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Abstract performance. We will show how such corpora can

o _ ' be used to achieve higher translation quality.
Statistical machine translation systems are  pyq jf jarge amounts of bilingual text are given,
usually trained on large amounts of bilin- ¢ y4ining of the statistical models usually suffers
gual text and monolingual text in the tar- .,y gparse data. The number of possible events,
get language. In this paper we explore the ;o 'nhrase pairs or pairs of subtrees in the two lan-
use of transductive semi-supervised meth- 3465 s too big to reliably estimate a probabil-
ods for the effective use of monolingual data iy gistribution over such pairs. Another problem is
from the source language in order 0 iM-  nat for many language pairs the amount of available
prove translanon. qua!|ty.. We propose sev- bilingual text is very limited. In this work, we will
eral algorithms with this aim, and presentthe  ,yqress this problem and propose a general frame-
strengths and weaknesses of each one. We . 1 solve it. Our hypothesis is that adding infor-
present detailed experimental evaluations on - asion from source language text can also provide
the French—English EuroParl data setand on o rqvements. Unlike adding target language text,
data from the NIST Chinese-English large- 5 hypothesis is a natural semi-supervised learn-
data track. We show a significant improve-  jnq nronlem. To tackle this problem, we propose
ment in translation quality on both tasks. algorithms for transductive semi-supervised learn-
ing. By transductive, we mean that we repeatedly
translate sentences from the development set or test
In statistical machine translation (SMT), translatiorset and use the generated translations to improve the
is modeled as a decision process. The goal is to fifgkrformance of the SMT system. Note that the eval-
the translatiort of source sentence which maxi- yation step is still done just once at the end of our
mizes the posterior probability: learning process. In this paper, we show that such
an approach can lead to better translations despite
the fact that the development and test data are typi-

1 Introduction

argmaxp(t|s) = argmaxp(s|t) - p(t) (1)

This decomposition of the probability yields two dif- cally much smaller in size than typical training data

ferent statistical models which can be trained in" SMT syst.ems. )

dependently of each other: the translation model Transductive learning can be seen as a means to
State-of-the-art SMT systems are trained on largdyStém trained on newswire is used to translate we-

collections of text which consist of bilingual corporaP!0d texts. The proposed method adapts the trained

(to learn the parameters pfs|t)), and of monolin- Models to the style and domain of the new input.

gual target language corpora (foft)). It has been )

shown that adding large amounts of target language

text improves translation quality considerably. How-The SMT system we applied in our experiments is

ever, the availability of monolingual corpora in thePORTAGE. This is a state-of-the-art phrase-based

source language does not help improve the systentimnslation system which has been made available
25
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to Canadian universities for research and educatidteration and added to the training data. These se-
purposes. We provide a basic description here; forlacted sentence pairs are replaced in each iteration,
detailed description see (Ueffing et al., 2007). and only the original bilingual training datd,, is
The models (or features) which are employed biept fixed throughout the algorithm. The process
the decoder are: (a) one or several phrase table(e),generating sentence pairs, selecting a subset of
which model the translation directigiis| t), (b) one good sentence pairs, and updating the model is con-
or severaln-gram language model(s) trained withtinued until a stopping condition is met. Note that
the SRILM toolkit (Stolcke, 2002); in the experi- we run this algorithm in a transductive setting which
ments reported here, we used 4-gram models on theeans that the set of sentendéss drawn either
NIST data, and a trigram model on EuroParl, (cfrom a development set or the test set that will be
a distortion model which assigns a penalty basedsed eventually to evaluate the SMT system or from
on the number of source words which are skippeddditional data which is relevant to the development
when generating a new target phrase, and (d) a woed test set. In Algorithm 1, changing the definition
penalty. These different models are combined logef Estimate, Scoreand Selectwill give us the dif-
linearly. Their weights are optimized w.r.t. BLEU ferent semi-supervised learning algorithms we will
score using the algorithm described in (Och, 2003¥liscuss in this paper.
This is done on a development corpus which we will Given the probability modej(t | s), consider the
call devl in this paper. The search algorithm impledistribution over all possible valid translation$or
mented in the decoder is a dynamic-programming particular input sentence We can initialize
beam-search algorithm. this probability distribution to the uniform distribu-
After the main decoding step, rescoring with adtion for each sentence in the unlabeled datd'.
ditional models is performed. The system generatddus, this distribution over translations of sentences
a 5,000-best list of alternative translations for eacffom U will have the maximum entropy. Under
source sentence. These lists are rescored with thertain precise conditions, as described in (Abney,
following models: (a) the different models used in2004), we can analyze Algorithm 1 as minimizing
the decoder which are described above, (b) two difhe entropy of the distribution over translationg.of
ferent features based on IBM Model 1 (Brown et al.However, this is true only when the functioksti-
1993), (c) posterior probabilities for words, phrasegnate, ScoreandSelecthave very prescribed defini-
n-grams, and sentence length (Zens and Ney, 200@ns. In this paper, rather than analyze the conver-
Ueffing and Ney, 2007), all calculated over the  gence of Algorithm 1 we run it for a fixed number
best list and using the sentence probabilities whichf iterations and instead focus on finding useful def-
the baseline system assigns to the translation hipitions for Estimate, ScoreandSelectthat can be
potheses. The weights of these additional modeg&xperimentally shown to improve MT performance.
and of the decoder models are again optimized %95 The Estimate Function

maximize BLEU score. This is performed on a sec-
ond deve|0pment corpus, dev2. We consider the fOIIOWing different definitions for

Estimatein Algorithm 1:
Full Re-training (of all translation models): If
Estimate(L,T") estimates the model parameters
based ol U T, then we have a semi-supervised al-
Our transductive learning algorithm, Algorithm 1,gorithm that re-trains a model on the original train-
is inspired by the Yarowsky algorithm (Yarowsky,ing datal plus the sentences decoded in the last it-
1995; Abney, 2004). The algorithm works as fol-eration. The size of. can be controlled bfiltering
lows: First, the translation model is estimated basdtie training data (see Section 3.5).
on the sentence pairs in the bilingual training data Additional Phrase Table: If, on the other hand, a
Then, a set of source language senteridess trans- new phrase translation table is learned Dronly
lated based on the current model. A subset of goahd then added as a new component in the log-linear
translations and their sourcés, is selected in each model, we have an alternative to the full re-training
26
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Algorithm 1 Transductive learning algorithm for statistical machine translation
1: Input training setl of parallel sentence pairs.  // Bilingual training data.

2: Input unlabeled sel of source text. / Monolingual source language data.
3: Input number of iterations?, and size of n-best lisy .

4. T_y:={}. /I Additional bilingual training data.

5 4:=0. /I lteration counter.

6: repeat

7. Training step () := Estimate(L, Tj_).

8  X;:={}. [/l The set of generated translations for this iteration.

9: for sentences € U do

10: Labeling stepDecodes usingz(?) to obtainN' best sentence pairs with their scores
11: X = Xi U{(tn,s 7 (t, |9)N_;}

12:  end for

13:  Scoring step.S; := Scorg X;) /I Assign a score to sentence pdirss) from X.

14:  Selection stepT; := SelectX;, S;) // Choose a subset gbodsentence paird, s) from X.

15:  ¢:=1+ 1.
16: until < > R

of the model on labeled and unlabeled data whiclhhe confidence score of a target sentenhce cal-
can be very expensive i is very large (as on the culated as a log-linear combination of phrase pos-
Chinese—English data set). This additional phragerior probabilities, Levenshtein-based word poste-
table is small and specific to the development orior probabilities, and a target language model score.
test set it is trained on. It overlaps with the origi-The weights of the different scores are optimized
nal phrase tables, but also contains many new phrase.t. classification error rate (CER).
pairs (Ueffing, 2006). The phrase posterior probabilities are determined
Mixture Model: Another alternative foEstimate by summing the sentence probabilities of all trans-
is to create a mixture model of the phrase table prollation hypotheses in th&'-best list which contain
abilities with new phrase table probabilities this phrase pair. The segmentation of the sentence
p(s|t) = A Ly(s|t) + (1 = A) - Tp(s[t)  (2) into phrases is provided by the decoder. This sum
is then normalized by the total probability mass of

whereL,, andT,, are phrase table probabilities eSlhe N-best list. To obtain a score for the whole tar-

mated onl andT’, respectively. In cases where new . L
. : get sentence, the posterior probabilities of all target
phrase pairs are learned fréfj they get added into

the meraed phrase table phrases are multiplied. The word posterior proba-
gedp ' _' bilities are calculated on basis of the Levenshtein
3.3 The Scoring Function alignment between the hypothesis under consider-

In Algorithm 1, theScorefunction assigns a score to ation and all other translations contained in fkie
each translation hypothegisWe used the following best list. For details, see (Ueffing and Ney, 2007).
scoring functions in our experiments: Again, the single values are multiplied to obtain a
Length-normalized Score: Each translated sen- Score for the whole sentence. For NIST, the lan-
tence pair(t,s) is scored according to the modelguage model score is determined using a 5-gram
probabilityp(t | s) normalized by the length| of the model trained on the English Gigaword corpus, and
target sentence: on French—English, we use the trigram model which

o i for the NAACL 2 h k.
Scorgt,s) = p(t|s)T (3) as provided for the NAACL 2006 shared tas
3.4 The Selection Function

Confidence Estimation: The confidence estimation

which we implemented follows the approaches sugFhe Selectfunction in Algorithm 1 is used to create

gested in (Blatz et al., 2003; Ueffing and Ney, 2007)the additional training dat&; which will be used in
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the next iterationi + 1 by Estimate to augment the corpus use sentences

original bilingual training data. We use the follow- EuroParl  phrase table+LM 688K
ing selection functions: trainl00k phrase table 100K
Importance Sampling: For each sentencein the train150k phrase table 150K
set of unlabeled sentencés the Labeling step in dev06 devl 2,000
Algorithm 1 generates alN-best list of translations, testO6 test 3,064
and the subsequent Scoring step assigns a score for Table 1: French—English corpora

each translation in this list. The set of generated

translations for all sentencesihis the event space corpus use sentences
and the scores are used to put a probability distri-non-UN phrase table+LM 3.2M
bution over this space, simply by renormalizing the UN phrase table+LM 5.0M
scores described in Section 3.3. We use importanc&nglish Gigaword LM 11.7M
sampling to seleck translations from this distri- multi-p3 devl 935
bution. Sampling is done with replacement which multi-p4 dev2 919
means that the same translation may be chosen seeval-04 test 1,788
eral times. Thesé&( sampled translations and their eval-06 test 3,940

associated source sentences make up the additional Table 2: NIST Chinese—English corpora
training datar;.

Selection using a Threshold: This method com- _ o
pares the score of each single-best translation toy\é{nch are relevant w.r.t. the test set. This filtering
threshold. The translation is considered reliable arlg aS&d om-gram coverage. For a source sentence
added to the sef} if its score exceeds the thresh-S 1N the training data, its-gram coverage over the
old. Else it is discarded and not used in the addSentences in the test set is computed. The average
tional training data. The threshold is optimized orfVer severak-gram lengths is used as a measure
the development beforehand. Since the scores of tRE r€levance of this training sentence w.r.t. the test
translations change in each iteration, the siz&of COrPUS. Based on this, we select the fopsource
also changes. sentences or sentence pairs.

Keep All: This method does not perform any fil-4 Experimental Results

tering at all. It is simply assumed that all transla-
tions in the sefX; are reliable, and none of them are
discarded. Thus, in each iteration, the result of thé/e ran experiments on two different corpora: one
selection step will b&; = X;. This method was is the French—English translation task from the Eu-
implemented mainly for comparison with other sefoParl corpus, and the other one is Chinese—English
lection methods. translation as performed in the NIST MT evaluation
(www.nist.gov/speech/tests/mt).

For the French—English translation task, we used
In general, having more training data improves théhe EuroParl corpus as distributed for the shared task
quality of the trained models. However, when itin the NAACL 2006 workshop on statistical ma-
comes to the translation of a particular test set, thehine translation. The corpus statistics are shown
question is whetheall of the available training data in Table 1. Furthermore we filtered the EuroParl
are relevant to the translation task or not. Moreovecorpus, as explained in Section 3.5, to create two
working with large amounts of training data requiresmaller bilingual corpora (train100k and train150k
more computational power. So if we can identify @n Table 1). The development set is used to optimize
subset of training data which are relevant to the cuthe model weights in the decoder, and the evaluation
rent task and use only this to re-train the models, wig done on the test set provided for the NAACL 2006
can reduce computational complexity significantly. shared task.

We propose toFilter the training data, either Forthe Chinese—English translation task, we used
bilingual or monolingual text, to identify the partsthe corpora distributed for the large-data track in the
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setting EuroParl NIST independent word error rate) (NieRen et al., 2000).

full re-training w/ filtering * *k Note that BLEU score measures quality, whereas
full re-training *k T MWER and mPER measure translation errors. We
mixture model * T will present 95%-confidence intervals for the base-
new phrase table ff: line system which are calculated using bootstrap re-
keep all *x * sampling. The metrics are calculated w.r.t. one and
imp. sampling norm. s * four English references: the EuroParl data comes
conf. Kok * with one reference, the NIST 2004 evaluation set

threshold norm.  kx * and the NIST section of the 2006 evaluation set
conf. *% * are provided with four references each, whereas the

GALE section of the 2006 evaluation set comes
with one reference only. This results in much lower

BLEU scores and higher error rates for the transla-

2006 NIST evaluation (see Table 2). We used thgons of the GALE set (see Section 4.2). Note that
LDC segmenter for Chinese. The multiple translagese values do not indicate lower translation qual-

tion corpora multi-p3 and mul_ti—p4 were used as deﬁy’ but are simply a result of using only one refer-
velopment corpora. Evaluation was performed ogpce.

the 2004 and 2006 test sets. Note that the train-
ing data consists mainly of written text, whereas thd.2 Results
test sets comprise three and four different genres:
editorials, newswire and political speeches in th uroParl
2004 test set, and broadcast conversations, broad4ye ran our initial experiments on EuroParl to ex-
cast news, newsgroups and newswire in the 20Gfiore the behavior of the transductive learning algo-
test set. Most of these domains have characteristigghm. In all experiments reported in this subsec-
which are different from those of the training datation, the test set was used as unlabeled data. The
e.g., broadcast conversations have characteristicsgflection and scoring was carried out using impor-
spontaneous speech, and the newsgroup data is caahce sampling with normalized scores. In one set
paratively unstructured. of experiments, we used the 100K and 150K train-
Given the particular data sets described above, Targ sentences filtered accordingrtegram coverage
ble 3 shows the various options for thestimate, over the test set. We fully re-trained the phrase ta-
Scoreand Selectfunctions (see Section 3). The ta-bles on these data and 8,000 test sentence pairs sam-
ble provides a quick guide to the experiments weled from 20-best lists in each iteration. The results
present in this paper vs. those we did not attempt du the test set can be seen in Figure 1. The BLEU
to computational infeasibility. We ran experimentsscore increases, although with slight variation, over
corresponding to all entries marked witlfsee Sec- the iterations. In total, it increases from 24.1 to 24.4
tion 4.2). For those markegk the experiments pro- for the 100K filtered corpus, and from 24.5 to 24.8
duced only minimal improvement over the baselinéor 150K, respectively. Moreover, we see that the
and so we do not discuss them in this paper. The eBLEU score of the system using 100K training sen-
tries marked ag were not attempted because theyence pairs and transductive learning is the same as
are not feasible (e.g. full re-training on the NISTthat of the one trained on 150K sentence pairs. So
data). However, these were run on the smaller Ethe information extracted from untranslated test sen-
roParl corpus. tences is equivalent to having an additional 50K sen-
tence pairs.

In a second set of experiments, we used the whole
We evaluated the generated translations usirtguroParl corpus and the sampled sentences for fully
three different evaluation metrics: BLEU score (Pare-training the phrase tables in each iteration. We
pineni et al., 2002), mMWER (multi-reference wordran the algorithm for three iterations and the BLEU
error rate), and mPER (multi-reference positionscore increased from 25.3 to 25.6. Even though this
29
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Figure 1: Translation quality for importance sampling with full re-training on train100k (left) and train150k

(right). EuroParl French—English task.

24.05

is a small increase, it shows that the unlabeled dathe devl corpus, using the phrase table specific to
contains some information which can be explored idevl. Every time a new corpus is to be translated,
transductive learning. an adapted phrase table is created using transductive
In a third experiment, we applied the mixturelearning and used with the weight which has been
model idea as explained in Section 3.2. The initiallyearned on devl. In the first experiment presented
learned phrase table was merged with the learnda Table 4, all of the generated 1-best translations
phrase table in each iteration with a weightof=  were kept and used for training the adapted phrase
0.1. This value for\ was found based on cross val-tables. This method yields slightly higher transla-
idation on a development set. We ran the algorithriion quality than the baseline system. The second
for 20 iterations and BLEU score increased fromapproach we studied is the use of importance sam-
25.3 to 25.7. Since this is very similar to the refling (IS) over 20-best lists, based either on length-
sult obtained with the previous method, but with amormalized sentence scores (norm.) or confidence
additional parametek to optimize, we did not use scores (conf.). As the results in Table 4 show, both
mixture models on NIST. variants outperform the first method, with a consis-
Note that the single improvements achieved hef€nt improvement over the baseline across all test

are slightly below the 95%-significance level. How-corpora and evaluation metrics. The third method
ever, we observe them Consistently in all Settings_ uses a threshold-based selection method. Combined

with confidence estimation as scoring method, this
NIST yields the best results. All improvements over the

Table 4 presents translation results on NIST witRaseline are significant at the 95%-level.
different versions of the scoring and selection meth- Table 5 shows the translation quality achieved on
ods introduced in Section 3. In these experimentshe NIST test sets when additional source language
the unlabeled daté for Algorithm 1 is the develop- data from the Chinese Gigaword corpus compris-
ment or test corpus. For this corplis 5,000-best ing newswire text is used for transductive learning.
lists were generated using the baseline SMT systeffhese Chinese sentences were sorted according to
Since re-training the full phrase tables is not feasiheir n-gram overlap (see Section 3.5) with the de-
ble here, a (small) additional phrase table, specific teelopment corpus, and the top 5,000 Chinese sen-
U, was trained and plugged into the SMT system a®&nces were used. The selection and scoring in Al-
an additional model. The decoder weights thus hagbrithm 1 were performed using confidence estima-
to be optimized again to determine the appropriatiion with a threshold. Again, a new phrase table was
weight for this new phrase table. This was done otrained on these data. As can be seen in Table 5, this
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select score BLEU[%] mMWER[%] mPER[%] system BLEU[%] mWER[%] mPER[%]

eval-04(4 refs.) eval-04(4 refs.)
baseline 31.&0.7 66.8£0.7 41.5+-0.5 baseline 31.80.7 66.8:0.7 41.5t0.5
keep all 33.1 66.0 41.3 add Chin. data 32.8 65.7 40.9
IS norm. 33.5 65.8 40.9 eval-06 GALE (1 ref.)
conf. 33.2 65.6 40.4 baseline 12.F20.5 75.8+0.6 54.6+0.6
thr norm. 33.5 65.9 40.8 add Chin.data 13.1 73.9 53.5
conf. 33.5 65.3 40.8 eval-06 NIST (4 refs.)
eval-06 GALE (1 ref.) baseline 27.20.7 67.2:0.6 44.0£0.5
baseline 12.70.5 75.8:0.6 54.6£0.6 add Chin. data 28.1 65.8 43.2
keep all 12.9 .7 °5.0 Table 5: Translation quality using an additional
IS norm. 13.2 4.7 54.1 . . :
conf. 12.9 74.4 535 phrase table_tralned on_monollngual Chlnese_ news
e norm. 12.7 75 2 542 data. Selection §tep using Fhreshold on confidence
conf. 13.6 73 4 532 scores. NIST Chinese—English.
eval-06 NIST (4 refs.) word alignment. Experiments showed that putting a
baseline 27.20.7 67.2:0.6 44.0£0.5  Jarge weight on the model trained on labeled data
keep all 28.1 66.5 44.2 performs best. Along similar lines, (Fraser and
IS norm. 28.7 66.1 43.6 Marcu, 2006) combine a generative model of word
conf. 28.4 65.8 43.2 alignment with a log-linear discriminative model
thr ~ norm. 28.3 66.1 43.5 trained on a small set of hand aligned sentences. The
conf. 29.3 65.6 43.2 word alignments are used to train a standard phrase-

Table 4: Translation quality using an additionaP@sed SMT system, resulting in increased translation
adapted phrase table trained on the devitest selity .

Different selection and scoring methods. NIST In (Callison-Burch, 2002) co-training is applied

Chinese—English, best results printed in boldface. t© MT. This approach requires several source lan-
guages which are sentence-aligned with each other

system outperforms the baseline system on all teghd all translate into the same target language. One
corpora. The error rates are Significantly reduced irénguage pair creates data for another |anguage pair
all three settings, and BLEU score increases in alind can be naturally used in a (Blum and Mitchell,
cases. A Comparison with Table 4 shows that tranqggg)-stwe Co-training a|go|'ithm_ Experiments on
ductive Iearning on the development set and test COhe EuroParl corpus show a decrease in WER. How-
pora, adapting the system to their domain and stylgyer, the selection algorithm applied there is actually
is more effective in improving the SMT system thansypervised because it takes the reference translation
the use of additional source language data. into account. Moreover, when the algorithm is run
In all experiments on NIST, Algorithm 1 was runjong enough, large amounts of co-trained data in-
for one iteration. We also investigated the use of aacted too much noise and performance degraded.
iterative procedure here, but this did not yield any geff-training for SMT was proposed in (Ueffing,
improvement in translation quality. 2006). An existing SMT system is used to translate
5 Previous Work the development or test corpus. Among the gener-
) ) , _ ated machine translations, the reliable ones are au-
Semi-supervised leaming has been previously apdmatically identified using thresholding on confi-

plied to improve word alignments. In (Ca"ison'dence scores. The work which we presented here
Burch et al., 2004), a generative model for worqjiffers from (Ueffing, 2006) as follows:
alignment is trained using unsupervised learning on ' '

parallel text. In addition, another model is trained on e We investigated different ways of scoring and

a small amount of hand-annotated word alignment  selecting the reliable translations and compared

data. A mixture model provides a probability for our method to this work. In addition to the con-
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