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Abstract 

In this paper, we will present an efficient 
method to compute the co-occurrence 
counts of any pair of substring in a paral-
lel corpus, and an algorithm that make 
use of these counts to create sub-
sentential alignments on such a corpus. 
This algorithm has the advantage of be-
ing as general as possible regarding the 
segmentation of text. 

1 Introduction 

An interesting and important problem in the 
Statistical Machine Translation (SMT) domain is 
the creation of sub-sentential alignment in a par-
allel corpus (a bilingual corpus already aligned at 
the sentence level). These alignments can later be 
used to, for example, train SMT systems or ex-
tract bilingual lexicons. 

Many algorithms have already been proposed 
for sub-sentential alignment. Some of them focus 
on word-to-word alignment ((Brown,97) or 
(Melamed,97)). Others allow the generation of 
phrase-level alignments, such as (Och et al., 
1999), (Marcu and Wong, 2002) or (Zhang, Vo-
gel, Waibel, 2003). However, with the exception 
of Marcu and Wong, these phrase-level align-
ment algorithms still place their analyses at the 
word level; whether by first creating a word-to-
word alignment or by computing correlation co-
efficients between pairs of individual words. 

This is, in our opinion, a limitation of these al-
gorithms; mainly because it makes them rely 
heavily on our capacity to segment a sentence in 
words. And defining what a word is is not as 
easy as it might seem.  In peculiar, in many 
Asians writings systems (Japanese, Chinese or 
Thai, for example), there is not a special symbol 
to delimit words (such as the blank in most non-

Asian writing systems). Current systems usually 
work around this problem by using a segmenta-
tion tool to pre-process the data. There are how-
ever two major disadvantages: 

- These tools usually need a lot of linguistic 
knowledge, such as lexical dictionaries and 
hand-crafted segmentation rules. So using them 
somehow reduces the “purity” and universality 
of the statistical approach. 

- These tools are not perfect. They tend to be 
very dependent on the domain of the text they 
are used with. Besides, they cannot take advan-
tage of the fact that there exist a translation of the 
sentence in another language.  

(Xu, Zens and Ney,2004) have overcome part 
of these objections by using multiple segmenta-
tions of a Chinese sentence and letting a SMT 
system choose the best one, as well as creating a 
segmentation lexicon dictionary by considering 
every Chinese character to be a word in itself and 
then creating a phrase alignment. However, it is 
probable that this technique would meet much 
more difficulties with Thai, for example (whose 
characters, unlike Chinese, bear no specific sense) 
or even Japanese (which use both ideograms and 
phonetic characters). 

Besides, even for more “computer-friendly” 
languages, relying too much on typographic 
words may not be the best way to create an 
alignment. For example, the translation of a set 
phrase may contain no word that is a translation 
of the individual words of this set phrase. And 
one could consider languages such as German, 
which tend to merge words that are in relation in 
a single typographic word. For such languages, it 
could be a good thing to be able to create align-
ment at an even more basic level than the typo-
graphic words. 

These thoughts are the main motivations for 
the development of the alignment algorithm we 
will expose in this paper. Its main advantage is 
that it can be applied whatever is the smallest 
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unit of text we want to consider: typographic 
word or single character. And even when work-
ing at the character level, it can use larger se-
quence of characters to create correct alignments. 
The problem of the segmentation and of the 
alignment will be resolved simultaneously: a sen-
tence and its translation will mutually induce a 
segmentation on one another. Another advantage 
of this algorithm is that it is purely statistical: it 
will not require any information other than the 
parallel corpus we want to align. 

It should be noted here that the phrase-level 
joint-probability model presented in (Marcu and 
Wong) can pretend to have the same qualities. 
However, it was only applied to word-segmented 
texts by its authors. Making use of the EM train-
ing, it is also much more complex than our ap-
proach. 

Before describing our algorithm, we will ex-
plain in detail a method for extracting the co-
occurrence counts of any substring in a parallel 
corpus. Such co-occurrence counts are important 
to our method, but difficult to compute or store 
in the case of big corpora.  

2 Co-Occurrence counting algorithm 

2.1 Notation and definitions 

In the subsequent parts of this paper, a sub-
string will denote indifferently a sequence of 
characters or a sequence of words (or actually a 
sequence of any typographic unit we might want 
to consider). The terms “elements” will be used 
instead of “word” or “characters” to denote the 
fundamental typographic unit we chose for a 
given language. 

In general, the number of co-occurrences of 
two substrings S1 and S2 in a parallel corpus is 
the number of times they have appeared on the 
opposite sides of a bi-sentence in this corpus. It 
will be noted N(S1,S2). In the cases where S1 and 
S2 appears several times in a single bi-sentence 
(n1 and n2 times respectively), we might count 1, 
n1*n2 or min(n1,n2) co-occurrences. We will also 
note N(S1) the number of occurrences of S1 in the 
corpus.  

2.2 The Storage Problem 

Counting word co-occurrences over a parallel 
corpus and storing them in a data structure such 
as a Hash table is a trivial task. But storing the 
co-occurrences counts of every pair of substring 
presents much more technical difficulties. Basi-
cally, the problem is that the number of values to 
be stored is much greater when we consider sub-

strings. For two sentences with N1 and N2 words 
respectively, there are N1*N2 words that co-occur; 
but the number of substrings that co-occur is 
roughly proportional to (N1*N2)^2. Of course, 
most substrings in a pair of sentences are not 
unique in the corpus, which reduces the number 
of values to be stored. Still, in most cases, it re-
mains impractical. For example, the Japanese-
English BTEC corpus has more than 11 million 
unique English (word-) substrings and more than 
8 million unique Japanese (character-) substrings. 
So there are potentially 88,000 billion co-
occurrence values to be stored.  Again, most of 
these substrings do not co-occur in the corpus, so 
that non-zero co-occurrences values are only a 
fraction of this figure. However, a rough estima-
tion we performed showed that there still would 
be close to a billion values to store. 

With a bigger corpus such as the European 
Parliament Corpus (more than 600,000 sentences 
per languages)  we have more than 698 millions 
unique English (word-) substrings and 875 mil-
lions unique French (word-) substrings. And 
things get much worse if we want to try to work 
with characters substrings. 

To handle this problem, we decided not to try 
and store the co-occurrences count beforehand, 
but rather to compute them “on-the-fly”, when 
they are needed. For that we will need a way to 
compute co-occurrences very efficiently.   We 
will show how to do it with the data structure 
known as Suffix Array.  

2.3 Suffix Arrays 

Suffix Arrays are a data structure allowing for 
(among other things) the efficient computation of 
the number of occurrences of any substring 
within a text. They have been introduced by 
Mamber and Myers (1993) in a bioinformatics 
context. (Callison-Burch, Bannard and Scroeder, 
2005) used them (in a way similar to us) to com-
pute and store phrase translation probabilities 
over very large corpora. 

Basically, a Suffix Array is a very simple data 
structure: it is the sorted list of all the suffixes of 
a text. A suffix is a substring going from one 
starting position in the text to its end. So a text of 
T elements has T suffixes.  

An important point to understand is that we 
won’t have to store the actual suffixes in memory. 
We can describe any suffix by its starting posi-
tion in the text. Hence, every suffix occupies a 
constant space in memory. Actually, a common 
implementation is to represent a suffix by a 
memory pointer on the full text. So, on a ma-
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chine with 32-bit pointers, the Suffix Array of a 
text of T elements occupy 4*T bytes.  The time 
complexity of the Suffix Array construction is 
O(T*log(T)) if we build the array of the suffixes 
and then sort it. 

We will now describe the property of the Suf-
fix Array that interest us. Let S be a substring. 
Let pf be the position (in the Suffix Array) of the 
first suffix beginning with substring S and pl be 
the position of the last such suffix. Then every 
suffix in the Array between positions pf and pl 
corresponds to an occurrence of S. And every 
occurrence of S in the text corresponds to a suf-
fix between pf and pl.  

pf and pl can be retrieved in O(|S|*log T) with 
a dichotomy search. Beside, N(S)=pl-pf+1; so 
we can compute N(S) in O(|S|*log T). We will 
now see how to compute N(S1,S2) for two sub-
strings S1 and S2 in a parallel corpus. 

2.4 Computing Co-Occurrences using Suf-
fix Array 

A Suffix Array can be created not only from 
one text, but also from a sequence of texts. In the 
present case, we will consider the sequence of 
sentences formed by one side of a parallel corpus. 
The Suffix Array is then the sorted list of all the 
suffixes of all the sentences in the sequence. Suf-
fixes may be represented as a pair of integer (in-
dex of the sentence, position in the sentence) or 
again as a pointer (an example using integer pairs 
is shown on Figure 1). 

We can implement the Suffix Array so that, 
from a suffix, we can determine the index of the 
sentence to which it belongs (the computational 
cost of this is marginal in practical cases and will 
be neglected). We can now compute pf and pl for 
a substring S such as previously, and retrieve the 
sentence indexes corresponding to every suffix 
between positions pf and pl in the Suffix Array, 
This allow us to create an “occurrence vector”: a 
mapping between sentence indexes and the num-
ber of occurrences of S in those sentences. This 
operation takes O(pl-pf), that is O(N(S)). (Figure 
1. shows an occurrence vector for the substring 
“red car”) 

We can now efficiently compute the co-
occurrence counts of two substrings S1 and S2 in 
a parallel corpus.  

We compute beforehand the two Suffix Arrays 
for the 2 sides of the parallel corpus. We can 
then compute two occurrence vectors V1 and V2 
for S1 and S2 in O(N(S1)+|S1|*log(T1)) and 
O(N(S2)+|S2|*log(T2)) respectively. 

 
With a good implementation, we can use these 

two vectors to obtain N(S1,S2) in 
O(min(size(V1),size(V2))), that is 
O(min(N(S1),N(S2)). 

Hence we can compute NbCoOcc(S1,S2) for 
any substring pair (S1,S2) in 
O(N(S2)+|S2|*log(T2)+N(S1)+|S1|*log(N1))). This 
is much better than a naive approach that takes 
O(T1*T2) by going through the whole corpus. 
Besides, some simple optimizations will substan-
tially improve the average performances. 

2.5 Some Important Optimizations 

There are two ways to improve performances 
when using the previous method for co-
occurrences computing. 

 Firstly, we won’t compute co-occurrences for 
any substrings at random. Typically, in the algo-
rithm described in the following part, we com-
pute N(S1,S2) for every substring pairs in a given 
bi-sentence. So we will compute the occurrence 
vector of a substring only once per sentence. 

Secondly, the time taken to retrieve the co-
occurrence count of two substrings S1 and S2 is 
more or less proportional to their frequency in 
the corpus. This is a problem for the average per-
formance: the most frequent substrings will be 
the one that take longer to compute. This sug-
gests that by caching the occurrence vectors of 
the most frequent substrings (as well as their co-
occurrence counts), we might expect a good im-
provement in performance. (We will see in the 
next sub-section that caching the 200 most fre-

 

A small monolingual corpus 
index sentence 
1 The red car is here 
2 I saw a blue car 
3 I saw a red car   

Occurrence Vector of 
“red car” 
index nbOcc
1 1 
2 0 
3 1 

Suffix Array 
Array 
index 

Suffix Position Suffix 

0 2,3 a blue car 
1 3,4 a red car 
2 2,4 blue car 
3 2,6 car 
4 3,5 car 
5 1,3 car is here 
6 1,5 here 
7 2,1 I saw a blue car 
8 1,1 I saw a red car 
9 1,4 is here 
10 1,2 red car is here 
11 3,5 red car 
12 2,2 saw a blue car 
13 3,3 saw a red car 
14 1,1 The red car is here 

Figure 1. A small corpus, the corresponding suf-
fix array, and an occurrence vector 
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quent substrings is sufficient to multiply the av-
erage speed by a factor of 50) 

2.6 Practical Evaluation of the Perform-
ances 

We will now test the computational practicality 
of our method. For this evaluation, we will con-
sider the English-Japanese BTEC corpus 
(170,000 bi-sentences, 12MB), and the English-
French Europarl corpus (688,000 bi-sentences, 
180 MB). We also want to apply our algorithm to 
western languages at the character level. How-
ever, working at a character level multiply the 
size of the suffix array by about 5, and increase 
the size of the cached vectors as well. So, be-
cause of memory limitations, we extracted a 
smaller corpus from the Europarl one (100,000 
bi-sentences, 20MB) for experimenting on char-
acters substrings. 

The base elements we will choose for our sub-
strings will be: word/characters for the BTEC, 
word/word for the bigger EuroParl, and 
word/characters for the smaller EuroParl. We 
computed the co-occurrence counts of every sub-
strings pair in a bi-sentence for the 100 first bi-
sentences of every corpus, on a 2.5GHz x86 
computer. We give the average figures for dif-
ferent corpora and caching strategies. 

These results are good enough and show that 
the algorithm we are going to introduce is not 
computationally impracticable. The cache allows 
an interesting trade-off between the perform-
ances and the used memory. We note that the 
proportional speedup depends on the corpus used. 
We did not investigate this point, but the differ-
ent sizes of corpora (inducing different average 
occurrence vectors sizes), and the differences in 
the frequency distribution of words and charac-
ters are probably the main factors. 

3 Sub-sentential alignment 

3.1 The General Principle 

Given two substrings S1 and S2, we can use 
their occurrence and co-occurrence counts to 
compute a correlation coefficient (such as the 

chi-square statistic, the point-wise mutual infor-
mation or the Dice coefficient).  

The basic principle of our sub-sentential align-
ment algorithm will simply be to compute a cor-
relation coefficient between every substring in a 
bi-sentence, and align the substrings with the 
highest correlation. This idea needs, however, to 
be refined. 

First, we have to take care of the indirect asso-
ciation problem. The problem, which was de-
scribed in (Melamed, 1997) in a word-to-word 
alignment context, is as follows: if e1 is the trans-
lation of f1 and f2 has a strong monolingual asso-
ciation with f1, e1 and f2 will also have a strong 
correlation. Melamed assumed that indirect asso-
ciations are weaker than direct ones, and pro-
vided a Competitive Linking Algorithm that does 
not allow for a word already aligned to be linked 
to another one. We will make the same assump-
tion and apply the same solution. So our algo-
rithm will align the substring pairs with the high-
est correlation first, and will forbid the subse-
quent alignment of substrings having a part in 
common with an already aligned substring. A 
side-effect of this procedure is that we will be 
constrained to produce a single segmentation on 
both sentences and a single alignment between 
the components of this segmentation. According 
to the application, this might be what we are 
looking for or not. But it must be noted that, 
most of the time, alignments with various 
granularities are possible, and we will only be 
able to find one of them. We will discuss the is-
sue of the granularity of the alignment in part 3.3. 

Besides, our approach implicitly considers that 
the translation of a substring is a substring (there 
are no discontinuities). This is of course not the 
case in general (for example, the English word 
“not” is usually translated in French by 
“ne…pas”). However, there is most of the time a 
granularity of alignment at which there is no dis-
continuity in the alignment components. 

Also, it is frequent that a word or a sequence 
of words in a sentence has no equivalent in the 
opposite sentence. That is why it will not be 
mandatory for our algorithm to align every ele-
ment of the sentences at all cost. If, at any point, 
the substrings that are yet to be linked have cor-
relation coefficients below a certain threshold, 
the algorithm will not go further.  

So, the algorithm can be described as follow: 
1- Compute a correlation coefficient for all the 

substrings pairs in e and f  and mark all the ele-
ments in e and f as free. 

Corpus Cache 
(cached 
substrg ) 

Allocated 
Memory 
(MB) 

CoOcc 
computed 
(per sec.) 

bisentences 
processed (per 
sec.) 

BTEC 0 22  7k 1.2 
BTEC  200 120 490k 85 
EuroParl 0 270  3k 0.4 
EuroParl 400 700 18k 1.2 
Small 
EuroParl 

0 100 4k 0.04 

Small 
EuroParl  

400 300 30k 0.3 
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2- Among the substrings which contain only 
free element, find the pair with the highest corre-
lation. If this correlation is not above a certain 
threshold, end the algorithm. Else, output a link 
between the substrings of the pair. 

3- Mark all the elements belonging to the 
linked pair as non-free. 

4- Go back to 2 
It should be noted that correlation coefficients 

are only meaningful data is sufficiently available; 
but many substrings will appear only a couple of 
times in the corpus. That is why, in our experi-
ments we have set to zero the correlation coeffi-
cient of substring pairs that co-occur less than 5 
times (this might be a bit conservative, but the 
BTEC corpus we used being very redundant, it 
was not too much of a restriction). 

3.2 Giving a preference to bigger align-
ments. 

A problem that arose in applying the previous 
algorithm is a tendency to link incomplete sub-
strings. Typically, this happen when a substring 
S1 can be translated by two substrings S2 and S2’, 
S2 and S2’ having themselves a common sub-
string. S1 will then be linked to the common part 
of S2 and S2’. For example, the English word 
“museum” has two Japanese equivalents: 博物館 
and 美術館. In the BTEC corpus, the common 
part (館) will have a stronger association with 
“museum”, and so will be linked instead of the 
correct substring (博物館 or 美術館). 

To prevent this problem, we have tried to 
modify the correlation coefficients so that they 
slightly penalize shorter alignment. Precisely, for 
a substring pair (S1,S2), we define its area as 
“length of S1”*”length of S2”. We then multiply 
the Dice coefficient by area(S1,S2) and the chi-
square coefficient by log(area(S1,S2)+1). These 
formulas are very empiric, but they created a 
considerable improvement in our experimental 
results. 

Linking the bigger parts of the sentences first 
has another interesting effect: bigger substrings 
present less ambiguity, and so linking them first 
may prevent further ambiguities to arise. For ex-
ample, with the bi-sentence “the cat on the 
wall”/”le chat sur le mur”. Each “the” in the 
English sentence will have the same correlation 
with each “le” in the French sentence, and so the 
algorithm cannot determine which “the” corre-
spond to which “le”. But if, for example “the 
cat” has been previously linked to “le chat”, 
there is no more ambiguity. 

We mentioned previously the issue of the 
granularity of alignments. These “alignment size 
penalties” could also be used to tune the granu-
larity of the alignment produced.  

3.3 Experiments and Evaluations 

Although we made some tests to confirm that 
computation time did not prevent our algorithm 
to work with bigger corpus such as the EuroParl 
corpus, we have until now limited deeper ex-
periments to the Japanese-English BTEC Corpus. 

That is why we will only present results for 
this corpus. For comparison, we re-implemented 
the ISA (Integrated Segmentation Alignment) 
algorithm described in (Zhang, Vogel and 
Waibel, 2003). This algorithm is interesting be-
cause it is somehow similar to our own approach, 
in that it can be seen as a generalization of 
Melamed’s Competitive Linking Algorithm. It is 
also fairly easy to implement. A comparison with 
the joint probability model of Marcu and Wong 
(which can also work at the phrase/substring 
level) would have also been very interesting, but 
the difficulty of implementing and adapting the 
algorithm made us delay the experiment. 

After trying different settings, we chose to use 
chi-square statistic as the correlation coefficient 
for the ISA algorithm, and the dice coefficient 
for our own algorithm. ISA settings as well as 
the “alignment size penalties” of our algorithm 
were also tuned to give the best results possible 
with our test set. For our algorithm, we consid-
ered word-substrings for English and characters 
substrings for Japanese. For the ISA algorithm, 
we pre-segmented the Japanese corpus, but also 
tried to apply it directly to Japanese by consider-
ing characters as words. 

Estimating the quality of an alignment is not an 
easy thing. We tried to compute a precision and a 
recall score in the following manner. Precision 
was such that: 

    Nb of correct links   
 Precision= Nb of outputted links  
Correct link are counted by manual inspection 

of the results. Appreciating what is a correct link 
is subjective; especially here, where we consider 
many-words-to-many-characters links. Overall, 
the evaluation was pretty indulgent, but tried to 
be consistent, so that the comparison would not 
be biased. 

Computing recall is more difficult: for a given 
bi-sentence, multiple alignments with different 
granularities are possible. As we are only trying 
to output one of these alignments, we cannot de-
fine easily a “gold standard”. What we did was to 
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count a missed link for every element that was 
not linked correctly and could have been. We 
then compute a recall measure such that: 

                Nb of correct links                 . Recall= Nb of correct links+ Nb of missed links 
These measures are not perfect and induce 

some biases in the evaluation (they tend to favor 
algorithms aligning bigger part of the sentence, 
for example), but we think they still give a good 
summary of the results we have obtained so far. 

As can be seen in the following table, our al-
gorithm performed quite well. We are far from 
the results obtained with a pre-segmentation, but 
considering the simplicity of this algorithm, we 
think these results are encouraging and justify 
our initial ideas. There is still a lot of room for 
improvement: introducing a n-gram language 
model, using multiple iterations to re-estimate 
the correlation of the substrings...  

That is why we are pretty confident that we 
can hope to compete in the end with algorithms 
using pre-segmentation. 

Also, although we did not make any thorough 
evaluation, we also applied the algorithm to a 
subset of the Europarl corpus (cf. 2.6), where 
characters where considered the base unit for 
French. The alignments were mostly satisfying 
(seemingly better than with the BTEC). But 
hardly any sub-word alignments were produced. 
Some variations on the ideas of the algorithm, 
however, allowed us to get interesting (if infre-
quent) results. For example, in the pair (‘I would 
like’/ ‘Je voudrais’), ‘would’ was aligned with 
‘rais’ and ‘voud’ with ‘like’.  

4 Conclusion and future work 

In this paper we presented both a method for 
accessing the co-occurrences count for any sub-
string pair in a parallel corpus and an algorithm 
taking advantage of this method to create sub-
sentential alignments in such a corpus. 

We showed our co-occurrence counting 
method performs well with corpus commonly 
used in Statistical Machine Translation research, 
and so we think it can be a useful tool for the 
statistical processing of parallel corpora. 

Our phrase level alignment algorithm gave en-
couraging results, especially considering there 
are many possibilities for further improvement. 

In the future, we will try to improve the algo-
rithm as well as perform more extensive evalua-
tions on different language pairs. 

References 
Ralph Brown. 1997. Automated Dictionary Extraction 

for Knowledge-Free Example Based Translation, 
Proceedings of the 7th International Conference on 
Theoretical and Methodological Issues in Machine 
Translation, pp. 111-118, Santa-Fe, July 1997.  

Chris Callison-Burch, Colin Bannard and Josh Scroe-
der. 2005. Scaling Phrase-Based Statistical Ma-
chine Translation to Larger Corpora and Longer 
Phrases, Proceedings of 43rd Conference of the As-
sociation for Computational Linguistics (ACL 05), 
Ann Arbor, USA, 2005. 

Philipp Koehn. 2003. Europarl: A Multilingual Cor-
pus for Evaluation of Machine Translation, 
Draft,Unpublished.  

Manber and Myers. 1993. Suffix Array: A New 
Method for On-Line String Searches, SIAM Jour-
nal on Computing, 22(5):935-948. 

Daniel Marcu, William Wong. 2002. A Phrase-Based, 
Joint Probability Model for Statistical Machine 
Translation, Proceedings of the Conference on 
Empirical Methods in Natural Language Process-
ing , Philadelphia, USA, July 2002. 

Dan Melamed. 1997. A Word-to-Word Model of 
Translational Equivalence, Proceedings of 35th 
Conference of the Association for Computational 
Linguistics (ACL 97), Madrid, Spain, 1997. 

Franz Joseph Och, Christophe Tillmann, Hermann 
Ney. 1999. Improved Alignment Models for Statis-
tical Machine Translation. Proceedings of the joint 
conference of Empirical Methods in Natural Lan-
guage Processing and Very Large Corpora, pp 20-
28, University Of Maryland,  

Jia Xu, Richard Zens., Hermann Ney. 2004. Do We 
Need Chinese Word Segmentation for Statistical 
Machine Translation?, Proceedings of the 3rd 
SIGHAN Workshop on Chinese Language Learn-
ing, Barcelona, Spain, pp. 122-128 , July 2004 

Ying Zhang, Stephan Vogel and Alex Waibel. 2003. 
Integrated Phrase Segmentation and Alignment al-
gorithm for Statistical Machine Translation, Pro-
ceedings of International Conference on Natural 
Language Processing and Knowledge Engineering, 
Beijing,China., October 2003 

 

 Precision Recall 
Our algorithm 
(w/o segmentation) 

78% 70% 

ISA 
 (w/o segmentation) 

55% 55% 

ISA + segmentation 98% 95% 
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