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Abstract

This interactive presentation describes
LexNet, a graphical environment for
graph-based NLP developed at the Uni-
versity of Michigan. LexNet includes
LexRank (for text summarization), bi-
ased LexRank (for passage retrieval), and
TUMBL (for binary classification). All
tools in the collection are based on random
walks on lexical graphs, that is graphs
where different NLP objects (e.g., sen-
tences or phrases) are represented as nodes
linked by edges proportional to the lexi-
cal similarity between the two nodes. We
will demonstrate these tools on a variety of
NLP tasks including summarization, ques-
tion answering, and prepositional phrase
attachment.

1 Introduction

We will present a series of graph-based tools for a
variety of NLP tasks such as text summarization,
passage retrieval, prepositional phrase attachment,
and binary classification in general.

Recently proposed graph-based methods
(Szummer and Jaakkola, 2001; Zhu and Ghahra-
mani, 2002b; Zhu and Ghahramani, 2002a;
Toutanova et al., 2004) are particularly well
suited for transductive learning (Vapnik, 1998;
Joachims, 1999). Transductive learning is based
on the idea (Vapnik, 1998) that instead of splitting
a learning problem into two possibly harder
problems, namely induction and deduction, one
can build a model that covers both labeled and
unlabeled data. Unlabeled data are abundant as
well as significantly cheaper than labeled data in
a variety of natural language applications. Parsing
and machine translation both offer examples of
this relationship, with unparsed text from the Web
and untranslated texts being computationally less

costly. These can then be used to supplement
manually translated and aligned corpora. Hence
transductive methods are of great potential for
NLP problems and, as a result, LexNet includes a
number of transductive methods.

2 LexRank: text summarization

LexRank (Erkan and Radev, 2004) embodies the
idea of representing a text (e.g., a document or a
collection of related documents) as a graph. Each
node corresponds to a sentence in the input and the
edge between two nodes is related to the lexical
similarity (either cosine similarity or n-gram gen-
eration probability) between the two sentences.
LexRank computes the steady-state distribution of
the random walk probabilities on this similarity
graph. The LexRank score of each node gives
the probability of a random walk ending up in
that node in the long run. An extractive summary
is generated by retrieving the sentences with the
highest score in the graph. Such sentences typ-
ically correspond to the nodes that have strong
connections to other nodes with high scores in the
graph. Figure 1 demonstrates LexRank.

3 Biased LexRank: passage retrieval

The basic idea behind Biased LexRank is to label
a small number of sentences (or passages) that are
relevant to a particular query and then propagate
relevance from these sentences to other (unanno-
tated) sentences. Relevance propagation is per-
formed on a bipartite graph. In that graph, one
of the modes corresponds to the sentences and
the other – to certain words from these sentences.
Each sentence is connected to the words that ap-
pear in it. Thus indirectly, each sentence is two
hops away from any other sentence that shares
words in it. Intuitively, the sentences that are
close to the labeled sentences tend to get higher
scores. However, the relevance propagation en-
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Figure 1: A sample snapshot of LexRank. A 3-
sentence summary is produced from a set of 11
related input sentences. The summary sentences
are shown as larger squares.

ables us to mark certain sentences that are not im-
mediate neighbors of the labeled sentences via in-
direct connections. The effect of the propagation
is discounted by a parameter at each step so that
the relationships between closer nodes are favored
more. Biased LexRank also allows for negative
relevance to be propagated through the network as
the example shows. See Figures 2– 3 for a demon-
stration of Biased LexRank.

Figure 2: Display of Biased LexRank. One sen-
tence at the top is annotated as positive while an-
other at the bottom is marked negative. Sentences
are displayed as circles and the word features are
shown as squares.

Figure 3: After convergence of Biased LexRank.

4 TUMBL: prepositional phrase
attachment

A number of NLP problems such as word sense
disambiguation, text categorization, and extractive
summarization can be cast as classification prob-
lems. This fact is used to great effect in the de-
sign and application of many machine learning
methods used in modern NLP, including TUMBL,
through the utilization of vector representations.
Each object is represented as a vector� of fea-
tures. The main assumption made is that a pair of
objects� and � will be classified the same way
if the distance between them in some space� is
small (Zhu and Ghahramani, 2002a).

This algorithm propagates polarity information
first from the labeled data to the features, capturing
whether each feature is more indicative of posi-
tive class or more negative learned. Such informa-
tion is further transferred to the unlabeled set. The
backward steps update feature polarity with infor-
mation learned from the structure of the unlabeled
data. This process is repeated with a damping fac-
tor to discount later rounds. This process is illus-
tracted in Figure 4. TUMBL was first described
in (Radev, 2004). A series of snapshots showing
TUMBL in Figures 5– 7.

5 Technical information

5.1 Code implementation

The LexRank and TUMBL demonstrations are
provided as both an applet and an application.
The user is presented with a graphical visualiza-
tion of the algorithm that was conveniently de-
veloped using the JUNG API (http://jung.
sourceforge.net/faq.html).
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(a) Initial graph (b) Forward pass

(c) Backward
pass

(d) Convergence

Figure 4: TUMBL snapshots: the circular vertices
are objects while the square vertices are features.
(a) The initial graph with features showing no bias.
(b) The forward pass where objects propagate la-
bels forward. (c) The backward pass where fea-
tures propagate labels backward. (d) Convergence
of the TUMBL algorithm after successive itera-
tions.

Figure 5: A 10-pp prepositional phrase attachment
problem is displayed. The head of each preposi-
tional phrase is ine middle column. Four types of
features are represented in four columns. The first
column is Noun1 in the 4-tuple. The second col-
umn is Noun2. The first column from the right is
verb of the 4-tuple while the second column from
the right is the actual head of the prepositional
phrase. At this time one positive and one negative
example (high and low attachment) are annotated.
The rest of the circles correspond to the unlabeled
examples.

Figure 6: The final configuration.
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Figure 7: XML file corresponding to the PP at-
tachment problem. The XML DTD allows layout
information to be encoded along with algorithmic
information such as label and polarity.

In TUMBL, each object is represented by a cir-
cular vertex in the graph and each feature as a
square. Vertices are assigned a color according to
their label. The colors are assignable by the user
and designate the probability of membership of a
class.

To allow for a range of uses, data can be
entered either though the GUI or read in from
an XML file. The schema for TUMBL files is
shown athttp://tangra.si.umich.edu/
clair/tumbl.

In the LexRank demo, each sentence becomes a
node. Selected nodes for the summary are shown
in larger size and in blue while the rest are smaller
and drawn in red. The link between two nodes has
a weight proportional to the lexical similarity be-
tween the two corresponding sentences. The demo
also reports the metrics precision, recall, and F-
measure.

5.2 Availability

The demos are available both as locally based and
remotely accessible fromhttp://tangra.
si.umich.edu/clair/lexrank and
http://tangra.si.umich.edu/clair/
tumbl.
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