E+05
2E+05
2E+05
3E+05
3E+05
3E+05
4E+05
4E+05
4E+05
5E+05
5E+05

Number of training examples

Figure 6: A learning curve for SMCM (G = 500).
The accuracy is the percentage of sentences in the
evaluation set classified correctly.

7 Discussion

Experimental results on pseudo-negative examples
indicate that combination of features is effective in
a sentence discrimination method. This could be
because negative examples include many unsuitable
combinations of words such as a sentence contain-
ing many nouns. Although in previous PLMs, com-
bination of features has not been discussed except
for the topic-based language model (David M. Ble,
2003; Wang et al., 2005), our result may encourage
the study of the combination of features for language
modeling.

A contrastive estimation method (Smith and Eis-
ner, 2005) issimilar to ours with regard to construct-
ing pseudo-negative examples. They build a neigh-
borhood of input examplesto allow unsupervised es-
timation when, for example, a word is changed or
deleted. A lattice is constructed, and then parame-
ters are estimated efficiently. On the other hand, we
construct independent pseudo-negative examples to
enable training. Although the motivations of these
studies are different, we could combine these two
methods to discriminate sentences finely.

In our experiments, we did not examine the result
of using other sampling methods, For example, it
would be possible to sample sentences from awhole
sentence maximum entropy model (Rosenfeld et al.,
2001) and thisis atopic for future research.



8 Conclusion

In this paper we have presented a novel discrimi-
native language model using pseudo-negative exam-
ples. We aso showed that an online margin-based
learning method enabled us to use half amillion sen-
tences as training data and achieve 74% accuracy in
the task of discrimination between correct and in-
correct sentences. Experimental results indicate that
while pseudo-negative examples can be seen asin-
correct sentences, they are also close to correct sen-
tences in that parsers cannot discriminate between
them.

Our experimental results also showed that com-
bination of features is important for discrimination
between correct and incorrect sentences. This con-
cept has not been discussed in previous probabilistic
language models.

Our next step is to employ our model in machine
translation and speech recognition. One main diffi-
culty concerns how to encode global scores for the
classifier in the local search space, and another is
how to scale up the problem size in terms of the
number of examples and features. We would like to
see more refined online learning methods with ker-
nels (Cheng et al., 2006; Dekel et al., 2005) that we
could apply in these aress.

We are al so interested in applications such as con-
structing an extended version of a spelling correc-
tion tool by identifying incorrect sentences.

Ancther interesting idea is to work with proba-
bilistic language models directly without sampling
and find ways to construct a more accurate discrim-
inative model.
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