
Proceedings of the COLING/ACL 2006 Interactive Presentation Sessions, pages 9–12,
Sydney, July 2006.c©2006 Association for Computational Linguistics

LeXFlow: a System for Cross-fertilization of Computational Lexicons 

Maurizio Tesconi and Andrea Marchetti 
CNR-IIT 

Via Moruzzi 1, 56024 Pisa, Italy 
{maurizio.tesconi,andrea.marchetti}@iit.cnr.it 

Francesca Bertagna and Monica Monachini and Claudia Soria and Nicoletta Calzolari 
CNR-ILC 

Via Moruzzi 1, 56024 Pisa, Italy 
{francesca.bertagna,monica.monachini, 

claudia.soria,nicoletta.calzolari}@ilc.cnr.it 
 

  

Abstract 

This demo presents LeXFlow, a work-
flow management system for cross-
fertilization of computational lexicons. 
Borrowing from techniques used in the 
domain of document workflows, we 
model the activity of lexicon manage-
ment as a set of workflow types, where 
lexical entries move across agents in the 
process of being dynamically updated. A 
prototype of LeXFlow has been imple-
mented with extensive use of XML tech-
nologies (XSLT, XPath, XForms, SVG) 
and open-source tools (Cocoon, Tomcat, 
MySQL). LeXFlow is a web-based ap-
plication that enables the cooperative and 
distributed management of computational 
lexicons. 

1 Introduction 

LeXFlow is a workflow management system 
aimed at enabling the semi-automatic manage-
ment of computational lexicons. By management 
we mean not only creation, population and vali-
dation of lexical entries but also integration and 
enrichment of different lexicons.  

A lexicon can be enriched by resorting to 
automatically acquired information, for instance 
by means of an application extracting informa-
tion from corpora. But a lexicon can be enriched 
also by resorting to the information available in 
another lexicon, which can happen to encode 
different types of information, or at different lev-
els of granularity. LeXFlow intends to address 
the request by the computational lexicon com-
munity for a change in perspective on computa-

tional lexicons: from static resources towards 
dynamically configurable multi-source entities, 
where the content of lexical entries is dynami-
cally modified and updated on the basis of the 
integration of knowledge coming from different 
sources (indifferently represented by human ac-
tors, other lexical resources, or applications for 
the automatic extraction of lexical information 
from texts). 

This scenario has at least two strictly related 
prerequisites: i) existing lexicons have to be 
available in or be mappable to a standard form 
enabling the overcoming of their respective dif-
ferences and idiosyncrasies, thus making their 
mutual comprehensibility a reality; ii) an archi-
tectural framework should be used for the effec-
tive and practical management of lexicons, by 
providing the communicative channel through 
which lexicons can really communicate and 
share the information encoded therein. 

For the first point, standardization issues obvi-
ously play the central role. Important and exten-
sive efforts have been and are being made to-
wards the extension and integration of existing 
and emerging open lexical and terminological 
standards and best practices, such as EAGLES, 
ISLE, TEI, OLIF, Martif (ISO 12200), Data 
Categories (ISO 12620), ISO/TC37/SC4, and 
LIRICS. An important achievement in this re-
spect is the MILE, a meta-entry for the encoding 
of multilingual lexical information (Calzolari et 
al., 2003); in our approach we have embraced the 
MILE model.  

As far as the second point is concerned, some 
initial steps have been made to realize frame-
works enabling inter-lexica access, search, inte-
gration and operability. Nevertheless, the general 
impression is that little has been made towards 
the development of new methods and techniques 

9



for the concrete interoperability among lexical 
and textual resources. The intent of LeXFlow is 
to fill in this gap.  

2 LeXFlow Design and Application 

LeXFlow is conceived as a metaphoric extension 
and adaptation to computational lexicons of 
XFlow, a framework for the management of 
document workflows (DW, Marchetti et al., 
2005).  

A DW can be seen as a process of cooperative 
authoring where the document can be the goal of 
the process or just a side effect of the coopera-
tion. Through a DW, a document life-cycle is 
tracked and supervised, continually providing 
control over the actions leading to document 
compilation In this environment a document 
travels among agents who essentially carry out 
the pipeline receive-process-send activity.  

Each lexical entry can be modelled as a docu-
ment instance (formally represented as an XML 
representation of the MILE lexical entry), whose 
behaviour can be formally specified by means of 
a document workflow type (DWT) where differ-
ent agents, with clear-cut roles and responsibili-
ties, act over different portions of the same entry 
by performing different tasks.  

Two types of agents are envisaged: external 
agents are human or software actors which per-
form activities dependent from the particular 
DWT, and internal agents are software actors 
providing general-purpose activities useful for 
any DWT and, for this reason, implemented di-
rectly into the system. Internal agents perform 
general functionalities such as creat-
ing/converting a document belonging to a par-
ticular DWT, populating it with some initial data, 
duplicating a document to be sent to multiple 
agents, splitting a document and sending portions 
of information to different agents, merging du-
plicated documents coming from multiple agents, 
aggregating fragments, and finally terminating 
operations over the document. An external agent 
executes some processing using the document 
content and possibly other data, e.g. updates the 
document inserting the results of the preceding 
processing, signs the updating and finally sends 
the document to the next agent(s). 

The state diagram in Figure 1 describes the 
different states of the document instances. At the 
starting point of the document life cycle there is 
a creation phase, in which the system raises a 
new instance of a document with information 
attached.  

Figure 1. Document State Diagram. 
 

The document instance goes into pending 
state. When an agent gets the document, it goes 
into processing state in which the agent compiles 
the parts under his/her responsibility. If the 
agent, for some reason, doesn’t complete the in-
stance elaboration, he can save the work per-
formed until that moment and the document in-
stance goes into freezing state. If the elaboration 
is completed (submitted), or cancelled, the in-
stance goes back into pending state, waiting for a 
new elaboration. 

Borrowing from techniques used in DWs, we 
have modelled the activity of lexicon manage-
ment as a set of DWT, where lexical entries 
move across agents and become dynamically 
updated.  

3 Lexical Workflow General Architec-
ture 

As already written, LeXFlow is based on XFlow 
which is composed of three parts: i) the Agent 
Environment, i.e. the agents participating to all 
DWs; ii) the Data, i.e. the DW descriptions plus 
the documents created by the DW and iii) the 
Engine. Figure 2 illustrates the architecture of the 
framework. 

Figure 2. General Architecture. 
 

The DW environment is the set of human and 
software agents participating to at least one DW. 

10



The description of a DW can be seen as an ex-
tension of the XML document class. A class of 
documents, created in a DW, shares the schema 
of their structure, as well as the definition of the 
procedural rules driving the DWT and the list of 
the agents attending to it. Therefore, in order to 
describe a DWT, we need four components:  

• a schema of the documents involved in the 
DWT; 

• the agent roles chart, i.e. the set of the ex-
ternal and internal agents, operating on the 
document flow. Inside the role chart these 
agents are organized in roles and groups in 
order to define who has access to the 
document. This component constitutes the 
DW environment; 

• a document interface description used by 
external agents to access the documents. 
This component also allows checking ac-
cess permissions to the document; 

• a document workflow description defining 
all the paths that a document can follow in 
its life-cycle, the activities and policies for 
each role.  

The document workflow engine constitutes the 
run-time support for the DW, it implements the 
internal agents, the support for agents’ activities, 
and some system modules that the external agents 
have to use to interact with the DW system. 
Also, the engine is responsible for two kinds of 
documents useful for each document flow: the 
documents system logs and the documents system 
metadata. 

4 The lexicon Augmentation Workflow 
Type 

In this section we present a first DWT, called 
“lexicon augmentation”, for dynamic augmenta-
tion of semantic MILE-compliant lexicons. This 
DWT corresponds to the scenario where an entry 
of a lexicon A becomes enriched via basically 
two steps. First, by virtue of being mapped onto 
a corresponding entry belonging to a lexicon B, 
the entry(A) inherits the semantic relations avail-
able in the mapped entry(B). Second, by resorting 
to an automatic application that acquires infor-
mation about semantic relations from corpora, 
the acquired relations are integrated into the en-
try and proposed to the human encoder. 

In order to test the system we considered the 
Simple/Clips (Ruimy et al., 2003) and ItalWord-
Net (Roventini et al., 2003) lexicons.  

An overall picture of the flow is shown in Fig-
ure 3, illustrating the different agents participat-
ing to the flow. Rectangles represent human ac-
tors over the entries, while the other figures 
symbolize software agents: ovals are internal 
agents and octagons external ones. The function-
ality offered to human agents are: display of 
MILE-encoded lexical entries, selection of lexi-
cal entries, mapping between lexical entries be-

longing to different lexicons1, automatic calcula-
tions of new semantic relations (either automati-
cally derived from corpora and mutually inferred 
from the mapping) and manual verification of the 
newly proposed semantic relations.  

5 Implementation Overview 

Our system is currently implemented as a web-
based application where the human external 
agents interact with system through a web 
browser. All the human external agents attending 
the different document workflows are the users 
of system. Once authenticated through username 
and password the user accesses his workload 
area where the system lists all his pending docu-
ments (i.e. entries) sorted by type of flow. 

The system shows only the flows to which the 
user has access. From the workload area the user 

                                                 
1 We hypothesize a human agent, but the same role could be 
performed by a software agent. To this end, we are investi-
gating the possibility of automatically exploiting the proce-
dure described in (Ruimy and Roventini, 2005). 

Figure 3. Lexicon Augmentation Workflow. 
 

11



can browse his documents and select some op-
erations  

 

Figure 4. LeXFlow User Activity State Diagram. 
 
such as: selecting and processing pending docu-
ment; creating a new document; displaying a 
graph representing a DW of a previously created 
document; highlighting the current position of 
the document. This information is rendered as an 
SVG (Scalable Vector Graphics) image. Figure 5 
illustrates the overall implementation of the sys-
tem. 

5.1 The Client Side: External Agent Inter-
action 

The form used to process the documents is ren-
dered with XForms. Using XForms, a browser 
can communicate with the server through XML 
documents and is capable of displaying the 
document with a user interface that can be de-
fined for each type of document. A browser with 
XForms capabilities will receive an XML docu-
ment that will be displayed according to the 
specified template, then it will let the user edit 
the document and finally it will send the modi-
fied document to the server. 

5.2 The Server Side 

The server-side is implemented with Apache 
Tomcat, Apache Cocoon and MySQL. Tomcat is 
used as the web server, authentication module 
(when the communication between the server 
and the client needs to be encrypted) and servlet 
container. Cocoon is a publishing framework that 
uses the power of XML. The entire functioning 
of Cocoon is based on one key concept: compo-
nent pipelines. The pipeline connotes a series of 
events, which consists of taking a request as in-

put, processing and transforming it, and then giv-
ing the desired response. MySQL is used for 
storing and retrieving the documents and the 
status of the documents. 

Each software agent is implemented as a web-
service and the WSDL language is used to define 
its interface.  

References 
Nicoletta Calzolari, Francesca Bertagna, Alessandro 

Lenci and Monica Monachini, editors. 2003. Stan-
dards and Best Practice for Multilingual Computa-
tional Lexicons. MILE (the Multilingual ISLE 
Lexical Entry). ISLE Deliverable D2.2 & 3.2. Pisa. 

Andrea Marchetti, Maurizio Tesconi, and Salvatore 
Minutoli. 2005. XFlow: An XML-Based Docu-
ment-Centric Workflow. In Proceedings of WI-
SE’05, pages 290- 303, New York, NY, USA. 

Adriana Roventini, Antonietta Alonge, Francesca 
Bertagna, Nicoletta Calzolari, Christian Girardi, 
Bernardo Magnini, Rita Marinelli, and Antonio 
Zampolli. 2003. ItalWordNet: Building a Large 
Semantic Database for the Automatic Treatment of 
Italian. In Antonio Zampolli, Nicoletta Calzolari, 
and Laura Cignoni, editors, Computational Lingui-
stics in Pisa, Istituto Editoriale e Poligrafico Inter-
nazionale, Pisa-Roma, pages 745-791. 

Nilda Ruimy, Monica Monachini, Elisabetta Gola, 
Nicoletta Calzolari, Cristina Del Fiorentino, Marisa 
Ulivieri, and Sergio Rossi. 2003. A Computational 
Semantic Lexicon of Italian: SIMPLE. In Antonio 
Zampolli, Nicoletta Calzolari, and Laura Cignoni, 
editors, Computational Linguistics in Pisa, Istituto 
Editoriale e Poligrafico Internazionale, Pisa-Roma, 
pages 821-864. 

Nilda Ruimy and Adriana Roventini. 2005. Towards 
the linking of two electronic lexical databases of 
Italian. In  Proceedings of L&T'05 - Language 
Technologies as a Challenge for Computer Science 
and Linguistics, pages 230-234, Poznan, Poland.

Figure 5. Overall System Implementation. 

12


