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Abstract

We present a global discriminative statistical
word order model for machine translation.
Our model combines syntactic movement
and surface movement information, and is
discriminatively trained to choose among
possible word orders. We show that com-
bining discriminative training with features
to detect these two different kinds of move-
ment phenomena leads to substantial im-
provements in word ordering performance
over strong baselines. Integrating this word
order model in a baseline MT system results
in a 2.4 points improvement in BLEU for
English to Japanese translation.

Introduction

Kristina Toutanova
Microsoft Research
Redmond, WA
kri stout @n crosoft.com

The advantages of modeling how a target lan-
guage syntax tree moves with respect to a source lan-
guage syntax tree are that e can capture the fact
that constituents move as a whole and generally re-
spect the phrasal cohesion constraints (Fox, 2002),
and (i) we can model broad syntactic reordering
phenomena, such as subject-verb-object construc-
tions translating into subject-object-verb ones, as is
generally the case for English and Japanese.

On the other hand, there is also significant amount
of information in the surface strings of the source
and target and their alignment. Many state-of-the-art
SMT systems do not use trees and base the ordering
decisions on surface phrases (Och and Ney, 2004;
Al-Onaizan and Papineni, 2006; Kuhn et al., 2006).
In this paper we develop an order model for machine
translation which makes use of both syntactic and
surface information.

The machine translation task can be viewed as con- The framework for our statistical model is as fol-

sisting of two subtasks: predicting the collection ofows. We assume the existence of a dependency tree
words in a translation, and deciding the order of théor the source sentence, an unordered dependency
predicted words. For some language pairs, such &ge for the target sentence, and a word alignment
English and Japanese, the ordering problem is elsetween the target and source sentences. Figure 1
pecially hard, because the target word order differ&) shows an example of aligned source and target
significantly from the source word order. dependency trees. Our task is to order the target de-
Previous work has shown that it is useful to modependency tree.
target language order in terms of movement of syn- \ne train a statistical model to select the best or-
tactic constituents in constituency trees (Yamadger of the unordered target dependency tree. An im-
and Knight, 2001; Galley et al., 2006) or depenportant advantage of our model is that it is global,
dency trees (Quirk et al., 2005), which are obtainegnd does not decompose the task of ordering a tar-
using a parser trained to determine linguistic conget sentence into a series of local decisions, as in the
stituency. Alternatively, order is modelled in termsrecently proposed order models for Machine Transi-
of movement of automatically induced hierarchication (Al-Onaizan and Papineni, 2006; Xiong et al.,
structure of sentences (Chiang, 2005; Wu, 1997). 2006; Kuhn et al., 2006). Thus we are able to define
"~ * This research was conducted during the author’s interr](-eatures over complete target sentence orders, and
ship at Microsoft Research. avoid the independence assumptions made by these
9
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N e o= < » = On the target sentence words. The dependency tree

al | constaints  are  salisfied ©©® 0 ®06 6 constrains the possible orders of the target sentence
“ [ﬁam] %m ;[;zﬁ‘:[%&lruﬁ{%] L) m only to the ones that are projective with respect to
resigston”condiion"TORIC "all TS PASSIVEPRES N the tree. An order of the sentence is projective with
~ r_r—= ® 6 @ ® o @ respecttothe tree if each word and its descendants
@) (b) form a contiguous subsequence in the ordered sen-

tence. Figure 1(b) shows several orders of the sen-
Figure 1: @) A sentence pair with source depentence which violate this constraiht.
dency tree, projected target dependency tree, andPrevious studies have shown that if both the
word alignments. if) Example orders violating the source and target dependency trees represent lin-
target tree projectivity constraints. guistic constituency, the alignment between subtrees
in the two languages is very complex (Wellington et

models. Our model is discriminatively trained to seal., 2006). Thus such parallel trees would be difficult
lect the best order (according to the BLEU measurdgyr MT systems to construct in translation. In this
(Papineni et al., 2001) of an unordered target depeork only the source dependency trees are linguisti-
dency tree from the space of possible orders. cally motivated and constructed by a parser trained

Since the space of all possible orders of an une determine linguistic structure. The target depen-
ordered dependency tree is factorially large, we traiflency trees are obtained through projection of the
our model on N-best lists of possible orders. Thessource dependency trees, using the word alignment
N-best lists are generated using approximate sear@he use GIZA++ (Och and Ney, 2004)), ensuring
and simpler models, as in the re-ranking approach @ktter parallelism of the source and target structures.
(Collins, 2000).

We first evaluate our model on the task of ordering-1 Obtaining Target Dependency Trees
target sentences, given correct (reference) unordered 1 hrough Projection
target dependency trees. Our results show that co@ur algorithm for obtaining target dependency trees
bining features derived from the source and tamy projection of the source trees via the word align-
get dependency trees, distortion surface order-basetént is the one used in the MT system of (Quirk
features (like the distortion used in Pharaoh (Koehret al., 2005). We describe the algorithm schemat-
2004)) and language model-like features results inigally using the example in Figure 1. Projection
model which significantly outperforms models usingf the dependency tree through alignments is not at
only some of the information sources. all straightforward. One of the reasons of difficulty

We also evaluate the contribution of our modeis that the alignment does not represent an isomor-
to the performance of an MT system. We intephism between the sentences, i.e. it is very often
grate our order model in the MT system, by simplynot a one-to-one and onto mappihdf the align-
re-ordering the target translation sentences outpmient were one-to-one we could define the parent of
by the system. The model resulted in an improvea wordw; in the target to be the target word aligned
ment from 33.6 to 35.4 BLEU points in English-to-to the parent of the source wosdaligned tow;. An

Japanese translation on a computer domain. additional difficulty is that such a definition could re-
sult in a non-projective target dependency tree. The
2 Task Setup projection algorithm of (Quirk et al., 2005) defines

. . heuristics for each of these problems. In case of
The ordering problem in MT can be formulated as .
. ) one-to-many alignments, for example, the case of

the task of ordering a target bag of words, given a LY .
X constraints” aligning to the Japanese words for “re-

source sentence and word alignments between tar-. "~ " ) o .
. striction” and “condition”, the algorithm creates a

get and source words. In this work we also assume

a source dependency tree and an unordered target'For example, in the first order shown, the descendants of

dependency tree are given. Figure 1(a) shows an ée(c_)rd 6 are not contiguous and thus this order violates the con-
. . traint.

ample. We build a model that pl’ed.ICtS an order o 2In an onto mapping, every word on the target side is asso-

the target dependency tree, which induces an ordeated with some word on the source side.
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subtree in the target rooted at the rightmost of thes2 L anguage M odel with Syntactic

words and attaches the other word(s) to it. In case of Constraints: A Pilot Study

non-projectivity, the dependency tree is modified by

re-attaching nodes higher up in the tree. Such a stépthis section we report the results of a pilot study to
is necessary for our example sentence, because #haluate the difficulty of ordering a target sentence if
translations of the words “all” and “constraints” arewe are given a target dependency tree as the one in
not contiguous in the target even though they form Rigure 1, versus if we are just given an unordered
constituent in the source. bag of target language words.

Animportant characteristic of the projection algo- The difference between those two settings is that
rithm is that all of its heuristics use tloerrecttarget When ordering a target dependency tree, many of the
word order Thus the target dependency trees erfrders of the sentence are not allowed, because they

code more information than is present in the sourc&ould be non-projective with respect to the tree.
dependency trees and alignment. Figure 1 (b) shows some orders which violate the

projectivity constraint. If the given target depen-

dency tree is projective with respect to the correct
2.2 Task Setup for Reference SentencesvsMT  word order, constraining the possible orders to the

Output ones consistent with the tree can only help perfor-

mance. In our experiments on reference sentences,
Our model uses input of the same form whemhe target dependency trees are projective by con-
trained/tested on reference sentences and when usg@iction. If, however, the target dependency tree
in machine translation: a source sentence with a dgrovided is not necessar”y projective with respect
pendency tree, an unordered target sentence wid the best word order, the constraint may or may
and unordered target dependency tree, and WOf@t be useful. This could happen in our experiments
alignments. on ordering MT output sentences.

We train our model on reference sentences. In this Thus in this section we aim to evaluate the use-
setting, the given target dependency tree contains theiness of the constraint in both settings: reference
correct bag of target words according to a referencentences with projective dependency trees, and MT
translation, and is projective with respect to the coreutput sentences with possibly non-projective de-
rect word order of the reference by construction. Weendency trees. We also seek to establish a baseline
also evaluate our model in this setting; such an evaler our task. Our methodology is to test a simple
uation is useful because we can isolate the contriband effective order model, which is used by all state
tion of an order model, and develop it independentlpf the art SMT systems — a trigram language model
of an MT system. — in the two settings: ordering an unordered bag of

When translating new sentences it is not possib0rds, and ordering a target dependency tree.
to derive target dependency trees by the projection Our experimental design is as follows. Given an
algorithm described above. In this setting, we usgnordered sentenceand an unordered target de-
target dependency trees constructed by our baselipendency treéree(t), we define two spaces of tar-
MT system (described in detail in 6.1). The systenget sentence orders. These are the unconstrained
constructs dependency trees of the form shown @pace of all permutations, denotedreymutations(t)
Figure 1 for each translation hypothesis. In this casand the space of all orders ofwhich are projec-
the target dependency trees very often do not cofive with respect to the target dependency tree, de-
tain the correct target words and/or are not projectiveoted byTargetProjective(t,tree(t)). For both spaces

with respect to the best possible order. S, we apply a standard trigram target language
model to select a most likely order from the space;
- i.e., we find a target ordeorder*s(t) such that:
3For example, checking which word is the rightmost for the, g er* (t) — P der(t
L iy . ? S = argmar ,rger(t)es TLM(OT 67”( ))
heuristic for one-to-many mappings and checking whether t the operator which findSrder*g(t) is difficult to

constructed tree is projective requires knowledge of the correc ) ' )
word order of the target. implement since the task is NP-hard in both set-
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Reference Sentences H H H

Space BLEU | Avg Sz The gain in BLEU due to the constraint was not
$ermu;ati9ns ggg 2 as large on MT output sentences, but was still con-

t il . 2% . . . .
= r&’?%ﬁfput Sentences siderable. The reduction in search space size due
Space BLEU | Avg. Size to the constraint is enormous. There are alfit
Permutations 26.3 2° . . .
TargetProjective| 31.7 2% times fewer orders to consider in the space of tar-

Table 1 Perf ¢ atri | q et projective orders, compared to the space of all
able 1. Performance of a tri-gram language mo Faermutations. From these experiments we conclude

on orde_rlng referer_lce and MT output se_nte'n(_:es: Uthat the constraints imposed by a projective target
constrained or subject to target tree projectivity Congenendency tree are extremely informative. We also
straints. conclude that the constraints imposed by the target
tings, even for a bi-gram language model (Eisneflependency trees constructed by our baseline MT
and Tromble, 20063. We implemented left-to-right system are very informative as well, even though
beam A* search for th@ermutations space, and a the trees are not necessarily projective with respect
tree-based bottom up beam A* search for the  to the best order. Thus the projectivity constraint
getProjective space. To give an estimate of the searcith respect to a reasonably good target dependency
error in each case, we computed the number of timege is useful for addressing the search and modeling
the correct order had a better language model scoseoblems for MT ordering.

than the order returned by the search algorithm.

The lower bounds on search error were 4%Her 4 A Global Order Model for Target

mutations and 2% forTargetProjective, computed on Dependency Trees

reference sentences.

We compare the performance in BLEU of orderdn the rest of the paper we present our new word or-
selected from both spaces. We evaluate the perfd}er model and evaluate it on reference sentences and
mance on reference sentences and on MT Outpm machine translation. In line with preViOUS work
sentences. Table 1 shows the results. In additidi NLP tasks such as parsing and recent work on
to BLEU scores, the table shows the median numbd&pachine translation, we develop a discriminative or-
of possible orders per sentence for the two spacesder model. An advantage of such a model is that we

The highest achievable BLEU on reference serf:an easily combine different kinds of features (such
tences is 100, because we are given the correct b@§ Syntax-based and surface-based), and that we can
of words. The highest achievable BLEU on MT out-Optimize the parameters of our model directly for the
put sentences is well below 100 (the BLEU score ofvaluation measures of interest.
the MT output sentences is 33). Table 3 describes Additionally, we develop a globally normalized
the characteristics of the main data-sets used in tfieodel, which avoids the independence assumptions
experiments in this paper; the test sets we use in tilocally normalized conditional modefswe train
present pilot study are the reference test set (Red-global log-linear model with a rich set of syntactic
test) of 1K sentences and the MT test set (MT-tesgnd surface features. Because the space of possible
of 1,000 sentences. orders of an unordered dependency tree is factori-

The results from our experiment show that the ta@lly large, we use simpler models to generate N-best
get tree projectivity constraint is extremely powerfulrders, which we then re-rank with a global model.
on reference sentences, where the tree given is in- _
deed projective. (Recall that in order to obtain thé-1 Generating N-best Orders
target dependency tree in this setting we have usethe simpler models which we use to generate N-best
information from the true order, which explains inorders of the unordered target dependency trees are
part the large performance gain.) the standard trigram language model used in Section

“Even though the dependency tree constrains the space, t%éand another statistical model, which we call a Lo-

number of children of a node is not bounded by a constant. Cal Tree Order Model (LTOM). The LTOM model

SThis is an underestimate of search error, because we dont
know if there was another (non-reference) order which had a ®Those models often assume that current decisions are inde-
better score, but was not found. pendent of future observations.

12



o e e Fuer ok since it uses syntactic information from the source, it
this diminates e sk minute delay,, provides an alternative view compared to the trigram
\;:’” language model. The example in Figure 2 shows
Chd KS9] 16 4] [ 0] BB [(F] R 02T that the head word “eliminates” takes a dependent
B e o e P “this” to the left (position—1), and on the Japanese
side, the head word “kaishou” (corresponding to
“eliminates”) takes a dependent “kore” (correspond-
Figure 2: Dependency parse on the source (Englisfig to “this”) to the left (position—2). The trigram
sentence, alignment and projected tree on the targg@hguage model would not capture the position of
(Japanese) sentence. Notice that the projected trgge” with respect to “kaishou”, because the words
is only partial and is used to show the head-relativge farther than three positions away.
movement. We use the language model and the local tree or-
uses syntactic information from the source and tader model to create N-best target dependency tree
get dependency trees, and orders each local treeasflers. In particular, we generate the N-best lists
the target dependency tree independently. It followkom a simple log-linear combination of the two
the order model defined in (Quirk et al., 2005). models:
The model assigns a probability to the position P(o(t)[s,t) o< Pra(o(t)|t)Prron(o(t)]s, t)
of each target node (modifier) relative to its parwhereo(t) denotes an order of the targete used
ent (head), based on information in both the sourcg bottom-up beam A* search to generate N-best or-
and target trees. The probability of an order of thelers. The performance of each of these two models
complete target dependency tree decomposes int@ad their combination, together with the 30-best or-
product over probabilities of positions for each nodecle performance on reference sentences is shown in
in the tree as follows: Table 2. As we can see, the 30-best oracle perfor-
mance of the combined model (98.0) is much higher
P(order(t)|s,t) = H P(pos(n,parent(n))|s,t)  than the 1-best performance (92.6) and thus there is
net a lot of room for improvement.

Here, position is modelled in terms of closenesg2 Model
to the head in the dependency tree. The closest
pre-modifier of a given head has positieri; the
closest post-modifier has a positidn Figure 2

shows an example dependency tree pair annota training data, we hav® candidate target word
with head-relative positions. A small set of feature%rderSOl L 0L '01 . which are the orders gener-

is used to reflectlocal information in the dependency, . 4 t.0m the simpler models. Without loss of gen-

_ttree to randeIZ(pOS(T;’ pare?.lt(rl)).|s’lt?t: () Iexflct:I erality, we define; ; to be the order with the highest
'ems o ndan plqrend(g’ (Icll) eX'C? 'ems o te BLEU score with respect to the correct order.
source nodes aligned toandparent(n), (iif) part- v gofine a set of feature functionfs, oy, spi)

of-speech of the source nodes.aligne(_j _to the no%: describe a target word ordey,, of a given sen-
and its parent, andyv) head-relative position of the tence paisp;. In the log-linear mbdel, a correspond-

source npde ahgryed to the target_ node. ing weights vecton is used to define the distribution
We train a log-linear model which uses these feaéver all possible candidate orders:

tures on a training set of aligned sentences with NF(oy pv5py)
. _ e n’
source and target dependency trees in the form of p(ornlspi, A) = —Z RYACHIET
71,/

Figure 2. The model is a local (non-sequence) clas-—
h "We used the valua = .5, which we selected on a devel-

The log-linear reranking model is defined as fol-
lows. For each sentence pajy; (I = 1,2,...,L) Iin

sifier, because the decision on where to place eac o
opment set to maximize BLEU.

node does not depend on the placement of any othersty ayoid the problem that all orders could have a BLEU
nodes. score of 0 if none of them contains a correct word four-gram,

Since the local tree order model learns to ordet® define sentence-level k-gram BLEU, where k is the highest
order,k < 4, for which there exists a correktgram in at least

whole subtrees of the target dependency tree, agfke of the N-Best orders.
13



We train the parameters by minimizing the neg- E. E. B B B Ep
ative log-likelihood of the training data plus a N -
guadratic regularization term: A

L(X\) = =3 logp(or1|spi, A) + ﬁ Yom )\m2 (a) parallel  (b) crossing  (c) widening

We also explored maximizing expected BLEU as
our objective function, but since it is not convex, the-igure 3: Displacement feature: different alignment
performance was less stable and ultimately slightipatterns of two contiguous words in the target sen-
worse, as compared to the log-likelihood objective tence.

it dio Jur du2

4.3 Features set MT-train in Table 3. The sentences were anno-

: . ++
We design features to capture both the head-relatltated with allgnmenf[ (using GIZA++ (Och and Ney,
04)) and syntactic dependency structures of the
movement and the surface sequence movement 0 ; . . .
. . o ource and target, obtained as described in Section
words in a sentence. We experiment with differen

combinations of features and show their contribu- Japanese POS tags were assigned by an automatic

tion in Table 2 for reference sentences and Table IZOS tagge_zr, Wh'Ch. Is a local classifier not using tag
. . . : . sequence information.
in machine translation. The notations used in the ta-

bles are defined as follows: We used 400K sentence pairs from the complete
Basdine LTOM+LM as described in Section 4.1 S€t to train the first pass models: the language model
was trained on 400K sentences, and the local tree
tence. Examples from Figure 2kore’+“niyori’ | order model was trained on 100K of them. We gen-

“niyori™+*roku” erated N-best target tr(-?e orders for the rest qf 'the
DISP: Displacement feature. For each word posigata (45K sentence pairs), and used it for training

tion in the target sentence, we examine the aligna-nd evaluating the re-ranking model. The re-ranking

ment of the current word and the previous word, anHmdeI was trained on 44K sentence pairs. All mod-

categorize the possible patterns into 3 kinds: (a) paerz—Is were evaluated on the remaining 1,000 sentence

allel, (b) crossing, and (c) widening. Figure 3 show§Jalrs set, which is the set Ref-test in Table 3.

how these three categories are defined. The top part of Table 2 presents the 1-best

Pharaoh DISP: Displacement as used in PharaotP-EY scores (actual performance) and 30-best or-
(Koehn, 2004). For each position in the sentenc@,CIe_BLEU scores qf the flrst-_pass'model's and their
the value of the feature is one less than the differend@J-linéar combination, described in Section 4. We

(absolute value) of the positions of the source wordé" S€€ that the combination of the language model
aligned to the current and the previous target word@nd the local tree order model outperformed either

POSsandPOSt: POS tags on the source and targe[EnOdel by alarge margin. This indicates that combin-
O%ug syntactic (from the LTOM model) and surface-

Word Bigram: Word bigrams of the target sen-

sides. For Japanese, we have a set of 19 POS tags. ) T
. . . . ased (from the language model) information is very
+' means making conjunction of features an

. . : . . effective even at this stage of selecting N-best orders

prev() means using the information associated W|tI? . .

the word from position-1 or re-ranking. According to the 30-best oracle per-
In all explored modéls we include the lo _formance of the combined model LTOM+LM, 98.0

P ' 9"BLEU is the upper bound on performance of our re-

probability of an order according to the Ianguag(-;,;anking approach.

model and the log-probability according to the lo-
The bottom part of the table shows the perfor-

cal tree order model, the two features used by the ,
baseline model. mance of the global log-linear model, when features

in addition to the scores from the two first-pass mod-
5 Evaluation on Reference Sentences els are added to the model. Adding word-bigram
features increased performance by about 0.6 BLEU
Our experiments on ordering reference sentencesints, indicating that training language-model like
use a set of 445K English sentences with their refeatures discriminatively to optimize ordering per-
erence Japanese translations. This is a subset of foemance, is indeed worthwhile. Next we compare
14



First-pass models data set | num sent. English Japanese
avg. len| vocab | avg. len| vocab
Model BLEU MTrain | 500K | 158 | 77K | 187 | 79K
1 best] 30 best MT-test | 1K 175 | - | 209 | -
Lang Model Permutations) 58.8 | 71.2 Ref-test 1K 17.5 - 212 -
Lang Model (fargetProjective) 83.9 | 95.0 . . .
Local Tree Order Model 758 | 873 Table 3: Main data sets used in experiments.
Local Tree Order Model + Lang Model 92.6 98.0
Re-ranking Models target words and/or will not be projective with re-
Features BLEU .
Basoline 9260 spect to the best possible order.
Word Bigram 93.19
Pharaoh DISP 92.94 6.1 BasdineMT System
DISP 93.57 _ _ _
DISP+POSs 94.04 Our baseline SMT system is the system of Quirk et
DISP+POSs+POSt 94.14 . -
DISP+POSs+POSt, prev(DISP)+POSs+POSt 94.34 al. (2005). It translates by first deriving a depen-
DISP+POSs+POSt, prev(DISP)+POSs+POSt, WB  94.50 dency tree for the source sentence and then trans-

Table 2: Performance of the first-pass order mode|§ting the source dependfencybtri'el_to. a targe‘lt dephen—
and 30-best oracle performance, followed by perfoF—lenCy tree, using a set of probabilistic models. The

mance of re-ranking model for different feature setdransiation is based on treelet pairs. A treelet is a
Results are on reference sentences. connected subgraph of the source or target depen-

_ _ dency tree. A treelet translation pair is a pair of
the Pharaoh displacement feature to the d'Splacﬁ/brd-aligned source and target treelets

ment feature we iIIustr.ated in Figure 3. We €aN The paseline SMT model combines this treelet
see that the Pharaoh displacement feature improvgs,q|ation model with other feature functions — a
performance of the baseline by .34 points, wheregg ot |anguage model, a tree order model, lexical

our displacement feature improves performance Ryqioniing features to smooth the translation prob-

nearly 1 BLEU point. Concatenating the DISP feéagyijiias word count feature, and treelet-pairs count

ture with the POS tag of the source word aligned 19, 5y,re. These models are combined as feature func-
the current word improved performance slightly. tions in a (log)linear model for predicting a target
_ The results show that surface movement featureg ytence given a source sentence, in the framework
(i.e. the DISP feature) improve the performanc%roposed by (Och and Ney, 2002). The weights
of a model using syntactic-movement features (i.eof this model are trained to maximize BLEU (Och
the LTOM model). Additionally, adding part-of- and Ney, 2004). The SMT system is trained using
speech information from both languages in combig,o g4 me form of data as our order model: parallel
nation with displacement, and using a higher ordel, ,.ce and target dependency trees as in Figure 2.
on the displacement features was useful. The per- ¢ naricylar interest are the components in the
formance of our best model, which included all iny,556)ine SMT system contributing most to word or-
formation sources, is 94.5 BLEU points, which is jo, jecisions. The SMT system uses the same target
35% improvement over the fist-pass models, relat'vleomguage trigram model and local tree order model,
to the upper bound. as we are using for generating N-best orders for re-
ranking. Thus the baseline system already uses our
first-pass order models and only lacks the additional
We apply our model to machine translation by reinformation provided by our re-ranking order model.
ordering the translation produced by a baseline MT _
system. Our baseline MT system constructs, fd?-2 Dataand Experimental Results
each target translation hypothesis, a target depefhe baseline MT system was trained on the MT-train
dency tree. Thus we can apply our model to MTdataset described in Table 3. The test set for the MT
output in exactly the same way as for reference selexperiment is a 1K sentences set from the same do-
tences, but using much noisier input: a source semain (shown as MT-test in the table). The weights
tence with a dependency tree, word alignment and the linear model used by the baseline SMT system
an unordered target dependency tree as the examplere tuned on a separate development set.
shown in Figure 2. The difference is that the target Table 4 shows the performance of the first-pass
dependency tree will likely not contain the correcimodels in the top part, and the performance of our
15
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R First-pass models - lect from the space of orders projective with respect
T best] 30 best to a target dependency tree. We investigated a com-
Baseline MT System 330 - bination of features modeling surface movement and
Lang Model permutations) 26.3 | 287 .
Lang Model fargetCohesive) 31.7 | 350 syntactic movement phenomena and showed that
Local Tree Order Model 27.2 315 H i
Local Tres Order Modsl + Lang Model 236 | 360 these t\_/vo mfo_rma_tlon_ sources are complementary
Re-ranking Models and their combination is powerful. Our results on or-
;ea“:_res | :;E:G dering MT output and reference sentences were very
aseline . . . . .
word Bigram 34.11 encouraging. We obtained substantial improvement
E'I‘Sa;a"h pIsp o by the simple method of post-processing the 1-best
DISP+POSs 35.28 MT output to re-order the proposed translation. In
DISP+POSs+POSt 35.22 H H H _
DISP+POSSHPOSY, prev(DISP)HPOSSHPOST 5 93 the future, we would like .to explore tighter integra
DISP+POSs+POSt, prev(DISP)+POSs+POSt, WB  35.37 tion of our order model with the SMT system and to

Table 4. Performance of the first pass order mode ojective target dependency trees in translation.
and 30-best oracle performance, followed by perfor-

mance of re-ranking model for different feature setReferences
Results are in MT.

’g{:velop more accurate algorithms for constructing

Y. Al-Onaizan and K. Papineni. 2006. Distortion models for
re-ranking model in the bottom part. The first row statistical machine translation. ACL

of the table shows the performance of the baselir% Chiang. 2005. A hierarchical phrase-based model for statis-
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