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Abstract

We present a novel hybrid approach for
Word Sense Disambiguation (WSD)
which makes use of a relational formalism
to represent instances and background
knowledge. It is built using Inductive
Logic Programming techniques to com-
bine evidence coming from both sources
during the learning process, producing a
rule-based WSD model. We experimented
with this approach to disambiguate 7
highly ambiguous verbs in English-
Portuguese translation. Results showed
that the approach is promising, achieving
an average accuracy of 75%, which out-
performs the other machine learning tech-
nigues investigated (66%).

Introduction

appear in the translation (Hutchins and Sommers,
1992).

In this paper we present a novel approach for
WSD, designed focusing on MT. It follows a hy-
brid strategy, i.e., knowledge and corpus-based,
and employs a highly expressive relational for-
malism to represent both the examples and back-
ground knowledge. This approach allows the
exploitation of several knowledge sources, to-
gether with evidences provided by examples of
disambiguation, both automatically extracted
from lexical resources and sense tagged corpora.
This is achieved using Inductive Logic Pro-
gramming (Muggleton, 1991), which has not
been exploited for WSD so far. In this paper we
investigate the disambiguation of 7 highly am-
biguous verbs in English-Portuguese MT, using
knowledge from 7 syntactic, semantic and prag-
matic sources.

In what follows, we first present some related
approaches on WSD for MT, focusing oh their
limitations (Section 2). We then give some basic
concepts on Inductive Logic Programming and de-

Word Sense Disambiguation (WSD) is concemegtyine our approach (Section 3). Finally, we presen

with the identification of the correct sense of ag initial experiments and the results achieved
ambiguous word given its context. Although it cafgection 4).

be thought of as an independent task, its impagtanc
is more easily realized when it is applied to parti 5  Related work

lar tasks, such as Information Retrieval or Machine
Translation (MT). In MT, the application we areMany approaches have been proposed for WSD,
focusing on, a WSD (otranslation disambigua- but only a few are designed for specific applica-
tion) module should identify the correct translationions, such as MT. Existing multilingual approaches
for a source word when options with differentan be classified as (a) knowledge-based ap-
meanings are available. proaches, which make use of linguistic knowledge
As shown by Vickrey et al. (2005), we believemanually codified or extracted from lexical re-
that a WSD module can significantly improve th&ources (Pedersen, 1997; Dorr and Katsova, 1998);
performance of MT systems, provided that sucfb) corpus-based approaches, which make use of
module is developed following specific requireknowledge automatically acquired from text using
ments of MT, e.g., employing multilingual sensenachine learning algorithms (Lee, 2002; Vickrey et
repositories. Differences between monolingual aral., 2005); and (c) hybrid approaches, which em-
multilingual WSD are very significant for MT, ploy techniques from the two other approaches (Zi-
since it is concerned only with the ambiguities thanovjeva, 2000).
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Hybrid approaches potentially explore the adknowledge; (b) the sparseness in data; and (c) the
vantages of both other strategies, yielding aceurdack of integration of the evidences provided by
and comprehensive systems. However, they asgamples and linguistic knowledge.
guite rare, even in monolingual contexts (Stevenson
and Wilks, 2001, e.g.), and they are not able t0 i A hybrid relational approach for WSD
tegrate and use knowledge coming from corpus and )
other resources during the learning process. We propose a novel hybrid approach for WSD

In fact, current hybrid approaches usually enf?@sed on a relational representation of both exam-
ploy knowledge sources in pre-processing ste[ﬂ,es aqd linguistic knowledgg. This rgpresentatlon
and then use machine learning algorithms to corf§- considerably more expressive, avoids sparseness
bine disambiguation evidence from those source8, data, and allows the use of these two types of
This strategy is necessary due to the limitatidns 8vidence during the learning process.
the formalism used to represent examples in t 1 s

: . . i ; ample data
machine learning process: the propositional formal-
ism, which structures data in attribute-value vexcto We address the disambiguation of 7 verbs selected

Even though it is known that great part of th@ccording to the results of a corpus study (Specia,
knowledge regarding to languages is relation@005). To build our sample corpus, we collected
(e.g., syntactic or semantic relations among wor@)0 English sentences containing each of the verbs
in a sentence) (Mooney, 1997), the propositionélom a corpus comprising fiction books. In a previ-
formalism traditionally employed makes unfeasibleus step, each sentence was automatically tagged
the representation of substantial relational knowith the translation of the verb, part-of-speect an
edge and the use of this knowledge during tHemmas of all words, and subject-object syntactic
learning process. relations with respect to the verb (Specia et al.,

According to the attribute-value representatior2005). The set of verbs, their possible translation
one attribute has to be created for every featme, and the accuracy of the most frequent translation
the same structure has to be used to charactérizeage shown in Table 1.
the examples. In order to represent the syntactic
relations between every pair of words in a sentence, | Verb | # Translations | Most frequent

e.g., it will be necessary to create at least tinb-a translation - %
ute for each possible relation (Figure 1). This lafou come 11 50.3
result in an enormous number of attributes, since [ 9€t 17 21

the possibilities can be many in distinct sentences give > 888
Also, there could be more than one pair with the E)%k 171 ggg
same relation. make 11 70

take 13 28.5

SentenceJohn gave to Mary a big cake.
verby-subj verh-obj; maod;-obj;
give-john give-cake big-cake .
Figure 1. Attribute-value vector for syntactic telas 3.2 Inductive Logic Programming

, _ , We utilize Inductive Logic Programming (ILP)
Given that some types of information are not avai uggleton, 1991) to explore relational machine

able for certain instances, many attributes willeha learning. ILP employs techniques of both Machine
null values. Consequently, the repre_zsentatione)f trﬂ_eaming and Logic Programming to build first-
sample data set tends to become highly sparse. Ibtyer |ogic theories from examples and background
well-known that sparseness on data ensue Seriqiiz,yjedge, which are also represented by means of

problems to the machine learning process in genefals order logic clauses. It allows the efficienp-

(Brown and Kros, 2003). Certainly, data will beyegentation of substantial knowledge about the

come sparser as more knowledge about the exafispiem, and allows this knowledge to be used dur-

ples is considered, and the problem will be eveRg the |eaming process. The general idea underly-
more critical if relational knowledge is used. ina ILP is:

Therefore, at least three relevant problems arisegGiven:
from the use of a propositional representation in _ 5 got of positive and negative examjiies
corpus-based and hybrid approaches: (a) the limita- OE
tion on its expressiveness power, making it difficu

to represent relational and other more complgy, |

Table 1. Verbs and their possible senses in opusor

- a predicate specifying the target relation to
earned
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- knowledgeK of a certain domain, describe
according to a languads, which specifies which
other predicateg can be part of the definition pf

The goal is:to induce a hypothesis (or theoly)

for p, with relation toE and K, which covers most KS,: Part-of-speech (POS) tags of content
of theE", without covering théE', that is,K OhE  words in a +5 word window surrounding the verb.
E'andK OhFEE.

To implement our approach we chose Alep
(Srinivasan, 2000), an ILP system which provides
complete relational learning inference engine a
various customization options. We used the follow- KSs: Subject and object syntactic relations with
ing options, which correspond to the Progol modkespect to the verb under consideration.
(Muggleton, 1995): bottom-up search, non
incremental and non-interactive learning, and lear
ing based only on positive examples. Fundamen-
tally, the default inference engine induces a theor, S+ Context words represented by 11 colloca-
iteratively by means of the following steps: tions with respect to the verb: 1st prepositiotht®

1. One instance is randomly selected to be gefight: 1St and 2nd words to the left and right, 1st
eralized. noun, 1st adjective, and 1st verb to the left and

2. A more specific clause (bottom clause) exi9ht

bag(sent _id, list_of words).
bag(sentl,[mind, not, will, i, reincarnation, baag, a,
squirrel])

has_pos(sent_id, word_position, pos).
has_pos(sentl, first_content_word_left, nn).
has_pos(sentl, second_content_word_left, vbp).
a

has_rel(sent_id, subject_word, object_word).
has_rel(sentl, i, nil).

plaining the selected example is built. It consi$ts
the representation of all knowledge about that e
ample.

has_collocation(sent _id, collocation_type, colldza}
has_collocation(sent1, word_right_1, back).
has_collocation(sent1, word_left_1, mind).

3. A clause that is more generic than the bottom
clause is searched, by means of search and generSs: Selectional restrictions of verbs and se-
alization strategies (best first search, e.g.). mantic features of their arguments, given by

4. The best clause found is added to the thedPOCE. Verb restrictions are expressed by lists of
and the examples covered by such clause are $emantic features required for their subject and ob
moved from the sample set. If there are more iiect, while these arguments are represented with
stances in the sample set, return to step 1. their features.

rest(verb, subj_restrition, obj_ restriction ,trdation)
rest(come, [], nil, voltar).
rest(come, [animal,human], nil, vir).

3.3 Knowledge sources

The choice, acquisition, and representation of sy
tactic, semantic, and pragmatic knowledge sourc
(KSs) were our main concerns at this stage. T
general architecture of the system, showing our
groups of KSs, is illustrated in Figure 2.

Several of our KSs have been traditionally em- The hierarchy for LDOCE feature types defined
ployed in monolingual WSD (e.g., Agirre and Steby Bruce and Guthrie (1992) is used to account for
venson, 2006), while other are specific for MTrestrictions established by the verb for featunes t
Some of them were extracted from our sample cagire more generic than the features describing the
pus (Section 3.1), while others were automaticallywords in the subject / object roles in the sentence
extracted from lexical resourcesn what follows, Ontological relations extracted from WordNet
we briefly describe, give the generic definitiordan (Miller, 1990) are also used: if the restrictions- i
examples of each KS, taking sentence (1), for tmsed by the verb are not part of the description o
“to come”, as example. its arguments, synonyms or hypernyms of those

(1) “If there is such a thing as reincarnation, &rguments that meet the restrictions are considered
would not mindcomingback as a squirrel

feature(noun, sense_id, features).
feature(reincarnation, 0_1, [abstract]).
feature(squirrel, 0_0, [animal]).

relation(wordl, sense_id1, word2 ,sense_id2).
hyper(reincarnation, 1, avatar, 1).

KS;: Bag-of-words — a list of +5 words (lem- _ _ )
synon(rebirth, 2, reincarnation, -1).

mas) surrounding the verb for every senten
(sent_iq.

KSe: Idioms and phrasal verbs, indicating that
the verb occurring in a given context could have a
specific translation.

! Michaelis® and Password® English-Portuguese Dictiona
ies, LDOCE (Procter, 1978), and Word{diller, 1990)
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Figure 2. System architecture
exp(verbal_expression, translation) for each KS. These rules are not dependent on par-
exp(‘come about, ac_ontecer). ticular words or instances. They can be very simple,
exp(‘come about', chegar). as in the example shown below for bag-of-words,

or more complex, e.g., for selectional restrictions
KS7: A count of theoverlapping words in dic- Therefore, KSs are represented by means of rules

tionary definitions for the possible translatiorfs oand facts (rules without conditions), which can be

the verb and the words surrounding it in the seffitensional, i.e., it can contain variables, making the

tence, relative to the total number of words. representation more expressive.
highest_overlap(sent_id, translation, overlapping). |has_bag(Sent,Word) :-
highest_overlap(sentl, voltar, 0.222222). bag(Sent,List), member(Word,List).

highest_overlap(sent2, chegar, 0.0857143).

Besides the KSs, the other main input to the sys-
The representation of all KSs for each examplem is the set of examples. Since all knowledge
is independent of the other examples. Therefoee, thhout them is expressed by the KSs, the representa-
number of features can be different for diﬁeremon of examp|es is very simp|e, Containing 0n|y the
sentences, without resulting in sparseness in dataexample identifier (of the sentence, in our case,
In order to use the KSs, we created a set of rulggch as, “sent1”), and the class of that example (i
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our case, the translation of the verb in that sephrasal verb “come at”. Rule 3 also tests the verb

tence). selectional restrictions and the first word torigat
sense(sent_id,translation). of the verb.

sense(sentl,voltar). )

sense(sent2,ir). 4 Experiments and results

In Aleph’s default induction mode, the order of Order to assess the accuracy of our approach, we
the training examples plays an important role. Of&" @ Set of initial experiments with our sample co
example is taken at a time, according to its oirgler PUS- For each verb, we ran Aleph in the default
the training set, and a rule can be produced badBgde, except for the following parameters:

on that example. Since examples covered by a cf set(evalfn, posonly)learns from positive examples.
tain rule are removed from the training set, certa| set(search, heuristic)turns the search strategy heurigtic.
examples will not be used to produce rules. Induf set(minpos, 2) establishes as 2 the minimum number of
tion methods employing different strategies ij positive examples covered by each rule in the yheor
which the order is irrelevant will be exploited in Set(@samplesize, 1000efines the number of randomjly
future work. generated negative examples to prune the search. spa

In order to produce a theory, Aleph also requires
“mode definitions”, i.e., the specification of the
predicate andg (Section 3.2). For example, the

The accuracy was calculated by applying the
rules to classify the new examples in the test set

first mode definition below states that the praeﬁcaaccording_to_the_ order these rules appeared in the
p to be learned will consist of a clauséheory’ eliminating the examp[es (correctly or
sense(sent_id, translatigmvhich can be instanti- Incorrectly) covered by a cer:[)aln rule from the
ated only oncel)). The other two definitions state 1eSt Set In order to cover 100% of the_ examples,
the predicates, has_colloc(sent_id, colloc_id, col- we relied on the existence of a rule without con-
loc), with at most 11 instantiations, and d|t|_ons, which generally is induced by A_Ieph and
has_bag(sent_id, wordyith at mostL0 instantia- points out to the most frequent translation in the
tions. That is, the predicates in the conditional pieé?mmg data. W.hen this rule was not generated by
of the rules in the theory can consist of up to 1’% eph, we add it to the end of theo_r_y . For all the
collocations and a bag of up to 10 words. One moagrbs, however, this rule only classified a few ex-

_ amples (form 1 to 6).
definition must be created for each KS. In Table 2 we show the accuracy of the theory

- modeh(1,sense(sent,translation)). learned for each verb, as well as accuracy
- modeb(11,has_colloc(sent,colloc_id,colloc)). achieved by two propositional machine learning
- modeb(10,has_bag(sent,word)). ... algorithms on the same data: Decision Trees

(C4.5) and Support Vector Machine (SVM), all
Based on the examples and background knovdccording to a 10-fold cross-validation strategy.
edge, the inference engine will produce a set @fince it is rather impractical to represent certain
symbolic rules. Some of the rules induced for th€Ss using attribute-value vectors, in the experi-
verb “to come”, e.g., are illustrated in the box bements with SVM and C4.5 only low level fea-

low. tures were considered, corresponding(8, KS,,
1.sense(A, sair) - KSs, andKS,. On average, Our approach outper-
has_collocation(A, preposition_right, out). forms the two other algorithms. Moreover, its accu-
2.sense(A, chegar) - racy is by far better than the accuracy of the most
satisfy_restrictions(A, [animal,human],[coneiit frequent sense baseline (Table 1).
has_expression(A, ‘come at'). For all verbs, theories with a small number of
3.sense(A, vir) - rules were produced (from 19 to 33 rules). By
satisfy_restriction(A, [human],[abstract]), looking at these rules, it becomes clear that 8 K
has collocation(A, word right 1, fror

are being explored by the ILP system and thus are
The first rule checks if the first preposition topotentially useful for the disambiguation of verbs.

the right of the verb is “out”, assigning the tdans

tion “sair” if so. The second rule verifies if tegb- 5 Conclusion and future work

ject-object arguments satisfy the verb restrictions _ _
i.e, if the subject has the features “animal” ap-h W€ presented a hybrid relational approach for
man”, and the object has the feature “concrete’/SD designed for MT. One important character-

Alternatively, it verifies if the sentence contathe IStic Of our approach is that all the KSs were

59



G.A. Miller, R.T. Beckwith, C.D. Fellbaum, D. Grod&

Verb Aleph C45 SVM Miller. 1990. WordNet: An On-line Lexical Database.
Accuracy | Accuracy | Accuracy International Journal of Lexicograph3(4):235—244.

come 0.82 0.55 0.6 R.J. Mooney. 1997. Inductive Logic Programming for
G?t 0.51 0.36 0.4% Natural Language Processing. Pnoceedings of the
Give 0.96 0.88 0.88 6th International ILP WorkshggBerlin, pp. 3-24.
Go 0.73 0.73 0.72 _ . _
look 0.83 0.66 084 S. Muggleton. 1991. Inductive Logic ProgrammiNgw
make 074 0.76 0.76 Generation Computing (4):295-318.
Take 0.66 0.35 0.41  S. Muggleton. 1995Inverse Entailment and Progol.
Average 0.75 0.61 0.67 New Generation Computing Journal3: 245-286.

Table 2. Results of the experiments with Aleph B.S. Pedersen. 1997exical Ambiguity in Machine

. . Translation: Expressing Regularities in the Polygem
automatically extracted, either from the corpus or of Danish Motion VerbsPhD Thesis, Center for

machine-readable lexical resources. Therefore, thegprogteknologi, Copenhagen.

work could be easily extended to other words and _ -
languages. P. Procter (editor). 197&ongman Dictionary of Con-

In future work we intend to carry out experi- temporary EnglishLongman Group, Essex, England.

ments with different settings: (a) combinations of. Specia. 2005. A Hybrid Model for Word Sense Dis-
certain KSs; (b) other sample corpora, of different ambiguation in English-Portuguese MT. Fnoceed-
sizes, genres / domains; and (c) different parameter ings of the 8th CLUKManchester, pp. 71-78.

in Aleph regarding search strategies, evaluatian Specia, M.G.V Nunes, M. Stevenson. 2005. Exploit
functions, etc. We also intend to compare our ap- ing Parallel Texts to Produce a Multilingual Sense-
proach with other machine learning algorithms us- tagged Corpus for Word Sense Disambiguation. In
ing all the KSs employed in Aleph, by pre- Proceedings of RANLP-OBorovets, pp. 525-531.
processing the KSs in order to extract binary fea; srinivasan. 2000The Aleph Manual. Technical Re-
tures that can be represented by means of attributeport. Computing Laboratory, Oxford University.
value vectors. After that, we intend to adapt our URL:

approach to evaluate it with standard WSD data http://web.comlab.ox.ac.uk/oucl/research/areas/mach

sets, such as the ones used in Serfseval earn/Aleph/aleph_toc.html.
M. Stevenson and Y. Wilks. 2001 The Interaction of
References Knowledge Sources for Word Sense Disambiguation.

E. Agirre and M. Stevenson. 2006 (to appear). Knowl Computational Linguistic7(3):321-349.
edge Sources for Word Sense Disambiguation. . Vickrey, L. Biewald, M. Teyssier, and D. Koller.
Word Sense Disambiguation: Algorithms, Applica- 2005. Word-Sense Disambiguation for Machine
tions and TrendsAgirre, E. and Edmonds, P. (Eds.), Translation. IrProceedings of HLT/EMNLP-0¥an-
Kluwer. couvet

M.L. Brown, J.F. Kros. 2003. Data Mining and the-ImN. Zinovjeva. 2000.Learning Sense Disambiguation
pact of Missing Datalndustrial Management and  Rules for Machine TranslatiotMaster's Thesis, De-
Data System4.03(8):611-621. partment of Linguistics, Uppsala University.

R. Bruce and L. Guthrie. 1992. Genus disambiguafion
study in weighted performance. Broceedings of the
14th COLING Nantes, pp. 1187-1191.

B.J. Dorr and M. Katsova. 1998. Lexical Selection f
Cross-Language Applications: Combining LCS with
WordNet. InProceedings of AMTA'199&anghorne,
pp. 438-447.

W.J. Hutchins and H.L. Somers. 19%h Introduction
to Machine TranslationAcademic Press, Great Brit-
ain.

H. Lee. 2002. Classification Approach to Word Siec
in  Machine Translation. In Proceedings of
AMTA'2002 Berlin, pp. 114-123.

2 http://www.senseval.org/

60



